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General Framework

Many-Valued Modal Logics

We want to combine modal logics and fuzzy logics (in the sense of
P. HÁJEK).

We are looking for the minimal logic.
The language is going to be

ϕ ::= p | ⊥ | > | ϕ0 ∧ ϕ1 | ϕ0 ∨ ϕ1 | ϕ0 � ϕ1 | ϕ0→ϕ1 |2ϕ |3ϕ

What about the semantics? Let us assume we have fixed a
residuated lattice A = 〈A,0,1,∧,∨,�,→〉 (i.e., A ∈ FLew).
An A-valued Kripke model is a structure 〈W ,R,e〉 such that

I W is a set,
I R : W ×W −→ A,
I e : Var ×W −→ A.

We can think of A as our set of truth values, which is the same
one in every world.
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General Framework

Many-Valued Modal Logics

How to extend the valuation e?
It is extended to ē : Fm ×W −→ A under the following conditions:

ē is an algebraic homomorphism, in its first component, for the
connectives in the algebraic signature of A,

ē(2ϕ,w) =
∧
{R(w ,w ′)→ ē(ϕ,w ′) : w ′ ∈ W},

ē(3ϕ,w) =
∨
{R(w ,w ′)� ē(ϕ,w ′) : w ′ ∈ W}.

Definition
A formula ϕ is valid in this Kripke model in case that e(ϕ,w) = 1 for
every world w ∈ W .
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ē(2ϕ,w) =
∧
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{R(w ,w ′)� ē(ϕ,w ′) : w ′ ∈ W}.

Definition
A formula ϕ is valid in this Kripke model in case that e(ϕ,w) = 1 for
every world w ∈ W .

Félix Bou (IIIA - CSIC) Modal systems based on many-valued logics 8th August 2007, TANCL’07 4 / 22



General Framework

Many-Valued Modal Logics

How to extend the valuation e?
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Difficulties of this approach

Axiom K : 2(p→q)→(2p→2q)

Example
Let us a consider A as the standard Łukasiewicz algebra and the
Kripke model with only one point •. This point satisfies R(•, •) = 1

2 ,
e(p, •) = 1

2 and e(q, •) = 0. Then,

e(2(p→q), •) = R(•, •)→(e(p, •)→e(q, •)) = 1,
e(2p, •) = R(•, •)→e(p, •) = 1,
e(2q, •) = R(•, •)→e(q, •) = 1

2 .
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Difficulties of this approach

Several Remarks

In general axiom K fails.

In case that the accesibility relation only takes values in Boolean
elements of A, then K holds.
In general it is false that 2ϕ and 3ϕ are interdefinable.
It is well known that modal formulas can be seen as first-order
classical formulas with two variables,

I 2p corresponds to ∀v1(Rv0v1→Pv1),
I q ∨2p corresponds to Qv0 ∨ ∀v1(Rv0v1→Pv1),
I 23p corresponds to ∀v1(Rv0v1→∃v0(Rv1v0 ∧ Pv0)).

The same translation embeds our many-valued modal language
into the many-valued first-order logic given by (truth values in) A.
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Difficulties of this approach

Some things to be careful about

An algebraic approach to these logics
Fuzzy logicians know that chains are enough.

(Classical) Modal logicians know that chains are not enough.
In our approach chains are neither enough.
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Difficulties of this approach

Some things to be careful about

The finite model property
In classical modal logic it is defined as “if a formula is satisfied in a
Kripke model of the logic then it is also satisfied in a finite Kripke
model of the logic”.

This property is helpful for decidability issues.
Now we have at least two possible options:

I “if a formula is 1-satisfied in a Kripke model of the logic then it is
also 1-satisfied in a finite Kripke model of the logic” [this is what we
will call finite model property]

I “if a formula is positively-satisfied in a Kripke model of the logic then
it is also positively-satisfied in a finite Kripke model of the logic” [this
is the one helpful for decidability issues in case that negation is
involutive]
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Difficulties of this approach

Another Remark

Remark
Canonicity does not seem to work in a lot of cases (we remember that
we are considering minimal logics; the parameter is A).
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Restriction on the original problem

Two types of semantical structures

Let A = 〈A,0,1,∧,∨,�,→〉 be a residuated lattice.
We can consider another kind of A-valued Kripke models:

M = 〈W ,R,e〉 M∗ = 〈W , {Rα}α∈A,e〉
R : W ×W 7→ A ∀α ∈ A : Rα ⊆ W ×W satisfying:

R0 = W ×W
Rα ∩ Rβ ⊆ Rα∨β

e : Var ×W 7→ A Idem

If A is finite then there is a bijection between both families of
structures:

∀α ∈ A : Rα = {〈x , y〉 : R(x , y) ≥ α}

∀〈x , y〉 ∈ W ×W : R(x , y) =
∨
α∈A

α ∧ Rα(x , y)
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Restriction on the original problem

Languages to Consider

Given a finite residuated lattice A, we consider two languages:

L2
A is defined from a set Var of propositional variables, logical

connectives �,∧,∨,→,¬, a truth constant a for each element
a ∈ A and a modality 2.

L2∗
A is also defined from a set Var of propositional variables,

logical connectives �,∧,∨,→,¬, a truth constant a for each
element a ∈ A, but in this case we have a family of modalities
{2α}α∈A\{0}.

The sets of formulas of the resulting languages are denoted by
Fm(L2

A) and Fm(L2∗
A ), respectively.
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Restriction on the original problem

Semantics

Given an A-valued Kripke model M = 〈W ,R,e〉, the map
e : Var ×W →A is uniquely extended to a map ē:

ē is an homomorphism, in its first component, for the connectives
in the algebraic signature of A,

ē(2ϕ,w) =
∧
{R(w ,w ′)→ ē(ϕ,w ′) : w ′ ∈ W},

ē(2αϕ,w) =
∧
{ē(ϕ,w ′) : w ′ ∈ W ,R(w ,w ′) ≥ α}.

