Free *MV_n*-algebras

Manuela Busaniche based on the joint work with Roberto Cignoli "Free MV_n -algebras" that will appear in Algebra Universalis.

Instituto de Matemática del Litoral- CONICET Santa Fe, Argentina

TANCL'07

크

- R. S. Grigolia, An algebraic analysis of Łukasiewicz -Tarski n-valued logical systems. In: R. Wójcicki, G. Malinowski (Eds.), Selected papers on Łukasiewicz sentential calculus, Ossolineum, Wrocław (1977), 81-92.
- R. Cignoli, *Natural dualities for the algebras of Łukasiewicz finitely-valued logics*, Bull. Symb. Logic. **2** (1996), 218.
- K. Keimel and H. Werner, Stone duality for varieties generated by a quasi-primal algebra, Mem. Amer. Math. Soc. No. 148 (1974), 59 -85.
- Nied P. Niederkorn, Natural dualities for varieties of MV-algebras, J. Math. Anal. Appl. 225 (2001), 58-73.
- M. Busaniche, and R. Cignoli, *Free algebras in varieties of BL-algebras generated by a BL_n-chain*, Journal of the Australian Mathematical Society, **80** (2006) 419-439.

・ロ・ ・ 四・ ・ 回・ ・ 日・

- R. S. Grigolia, An algebraic analysis of Łukasiewicz -Tarski n-valued logical systems. In: R. Wójcicki, G. Malinowski (Eds.), Selected papers on Łukasiewicz sentential calculus, Ossolineum, Wrocław (1977), 81-92.
- R. Cignoli, *Natural dualities for the algebras of Łukasiewicz finitely-valued logics*, Bull. Symb. Logic. **2** (1996), 218.
- K. Keimel and H. Werner, Stone duality for varieties generated by a quasi-primal algebra, Mem. Amer. Math. Soc. No. 148 (1974), 59 -85.
- Nied P. Niederkorn, Natural dualities for varieties of MV-algebras, J. Math. Anal. Appl. 225 (2001), 58-73.
- M. Busaniche, and R. Cignoli, Free algebras in varieties of BL-algebras generated by a BL_n-chain, Journal of the Australian Mathematical Society, 80 (2006) 419-439.

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

- R. S. Grigolia, An algebraic analysis of Łukasiewicz -Tarski n-valued logical systems. In: R. Wójcicki, G. Malinowski (Eds.), Selected papers on Łukasiewicz sentential calculus, Ossolineum, Wrocław (1977), 81-92.
- R. Cignoli, *Natural dualities for the algebras of Łukasiewicz finitely-valued logics*, Bull. Symb. Logic. **2** (1996), 218.
- K. Keimel and H. Werner, Stone duality for varieties generated by a quasi-primal algebra, Mem. Amer. Math. Soc. No. 148 (1974), 59 -85.
- Nied P. Niederkorn, Natural dualities for varieties of MV-algebras, J. Math. Anal. Appl. 225 (2001), 58-73.
- M. Busaniche, and R. Cignoli, Free algebras in varieties of BL-algebras generated by a BL_n-chain, Journal of the Australian Mathematical Society, **80** (2006) 419-439.

・ロ・・ (日・・ ほ・・ (日・)

Ξ.

Let $n \in \mathbb{N}$. \mathcal{MV}_n denotes the variety of MV-algebras generated by the chain \mathbf{L}_n

$$\left\{\frac{0}{n-1},\frac{1}{n-1},\ldots,\frac{n-1}{n-1}\right\}.$$

Recall that L_{d+1} is a subalgebra of L_n iff d is a divisor of n-1.

臣

Let $n \in \mathbb{N}$. \mathcal{MV}_n denotes the variety of MV-algebras generated by the chain \mathbf{L}_n

$$\left\{\frac{0}{n-1},\frac{1}{n-1},\ldots,\frac{n-1}{n-1}\right\}.$$

Recall that L_{d+1} is a subalgebra of L_n iff *d* is a divisor of n-1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ ● ◆ ○ ●

- a Boolean space X(A)
- a meet homomorphism $\rho_{\mathbf{A}}$ from $\operatorname{Div}(n-1)$ into the lattice of closed subsets of $X(\mathbf{A})$, satisfying $\rho_{\mathbf{A}}(n-1) = X(\mathbf{A})$

such that

$$\mathbf{A}\cong \mathcal{C}_n(\boldsymbol{X}(\mathbf{A}),\rho_{\mathbf{A}})$$

where $C_n(X(\mathbf{A}), \rho_{\mathbf{A}}) = \{f : X(\mathbf{A}) \to \mathbf{L}_n\}$ and $f(\rho_{\mathbf{A}}(d)) \subseteq L_{d+1}$.

