Covariety and quasi-covariety lattices

Tomasz Brengos, Warsaw University of Technology

August 21, 2007

1 Introduction

- Basic definitions and properties
- Covarieties

2 Lattices

- Covariety lattices: basics
- quasi-covariety lattices: basics
- Covariety lattices

Basic definitions and properties Covarieties

▲□▶ ▲ □▶ ▲ □▶

э

Coalgebras

Definition

Let $F : \mathsf{Set} \to \mathsf{Set}$ be an endofunctor. An *F*-coalgebra is a pair (A, α) , where A is a set and $\alpha : A \to F(A)$ is a mapping.

Basic definitions and properties Covarieties

- 4 同 6 - 4 目 6 - 4 目 6

Coalgebras

Definition

Let $F : \mathsf{Set} \to \mathsf{Set}$ be an endofunctor. An *F*-coalgebra is a pair (A, α) , where A is a set and $\alpha : A \to F(A)$ is a mapping.

Definition

Let (A, α) and (B, β) be coalgebras. A map $h : A \to B$ is *homorphism* whenever $\beta \circ h = F(h) \circ \alpha$.

Basic definitions and properties Covarieties

イロト イボト イヨト イヨト

Coalgebras

Definition

Let $F : \mathsf{Set} \to \mathsf{Set}$ be an endofunctor. An *F*-coalgebra is a pair (A, α) , where A is a set and $\alpha : A \to F(A)$ is a mapping.

Definition

Let (A, α) and (B, β) be coalgebras. A map $h : A \to B$ is *homorphism* whenever $\beta \circ h = F(h) \circ \alpha$.

The definitions of a *homomorphic image* and *subcoalgebra* are clear.

Basic definitions and properties Covarieties

イロト イポト イヨト イヨト

3

Coalgebraic operators

Definition

Given a family of *F*-coalgebras $\{(A_i, \alpha_i)\}_{i \in I}$ we define the *disjoint sum F*-coalgebra $\sum_{i \in I} (A_i, \alpha_i)$.

- 4 同 ト - 4 目 ト

Coalgebraic operators

Definition

Given a family of *F*-coalgebras $\{(A_i, \alpha_i)\}_{i \in I}$ we define the *disjoint sum F*-coalgebra $\sum_{i \in I} (A_i, \alpha_i)$.

Given a class ${\sf K}$ of $F\text{-}{\rm coalgebras}$ we define the following:

- $\bullet~\mathcal{H}(\mathsf{K})$ homomorphic images of $\mathsf{K},$
- $\mathcal{S}(\mathsf{K})$ subcoalgebras of $\mathsf{K},$
- $\Sigma(\mathsf{K})$ disjoint sums of K .

Basic definitions and properties Covarieties

イロト イボト イヨト イヨト

э

Covarieties and quasi-covarieties

Definition

A class K is called *covariety* if $\mathcal{H}(K) \subseteq K$, $\mathcal{S}(K) \subseteq K$ and $\Sigma(K) \subseteq K$.

Basic definitions and properties Covarieties

イロト イボト イヨト イヨト

Covarieties and quasi-covarieties

Definition

A class K is called *covariety* if $\mathcal{H}(K) \subseteq K$, $\mathcal{S}(K) \subseteq K$ and $\Sigma(K) \subseteq K$.

Definition

A class K is called *quasi-covariety* if $\mathcal{H}(\mathsf{K}) \subseteq \mathsf{K}$ and $\Sigma(\mathsf{K}) \subseteq \mathsf{K}$.

Basic definitions and properties Covarieties

イロト イボト イヨト イヨト

Covarieties and quasi-covarieties

Definition

A class K is called *covariety* if $\mathcal{H}(K) \subseteq K$, $\mathcal{S}(K) \subseteq K$ and $\Sigma(K) \subseteq K$.

Definition

A class K is called *quasi-covariety* if $\mathcal{H}(\mathsf{K}) \subseteq \mathsf{K}$ and $\Sigma(\mathsf{K}) \subseteq \mathsf{K}$.