A formula ϕ is valid in this Kripke model M in case that ē(ϕ,w) = 1 for
every world w ∈ W .

We define Log2(A) ⊆ L2
A as the set of formulas valid in every A-valued

Kripke model.

Similarly, Log2∗(A) ⊆ L2∗
A .
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ē(2αϕ,w) =
∧
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Results

Interdefinability Issues

For every finite residuated lattice A, the following formulas are valid in
every A-valued Kripke model:

2α(ϕ→ψ)→(2αϕ→2αψ)

(2ϕ) ↔ (
∧ {

ᾱ→2αϕ : α ∈ A, α 6= 0
}
).

This tells us that the modalities 2α satisfy the normality axiom K, and
that 2 is definable using the modalities 2α.

Taking into account that the modalities 2α are normal and that 2 is
definable using them, we try first to axiomatize the logic Log2∗(A) in
order to reach an axiomatization for the logic Log2(A).
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Results

Main Result
For any finite residuated lattice A it is well-known there exists a (non
necessarily recursively enumerable) Hilbert-style calculus axiomatizing
the A-logic. If A is a BL-chain, it is always finitely axiomatizable (EGM,
2001).

If we add to this calculus the following:
Axioms
2α(ϕ→ψ)→(2αϕ→2αψ)
2αiϕ→2αjϕ, if αi ≤ αj
2αi (αj →ϕ) ↔ (αj →2αiϕ)
New rule
From ϕ derive 2αϕ, for each α ∈ A \ {0}

We obtain a sound and complete axiomatization of the logic Log2∗(A)
by using a standard technique of the canonical model construction
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Results

A Problem

From the axiomatization of Log2∗(A) we do not directly obtain an
axiomatization of Log2(A) because we cannot in general define the
2α’s in the language L2

A .

In particular, if A is a finite BL-algebra different to an Łn (i.e., a finite
Łukasiewicz chain) then we know that this is impossible.
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Results

Counterexample
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Results

The particular case of finite MV-chains
Remark
However, we have succeded in the particular case of A being a finite
MV-chain, i.e. the case of modal logics over Łn. In this case, the
formula

2αϕ ↔
∧ {(

ᾱ→¬2¬((ϕ↔ β̄)n−1)
)n−1→ β̄ : β ∈ Łn

}
is valid in all Łn-valued Kripke models.
Using this validity, we can check that the level-cuts of the accessibility
relation of the canonical model for Log2(A) correspond to the relations
of the canonical model defined in order to prove the completeness of
Log2∗(A).

Remark
In addition, in this logic we can define the dual possibility operator
3 = ¬2¬ with the usual semantics.

Félix Bou (IIIA - CSIC) Modal systems based on many-valued logics 8th August 2007, TANCL’07 17 / 22



Results

The particular case of finite MV-chains
Remark
However, we have succeded in the particular case of A being a finite
MV-chain, i.e. the case of modal logics over Łn. In this case, the
formula

2αϕ ↔
∧ {(
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Notation
For a 6= 0, 2aϕ stands for

V ˘`
ā→¬2¬((ϕ↔ b̄)n−1)

´n−1→ b̄ : b ∈ Łn
¯

m.ϕ := ϕ⊕ m. . . ⊕ϕ
ϕm := ϕ� m. . . �ϕ

Axioms
(ϕ→ψ)→((ψ→χ)→(ϕ→χ))

ϕ→(ψ→ϕ)
((ϕ→ψ)→ψ)→((ψ→ϕ)→ϕ)

(¬ϕ→¬ψ)→(ψ→ϕ)
(ϕ ∧ ψ) ↔ (ϕ� (ϕ→ψ))

(ϕ ∨ ψ) ↔
`
((ϕ→ψ)→ψ) ∧ ((ψ→ϕ)→ϕ)

´
(ϕ� ψ) ↔ ¬(ϕ→¬ψ)

n.ϕ→(n − 1).ϕ

(m.ϕm−1)n ↔ (n.ϕm), 2 ≤ m ≤ n − 2 and m6 |(n − 1)
(ai → aj) ↔ ak , if ak = ai → aj

2a(ϕ→ψ)→(2aϕ→2aψ)
2aiϕ→2ajϕ, if ai ≤ aj

2ai (aj →ϕ) ↔ (aj →2aiϕ)
(2ϕ) ↔ (

V ˘
a→2aϕ : a ∈ Łn, a 6= 0

¯
)

Rules
If ∅ ` ϕ then ∅ ` 2aϕ

ϕ,ϕ→ψ ` ψ



Results

Some Results

Theorem
The minimal modal many-valued logic given by Łn is decidable.

Theorem
The minimal modal many-valued logic given by Łn has the finite model
property.

Remark
G. HANSOUL and B. TEHEUX have recently given an axiomatization
over Łn for the case where the accesibility relation is classical (like in
the α-cuts). There they do not need constants in the language.
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Results

The standard Łukasiewicz algebra Ł

Theorem
The minimal modal many-valued logic given by Ł is the intersection of
all minimal ones over Łn.

Theorem
The minimal modal many-valued logic given by Ł is Π1.

Theorem
The minimal modal many-valued logic given by Ł has the finite model
property.
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Open Problems

Some Open Problems

What is the complexity of the minimal modal many-valued logic
given by Ł?

Is there some bisimulation notion? [We remind that perhaps the
first order logic given by A is not compact]
. . .
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Open Problems

Thanks.
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