Take $X(\mathbf{A}) = \{\chi : \mathbf{A} \rightarrow \mathbf{L}_n\}$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For each $d \in Div(n-1)$ take

 $\rho_{\mathbf{A}}(d) = \{ U = \chi^{-1}\{1\} \cap \mathbf{B}(\mathbf{A}) : \chi(\mathbf{A}) \subseteq L_{d+1} \}.$

・ロ・ ・ 四・ ・ 回・ ・ 日・

- a Boolean space X(A)
- a meet homomorphism ρ_A from Div(n − 1) into the lattice of closed subsets of X(A), satisfying ρ_A(n − 1) = X(A)

such that

$$\mathbf{A}\cong \mathcal{C}_n(\boldsymbol{X}(\mathbf{A}),\rho_{\mathbf{A}})$$

where $C_n(X(\mathbf{A}), \rho_{\mathbf{A}}) = \{f : X(\mathbf{A}) \to \mathbf{L}_n\}$ and $f(\rho_{\mathbf{A}}(d)) \subseteq L_{d+1}$.

Take $X(\mathbf{A}) = \{\chi : \mathbf{A} \to \mathbf{L}_n\}$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For each $d \in Div(n-1)$ take

 $\rho_{\mathbf{A}}(d) = \{ U = \chi^{-1}\{1\} \cap \mathbf{B}(\mathbf{A}) : \chi(\mathbf{A}) \subseteq L_{d+1} \}.$

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

- a Boolean space X(A)
- a meet homomorphism ρ_A from Div(n − 1) into the lattice of closed subsets of X(A), satisfying ρ_A(n − 1) = X(A)

such that

$$\mathbf{A}\cong \mathcal{C}_n(X(\mathbf{A}),\rho_{\mathbf{A}})$$

where $C_n(X(\mathbf{A}), \rho_{\mathbf{A}}) = \{f : X(\mathbf{A}) \to \mathbf{L}_n\}$ and $f(\rho_{\mathbf{A}}(d)) \subseteq L_{d+1}$.

Take $X(\mathbf{A}) = \{\chi : \mathbf{A} \rightarrow \mathbf{L}_n\}$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For each $d \in Div(n-1)$ take

 $\rho_{\mathbf{A}}(d) = \{ U = \chi^{-1}\{1\} \cap \mathbf{B}(\mathbf{A}) : \chi(\mathbf{A}) \subseteq L_{d+1} \}.$

- a Boolean space X(A)
- a meet homomorphism ρ_A from Div(n − 1) into the lattice of closed subsets of X(A), satisfying ρ_A(n − 1) = X(A)

such that

$$\mathbf{A}\cong \mathcal{C}_n(X(\mathbf{A}),\rho_{\mathbf{A}})$$

where $C_n(X(\mathbf{A}), \rho_{\mathbf{A}}) = \{f : X(\mathbf{A}) \to \mathbf{L}_n\}$ and $f(\rho_{\mathbf{A}}(d)) \subseteq L_{d+1}$.

Take $X(\mathbf{A}) = \{\chi : \mathbf{A} \to \mathbf{L}_n\}$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For each $d \in Div(n-1)$ take

$$\rho_{\mathbf{A}}(d) = \{ U = \chi^{-1}\{1\} \cap \mathbf{B}(\mathbf{A}) : \chi(\mathbf{A}) \subseteq L_{d+1} \}.$$

- a Boolean space X(A)
- a meet homomorphism ρ_A from Div(n − 1) into the lattice of closed subsets of X(A), satisfying ρ_A(n − 1) = X(A)

such that

$$\mathbf{A}\cong \mathcal{C}_n(X(\mathbf{A}),\rho_{\mathbf{A}})$$

where $C_n(X(\mathbf{A}), \rho_{\mathbf{A}}) = \{f : X(\mathbf{A}) \to \mathbf{L}_n\}$ and $f(\rho_{\mathbf{A}}(d)) \subseteq L_{d+1}$.