Theorem [1]

The smallest covariety (quasi-coavariety) containing a class ${\cal K}$ is ${\cal SH}\Sigma({\sf K})$ (resp. ${\cal H}\Sigma({\sf K})).$

Introduction Lattices Basic definitions and properties Covarieties and quasi-covarieties

Assume that F is bounded. This guarantees that the family of covarieties (quasi-covarieties) of F-coalgebras is a set.

Outline

.

.

Covarieties and quasi-covarieties

Assume that F is bounded. This guarantees that the family of covarieties (quasi-covarieties) of F-coalgebras is a set.

Remark

It is possible to define a *coequation* (*coimplication*). To satisfy a coequation (resp. coimplication) is to omit some "behaviour".

イロト イボト イヨト イヨト

Covarieties and quasi-covarieties

Assume that F is bounded. This guarantees that the family of covarieties (quasi-covarieties) of F-coalgebras is a set.

Remark

It is possible to define a *coequation* (*coimplication*). To satisfy a coequation (resp. coimplication) is to omit some "behaviour".

Coalgebraic Birkhoff Theorem [1]

Covarieties (quasi-covarieties) are exactly the classes defined by the satifaction of some set of coequations (resp. coimplications).

イロト イボト イヨト イヨト

Covarieties and quasi-covarieties

Theorem [1]

The family of all covarieties (quasi-covarieties) of F-coalgebras ordered by inclusion is a complete lattice.

イロト イポト イラト イラ

Covarieties and quasi-covarieties

Theorem [1]

The family of all covarieties (quasi-covarieties) of F-coalgebras ordered by inclusion is a complete lattice.

Notation

Let K be a covariety (quasi-covariety) of F-coalgebras. The lattice of subcovarieties (quasi-subcovarieties) is denoted by $L_{CV}(\mathsf{K})$ (resp. $L_{QCV}(\mathsf{K})$).

・ロト ・同ト ・ヨト ・ヨ

Covarieties and quasi-covarieties

Theorem [1]

The family of all covarieties (quasi-covarieties) of F-coalgebras ordered by inclusion is a complete lattice.

Notation

Let K be a covariety (quasi-covariety) of F-coalgebras. The lattice of subcovarieties (quasi-subcovarieties) is denoted by $L_{CV}(K)$ (resp. $L_{QCV}(K)$).

Theorem

Let ${\sf K}$ be a covariety of $F\text{-}{\rm coalgebras}.$ Then $L_{\mathcal{CV}}({\sf K})$ is a distributive lattice.

< A >

→ 3 → < 3</p>

Quasi-covariety lattices

The quasi-covariety lattices are not modular in general. Consider the following $\mathcal{I}d$ -coalgebras.

< 47 ►

→ 3 → < 3</p>

Quasi-covariety lattices

The quasi-covariety lattices are not modular in general. Consider the following $\mathcal{I}d$ -coalgebras.

イロト イボト イヨト イヨト

э

Quasi-covariety lattices

Then the quasi-covariety lattice $L_{QCV}(\mathsf{Set}_{Id})$ contains the following lattice as a sublattice:

▲ □ ▶ ▲ □ ▶ ▲ □

Quasi-covariety lattices

Then the quasi-covariety lattice $L_{QCV}(\mathsf{Set}_{Id})$ contains the following lattice as a sublattice:

Quasi-covariety lattices

Theorem

Let F be a Set-endofunctor such that $\mathcal{I}d \leq F$. Then $L_{\mathcal{QCV}}(\mathsf{Set}_F)$ is not modular.

Tomasz Brengos, Warsaw University of Techno Covariety and quasi-covariety lattices

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quasi-covariety lattices

Theorem

Let F be a Set-endofunctor such that $\mathcal{I}d \leq F$. Then $L_{\mathcal{QCV}}(\mathsf{Set}_F)$ is not modular.

Conjecture

The lattice $L_{\mathcal{QCV}}(\mathsf{Set}_F)$ is distributive iff $F \cong \mathcal{C}_M$.

Strongly simple coalgebras and their properties

Definition

An F-coalgebra \mathbb{A} is called *strongly simple* whenever it does not possess any nontrivial homomorphic images.