Take $X(\mathbf{A}) = \{\chi : \mathbf{A} \to \mathbf{L}_n\}$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For each $d \in Div(n-1)$ take

$$\rho_{\mathbf{A}}(d) = \{ U = \chi^{-1}\{1\} \cap \mathbf{B}(\mathbf{A}) : \chi(\mathbf{A}) \subseteq L_{d+1} \}.$$

For every $\mathbf{A} \in \mathcal{MV}_n$, we can define the *Moisil operators* $\sigma_i : \mathbf{A} \to \mathbf{B}(\mathbf{A})$ with i = 1, ..., n - 1.

In particular, when evaluated L_n they give:

$$\sigma_i(\frac{j}{(n-1)}) = \begin{cases} 1 & \text{if } i+j \ge n, \\ 0 & \text{if } i+j < n, \end{cases}$$
(1)

・ロ・ ・ 四・ ・ 回・ ・ 回・

E

for i = 1, ..., n - 1

For every $\mathbf{A} \in \mathcal{MV}_n$, we can define the *Moisil operators* $\sigma_i : \mathbf{A} \to \mathbf{B}(\mathbf{A})$ with i = 1, ..., n - 1.

In particular, when evaluated L_n they give:

$$\sigma_i(\frac{j}{(n-1)}) = \begin{cases} 1 & \text{if } i+j \ge n, \\ 0 & \text{if } i+j < n, \end{cases}$$
(1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

for i = 1, ..., n - 1

Manuela Busaniche Free *MV*_n-algebras

The following properties hold in every $\mathbf{A} \in \mathcal{MV}_n$:

• $x \in B(A)$ if and only if $x = \sigma_i(x)$ for some $1 \le i \le n-1$ if and only if $x = \sigma_i(x)$ for all $1 \le i \le n-1$.

• $\sigma_1(x) \leq \sigma_2(x) \leq \ldots \leq \sigma_{n-1}(x).$

The following properties hold in every $\mathbf{A} \in \mathcal{MV}_n$:

• $x \in B(A)$ if and only if $x = \sigma_i(x)$ for some $1 \le i \le n-1$ if and only if $x = \sigma_i(x)$ for all $1 \le i \le n-1$.

• $\sigma_1(x) \leq \sigma_2(x) \leq \ldots \leq \sigma_{n-1}(x).$

The following properties hold in every $\mathbf{A} \in \mathcal{MV}_n$:

• $x \in B(A)$ if and only if $x = \sigma_i(x)$ for some $1 \le i \le n-1$ if and only if $x = \sigma_i(x)$ for all $1 \le i \le n-1$.

•
$$\sigma_1(x) \leq \sigma_2(x) \leq \ldots \leq \sigma_{n-1}(x).$$

$\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(X))$

is the free Boolean algebra over the poset

$$Y := \{\sigma_i(x) : x \in X, i = 1, ..., n-1\}.$$

The correspondence

$$S \subseteq Y \rightarrow U_S$$

where U_S is the boolean filter generated by the set $S \cup \{\neg y : y \in Y \setminus S\}$, defines a bijection from the set of upwards closed subsets of Y onto the ultrafilters of **B**(**Free**_{MV_n}(X)).

(日)

$$\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(X))$$

is the free Boolean algebra over the poset

$$Y := \{\sigma_i(x) : x \in X, i = 1, ..., n-1\}.$$

The correspondence

$$S \subseteq Y \rightarrow U_S$$

where U_S is the boolean filter generated by the set $S \cup \{\neg y : y \in Y \setminus S\}$, defines a bijection from the set of upwards closed subsets of *Y* onto the ultrafilters of **B**(**Free**_{MV_n}(*X*)).

Consider the poset $Y = \{\sigma_i(x) : x \in X, i = 1, ..., n-1\}$. If *S* is an upwards closed subset of *Y* then for each $x \in X$ we have a chain C_x of the form

$$C_x = \sigma_j(x) \leq \ldots \leq \sigma_{n-1}(x)$$

for some $1 \le j \le n-1$ and $S = \bigcup_{x \in X} C_x$.

Let R_{n-1} be the set of upwards closed subsets of *Y*. For each $d \in Div^*(n-1)$, let $R_d \subseteq R_{n-1}$ be such that

 $S = \cup_{x \in X} C_x \in R_d$

if for each $x \in X$ we have $\frac{\#C_x}{n-1} \in L_{d+1}$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Consider the poset $Y = \{\sigma_i(x) : x \in X, i = 1, ..., n-1\}$. If *S* is an upwards closed subset of *Y* then for each $x \in X$ we have a chain C_x of the form

$$C_x = \sigma_j(x) \leq \ldots \leq \sigma_{n-1}(x)$$

for some $1 \leq j \leq n-1$ and $S = \bigcup_{x \in X} C_x$.

Let R_{n-1} be the set of upwards closed subsets of Y. For each $d \in Div^*(n-1)$, let $R_d \subseteq R_{n-1}$ be such that

 $S = \cup_{x \in X} C_x \in R_d$

if for each $x \in X$ we have $\frac{\#C_x}{n-1} \in L_{d+1}$.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Consider the poset $Y = \{\sigma_i(x) : x \in X, i = 1, ..., n-1\}$. If *S* is an upwards closed subset of *Y* then for each $x \in X$ we have a chain C_x of the form

$$C_x = \sigma_j(x) \leq \ldots \leq \sigma_{n-1}(x)$$

for some $1 \leq j \leq n-1$ and $S = \bigcup_{x \in X} C_x$.

Let R_{n-1} be the set of upwards closed subsets of *Y*. For each $d \in Div^*(n-1)$, let $R_d \subseteq R_{n-1}$ be such that

$$S = \cup_{x \in X} C_x \in R_d$$

if for each $x \in X$ we have $\frac{\#C_x}{n-1} \in L_{d+1}$.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Free_{MV_n}(*X*) is isomorphic to the algebra of continuous functions *f* from the Stone space of the free Boolean algebra over the poset *Y* = { $\sigma_i(x) : x \in X, i = 1, ..., n-1$ } into **L**_{*n*} such that for each $d \in \text{Div}^*(n-1)$ and each $S \in R_d$, $f(U_S) \subseteq L_{d+1}$.

Recall that

$$\operatorname{Free}_{\mathcal{MV}_n}(X) \cong \mathcal{C}_n(X(\operatorname{Free}_{\mathcal{MV}_n}(X)), \rho)$$

where $X(\operatorname{Free}_{\mathcal{MV}_n}(X)) = \{\chi : \operatorname{Free}_{\mathcal{MV}_n}(X) \to L_n\}$ and for each $d \in \operatorname{Div}(n-1)$

$$\rho(d) = \{ U = \chi^{-1}\{1\} \cap \mathsf{B}(\mathsf{Free}_{\mathcal{MV}_n}(X)) : \chi(\mathsf{Free}_{\mathcal{MV}_n}(X)) \subseteq L_{d+1} \}.$$

We only need to prove that for each $d \in \text{Div}^*(n-1)$,

 $U_{S} \in \rho(d)$ iff $S \in R_{d}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Let $U_S \in \rho(d)$. Then there is a homomorphism $\chi : \mathbf{Free}_{\mathcal{MV}_n}(X) \to L_{d+1}$ such that

 $U_{\mathcal{S}} = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathcal{MV}_n}(X))$

Fix $x \in X$ and let $\chi(x) = \frac{1}{n-1} \in L_{d+1}$. Thus

 $\sigma_i(x) \in S$ iff $\chi(\sigma_i(x)) = 1$ iff $\sigma_i(\chi(x)) = 1$

iff $i + j \ge n$. The chain $C_x \subseteq S$ has cardinality j, thus $\frac{\#C_x}{n-1} = \frac{j}{n-1} \in L_{d+1}$.