Tomasz Brengos, Warsaw University of Techno Covariety and quasi-covariety lattices

・ロト ・同ト ・ヨト ・ヨ

OutlineCovariety lattices: basics
quasi-covariety lattices: basicsIntroductionQuasi-covariety lattices: basicsLatticesCovariety lattices

Strongly simple coalgebras and their properties

Definition

An F-coalgebra \mathbb{A} is called *strongly simple* whenever it does not possess any nontrivial homomorphic images.

Theorem

Let \mathbb{A} be a strongly simple *F*-coalgebra. Then

 $L_{\mathcal{CV}}(\mathcal{SH}\Sigma(\mathbb{A})) \cong (\mathbf{S}(\mathbb{A}), \cup, \cap).$

イロト イボト イヨト イヨト

・ 「 ト ・ ヨ ト ・ ヨ ト

Construction of covariety lattices

Lemma

Let (A, α) be an *F*-coalgebra and *B* be a set such that $A \subseteq B$. Then $B \times F$ -coalgebra $(A, (\alpha, \subseteq))$ is strongly simple and $(\mathbf{S}((A, \alpha)), \cup, \cap) = (\mathbf{S}((A, (\alpha, \subseteq))), \cup, \cap)$

Construction of covariety lattices

Lemma

Let (A, α) be an *F*-coalgebra and *B* be a set such that $A \subseteq B$. Then $B \times F$ -coalgebra $(A, (\alpha, \subseteq))$ is strongly simple and $(\mathbf{S}((A, \alpha)), \cup, \cap) = (\mathbf{S}((A, (\alpha, \subseteq))), \cup, \cap)$

The filter functor \mathcal{F} has the following property:

Construction of covariety lattices

Lemma

Let (A, α) be an *F*-coalgebra and *B* be a set such that $A \subseteq B$. Then $B \times F$ -coalgebra $(A, (\alpha, \subseteq))$ is strongly simple and $(\mathbf{S}((A, \alpha)), \cup, \cap) = (\mathbf{S}((A, (\alpha, \subseteq))), \cup, \cap)$

The filter functor \mathcal{F} has the following property:

Example

Let X be a set and τ a topology on X. Then there exists an \mathcal{F} -coalgebra X such that $(\mathbf{S}(X), \cup, \cap) \cong (\tau, \cup, \cap)$.

Construction of covariety lattices

Lemma

Let (A, α) be an *F*-coalgebra and *B* be a set such that $A \subseteq B$. Then $B \times F$ -coalgebra $(A, (\alpha, \subseteq))$ is strongly simple and $(\mathbf{S}((A, \alpha)), \cup, \cap) = (\mathbf{S}((A, (\alpha, \subseteq))), \cup, \cap)$

The filter functor \mathcal{F} has the following property:

Example

Let X be a set and τ a topology on X. Then there exists an \mathcal{F} -coalgebra X such that $(\mathbf{S}(X), \cup, \cap) \cong (\tau, \cup, \cap)$.

Theorem

Let (X, τ) be a topological space. There exists a bounded functor $F : \mathsf{Set} \to \mathsf{Set}$ and a covariety K of F-coalgebras such that $L_{\mathcal{CV}}(\mathsf{K}) \cong (\tau, \cup, \cap)$. Outline
Introduction
LatticesCovariety lattices: basics
quasi-covariety lattices: basics
Covariety latticesFunctors preserving arbitrary intersections

Definition

An *F*-coalgebra \mathbb{A} is called *rooted* if there exists $a \in A$ such that \mathbb{A} is the smallest subcoalgebra of \mathbb{A} containg a.

< A >

A 3 3 4

Functors preserving arbitrary intersections

Definition

An *F*-coalgebra \mathbb{A} is called *rooted* if there exists $a \in A$ such that \mathbb{A} is the smallest subcoalgebra of \mathbb{A} containg a.

Let K be a class of F-coalgebras. Let $\mathfrak{R}_{\mathsf{K}}$ denote a set of rooted F-coalgebras consisting of exactly one representative from each class of isomorphic rooted F-coalgebras from the class K.

.

Functors preserving arbitrary intersections

Definition

An *F*-coalgebra \mathbb{A} is called *rooted* if there exists $a \in A$ such that \mathbb{A} is the smallest subcoalgebra of \mathbb{A} containg a.