This happens for all $x\in X$. Hence if $U_S\in
ho(d),$ then $S\in R_d.$

臣

Let $U_S \in \rho(d)$. Then there is a homomorphism $\chi : \mathbf{Free}_{\mathcal{MV}_n}(X) \to L_{d+1}$ such that

 $U_{S} = \chi^{-1}(\{1\}) \cap B(\operatorname{Free}_{\mathcal{MV}_{n}}(X))$ Fix $x \in X$ and let $\chi(x) = \frac{j}{n-1} \in L_{d+1}$. Thus $\sigma_{i}(x) \in S$ iff $\chi(\sigma_{i}(x)) = 1$ iff $\sigma_{i}(\chi(x)) = 1$ iff $i + j \ge n$.

The chain $C_x \subseteq S$ has cardinality *j*, thus $\frac{\#C_x}{n-1} = \frac{J}{n-1} \in L_{d+1}$.

This happens for all $x \in X$. Hence if $U_S \in \rho(d)$, then $S \in R_d$.

Let $U_S \in \rho(d)$. Then there is a homomorphism $\chi : \mathbf{Free}_{\mathcal{MV}_n}(X) \to L_{d+1}$ such that

 $U_{S} = \chi^{-1}(\{1\}) \cap B(\operatorname{Free}_{\mathcal{MV}_{n}}(X))$ Fix $x \in X$ and let $\chi(x) = \frac{j}{n-1} \in L_{d+1}$. Thus $\sigma_{i}(x) \in S$ iff $\chi(\sigma_{i}(x)) = 1$ iff $\sigma_{i}(\chi(x)) = 1$ iff $i + j \ge n$. The chain $C_{x} \subseteq S$ has cardinality j, thus $\frac{\#C_{x}}{n-1} = \frac{j}{n-1} \in L_{d+1}$.

This happens for all $x\in X.$ Hence if $\mathit{U}_{\mathcal{S}}\in
ho(\mathit{d}),$ then $\mathcal{S}\in \mathit{R}_{\mathit{d}}.$

Let $U_{\mathcal{S}} \in \rho(d)$. Then there is a homomorphism $\chi : \mathbf{Free}_{\mathcal{MV}_n}(X) \to L_{d+1}$ such that

 $U_{S} = \chi^{-1}(\{1\}) \cap B(\operatorname{Free}_{\mathcal{MV}_{n}}(X))$ Fix $x \in X$ and let $\chi(x) = \frac{j}{n-1} \in L_{d+1}$. Thus $\sigma_{i}(x) \in S$ iff $\chi(\sigma_{i}(x)) = 1$ iff $\sigma_{i}(\chi(x)) = 1$ iff $i + j \ge n$. The chain $C_{x} \subseteq S$ has cardinality j, thus $\frac{\#C_{x}}{n-1} = \frac{j}{n-1} \in L_{d+1}$.

This happens for all $x \in X$. Hence if $U_S \in \rho(d)$, then $S \in R_d$.

Now let $S \in R_d$ and $x \in X$, i.e., $\frac{\#C_x}{n-1} \in L_{d+1}$ for each $C_x \subseteq S$. Let

 $\chi:\mathsf{Free}_{\mathcal{MV}_n}(X) o \mathsf{L}_n$

by

$$\chi(x)=rac{\#C_x}{n-1}, \quad ext{for each } x\in X.$$

Then

 $\chi(\mathsf{Free}_{\mathcal{MV}_n}(X)) \subseteq L_{d+1}.$

We also have $U_S = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathcal{MV}_n}(X))$. Therefore $U_S \in \rho(d)$.

Now let $S \in R_d$ and $x \in X$, i.e., $\frac{\#C_x}{n-1} \in L_{d+1}$ for each $C_x \subseteq S$. Let

$$\chi:\mathsf{Free}_{\mathcal{MV}_n}(X)
ightarrow\mathsf{L}_n$$

by

$$\chi(x) = \frac{\#C_x}{n-1}$$
, for each $x \in X$.

Then

 $\chi(\mathbf{Free}_{\mathcal{MV}_n}(X)) \subseteq L_{d+1}.$

We also have $U_S = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathcal{MV}_n}(X))$. Therefore $U_S \in \rho(d)$.

Now let $S \in R_d$ and $x \in X$, i.e., $\frac{\#C_x}{n-1} \in L_{d+1}$ for each $C_x \subseteq S$. Let

$$\chi:\mathsf{Free}_{\mathcal{MV}_n}(X)
ightarrow\mathsf{L}_n$$

by

$$\chi(x) = \frac{\#C_x}{n-1}$$
, for each $x \in X$.