Let K be a class of F-coalgebras. Let \Re_{K} denote a set of rooted F-coalgebras consisting of exactly one representative from each class of isomorphic rooted F-coalgebras from the class K. Define:

$$\mathcal{D}(\mathfrak{R}_K) := \{ U \subseteq \mathfrak{R}_K \mid \mathfrak{R}_K \cap \mathcal{SH}(U) = U \}.$$

イロト イポト イラト イラト

Theorem

If $F : \mathsf{Set} \to \mathsf{Set}$ preserves arbitrary intersections, then

$$L_{\mathcal{CV}}(\mathsf{Set}_F) \cong (\mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F}), \cup, \cap).$$

Tomasz Brengos, Warsaw University of Techno Covariety and quasi-covariety lattices

→ Ξ →

Outline	Covariety lattices: basics
Introduction	quasi-covariety lattices: basics
Lattices	Covariety lattices

We will describe the covariety lattice $L_{CV}(\mathsf{Set}_{\mathcal{I}d})$ of $\mathcal{I}d$ -coalgebras.

Example

Tomasz Brengos, Warsaw University of Techno Covariety and quasi-covariety lattices

э

Outline	Covariety lattices: basics
Introduction	quasi-covariety lattices: basics
Lattices	Covariety lattices

We will describe the covariety lattice $L_{CV}(\mathsf{Set}_{\mathcal{I}d})$ of $\mathcal{I}d$ -coalgebras. The first step is to find all rooted $\mathcal{I}d$ -coalgebras.

Example

Outline	Covariety lattices: basics
Introduction	quasi-covariety lattices: basics
Lattices	Covariety lattices

We will describe the covariety lattice $L_{CV}(\mathsf{Set}_{\mathcal{I}d})$ of $\mathcal{I}d$ -coalgebras. The first step is to find all rooted $\mathcal{I}d$ -coalgebras.

Example

 $\mathcal{I}d$ -coalgebras = mono-unary algebras

Example

We will describe the covariety lattice $L_{CV}(\mathsf{Set}_{\mathcal{I}d})$ of $\mathcal{I}d$ -coalgebras. The first step is to find all rooted $\mathcal{I}d$ -coalgebras.

 $\mathcal{I}d$ -coalgebras = mono-unary algebras

We can speak of an *index* and a *period* of a rooted $\mathcal{I}d$ -coalgebra.

• 冊 ▶ < ■ ▶ < ■</p>

Outline	Covariety lattices: basics
Introduction	quasi-covariety lattices: basics
Lattices	Covariety lattices

Example

The following theorem holds:

Theorem

$$L_{\mathcal{CV}}(\mathsf{Set}_{\mathcal{I}d}) \cong (\mathcal{O}(\mathsf{N}_0 \times \mathsf{N} \cup \{(\infty, 0)\}), \cup, \cap),$$

where $\mathsf{N}_0 \times \mathsf{N} \cup \{(\infty, 0)\}$ denotes the poset in which $(i, p) \leq (i', p') : \iff i \leq i'$ and p|p'.

Tomasz Brengos, Warsaw University of Techno Covariety and quasi-covariety lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

э

・ロト ・(型ト ・(ヨト ・(ヨト

э

Characterization

Theorem

The lattice $L_{CV}(\mathsf{K})$ for a functor F preserving arbitrary intersections is isomorphic to a lattice of subcoalgebras of some \mathcal{P}_{κ} -coalgebra.

Characterization

Theorem

The lattice $L_{CV}(\mathsf{K})$ for a functor F preserving arbitrary intersections is isomorphic to a lattice of subcoalgebras of some \mathcal{P}_{κ} -coalgebra.

Theorem

Conversely, any lattice of subcoalgebras of a \mathcal{P}_{κ} -coalgebra is isomorphic to a lattice $L_{\mathcal{CV}}(\mathsf{K})$ of subcovarieties of some covariety K of F-coalgebras for a bounded functor F preserving arbitrary intersections.

・ロト ・(型ト ・(ヨト ・(ヨト

Bibliography

- H.P. Gumm, *Elements of the general theory of coalgebras*, LUATCS 99, Rand Afrikaans University, Johannesburg, 1999
- A. Zmrzlina, Too Many Functors A continuation of "The Emergence of Functors", to appear

イロト イポト イラト イラト