Then

$$\chi(\operatorname{Free}_{\mathcal{MV}_n}(X)) \subseteq L_{d+1}.$$

We also have $U_S = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathcal{MV}_n}(X))$. Therefore $U_S \in \rho(d)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Let *X* be a finite set of cardinality $r \in \mathbb{N}$.

Then the Stone space of $B(Free_{\mathcal{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}).

For each $S \in R_{n-1}$ let

 $r_S = \{ d : S \in R_d \text{ and } S \notin R_j \text{ for any } j \in Div^*(d) \}.$

To every $f \in \mathbf{Free}_{\mathcal{MV}_n}(X)$ we can assign an element

 $\overline{x} \in \prod_{S \in R_{n-1}} L_{r_S+1}$

such that $x_S = f(U_S)$. It is not hard to check that the assignment is an bijective homomorphism.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Let *X* be a finite set of cardinality $r \in \mathbb{N}$.

Then the Stone space of $B(\mathbf{Free}_{\mathcal{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}).

For each $S \in R_{n-1}$ let

 $r_S = \{ d : S \in R_d \text{ and } S \notin R_j \text{ for any } j \in Div^*(d) \}.$

To every $f \in \mathbf{Free}_{\mathcal{MV}_n}(X)$ we can assign an element

 $\overline{x} \in \prod_{S \in R_{n-1}} L_{r_S+1}$

such that $x_S = f(U_S)$. It is not hard to check that the assignment is an bijective homomorphism.

Let *X* be a finite set of cardinality $r \in \mathbb{N}$.

Then the Stone space of $B(\mathbf{Free}_{\mathcal{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}).

For each $S \in R_{n-1}$ let

 $r_{\mathcal{S}} = \{ d : \mathcal{S} \in \mathcal{R}_d \text{ and } \mathcal{S} \notin \mathcal{R}_j \text{ for any } j \in Div^*(d) \}.$

To every $f\in {f Free}_{{\mathcal MV}_n}(X)$ we can assign an element

 $\overline{x} \in \prod_{S \in R_{n-1}} L_{r_S+1}$

such that $x_S = f(U_S)$. It is not hard to check that the assignment is an bijective homomorphism.

Let *X* be a finite set of cardinality $r \in \mathbb{N}$.

Then the Stone space of $B(\mathbf{Free}_{\mathcal{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}).

For each $S \in R_{n-1}$ let

$$r_{\mathcal{S}} = \{ d : \mathcal{S} \in \mathcal{R}_d \text{ and } \mathcal{S} \notin \mathcal{R}_j \text{ for any } j \in Div^*(d) \}.$$

To every $f \in \mathbf{Free}_{\mathcal{MV}_n}(X)$ we can assign an element

$$\overline{x} \in \prod_{S \in R_{n-1}} L_{r_S+1}$$

such that $x_S = f(U_S)$.

It is not hard to check that the assignment is an bijective homomorphism.

・ロ・・ (日・・ ほ・・ (日・)

E

Let *X* be a finite set of cardinality $r \in \mathbb{N}$.

Then the Stone space of $B(\mathbf{Free}_{\mathcal{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}).

For each $S \in R_{n-1}$ let

$$r_{\mathcal{S}} = \{ d : \mathcal{S} \in \mathcal{R}_d \text{ and } \mathcal{S} \notin \mathcal{R}_j \text{ for any } j \in \textit{Div}^*(d) \}.$$

To every $f \in \mathbf{Free}_{\mathcal{MV}_n}(X)$ we can assign an element

$$\overline{x} \in \prod_{S \in R_{n-1}} L_{r_S+1}$$

such that $x_S = f(U_S)$. It is not hard to check that the assignment is an bijective homomorphism.

Thus we conclude

$$\mathsf{Free}_{\mathcal{MV}_n}(X) \cong \prod_{d \in \mathit{Div}(n-1)} \mathsf{L}_{d+1}^{\alpha_d},$$

where for each $d \in Div(n-1)$, α_d is the cardinality of the set $(R_d \setminus \bigcup_{k \in Div^*(d)} R_k)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Thank you

Manuela Busaniche Free *MV_n*-algebras

(ロ) (部) (E) (E) (E) (0)(0)