Profinite Heyting algebras

Nick Bezhanishvili Department of Computer Science University of Leicester nick@mcs.le.ac.uk http://www.cs.le.ac.uk/people/nb118

> joint work with Guram Bezhanishvili New Mexico State University

Profinite objects

Let \mathcal{C} be a **Set**-based category.

An object A of C is called profinite if it is an inverse limit of an inverse system of finite C-objects.

Examples.

- 1. In the category of compact Hausdorff spaces, an object is profinite iff it is a Stone space (that is, the dual of a Boolean algebra).
- 2. In the category of compact order-Hausdorff spaces, an object is profinite iff it is a Priestley space (that is, the dual of a bounded distributive lattice).

Profinite objects

- 3. In the category of Boolean algebras, an object is profinite iff it is complete and atomic.
- 4. In the category of bounded distributive lattices, an object is profinite iff it is complete and completely join-prime generated.

(An element $a \in A$ is completely join-prime if $a \leq \bigvee C$ implies there exists $c \in C$ such that $a \leq c$.

A lattice A is completely join-prime generated if every element of A is a join of completely join-prime elements.)

Question: What are profinite Heyting algebras?

Heyting algebras

A Heyting algebra is a bounded distributive lattice $(A, \land, \lor, 0, 1)$ with a binary operation $\rightarrow: A^2 \rightarrow A$ such that for each $a, b, c \in A$ we have

 $a \wedge c \leq b \text{ iff } c \leq a \rightarrow b;$

Algebraic characterization

An algebra *A* is finitely approximable if for every $a, b \in A$ with $a \neq b$, there exists a finite algebra *B* and a surjective homomorphism $h : A \to B$ such that $h(a) \neq h(b)$.

Theorem. A Heyting algebra A is profinite iff A is finitely approximable, complete and completely join-prime generated.

Duality

A pair (X, \leq) is called a Priestley space if X is a Stone space (compact, Hausdorff, with a basis of clopens) and \leq is a poset satisfying the Priestley separation axiom:

For every $x, y \in X$, $x \not\leq y$ implies there is a clopen upset Uwith $x \in U$ and $y \notin U$.

Esakia duality for Heyting algebras

A Priestley space (X, \leq) is called an Esakia space if

 $\downarrow U$ is clopen for every clopen $U \subseteq X$

Let $\mathrm{Up}_\tau(X)$ denote the Heyting algebra of clopen upsets of X, where

$$U \to V = X - \downarrow (U - V).$$

Theorem (Esakia 1974). For every Heyting algebra A, there exists an Esakia space (X, \leq) such that A is isomorphic to $Up_{\tau}(X)$.

Esakia duality

Let X be an Esakia space. We let

$$X_{\text{fin}} = \{ x \in X : \uparrow x \text{ is finite} \}.$$

 $X_{iso} = \{x \in X : x \text{ is an isolated point of } X\}.$

An Esakia space X is called extremally order-disconnected if \overline{U} is clopen for every open upset $U \subseteq X$.

Topological characterization

Theorem. Let A be a Heyting algebra and let X be its dual space. Then the following conditions are equivalent.

- 1. A is profinite.
- 2. *X* is extremally order-disconnected, X_{iso} is a dense upset of *X*, and $X_{iso} \subseteq X_{fin}$.
- 3. *A* is complete, finitely approximable and completely joinprime generated.

Frame-theoretic characterization

A poset (Y, \leq) is called image-finite if $\uparrow x$ is finite for every $x \in Y$.

For every poset (Y, \leq) let Up(Y) denote the Heyting algebra of all upsets of (Y, \leq) .

Theorem. A Heyting algebra *A* is profinite iff there is an image-finite poset *Y* such that *A* is isomorphic to Up(Y).

Characterization of profinite Heyting algebras

Theorem. Let A be a Heyting algebra and let X be its dual space. Then the following conditions are equivalent.

- 1. A is profinite.
- 2. *A* is complete, finitely approximable, and completely joinprime generated.
- 3. *X* is extremally order-disconnected, X_{iso} is a dense upset of *X*, and $X_{iso} \subseteq X_{fin}$.
- 4. There is an image finite poset Y such that A is isomorphic to $\mathrm{Up}(Y)$.

Profinite Completions

For every Heyting algebra A its profinite completion is the inverse limit of the finite homomorphic images of A.

Theorem. Let A be a Heyting algebra and let X be its dual space. Then the following conditions are equivalent.

- 1. *A* is isomorphic to its profinite completion.
- 2. *A* is finitely approximable, complete, and the kernel of every finite homomorphic image of *A* is a principal filter of *A*.
- 3. X is extremally order-disconnected and $X_{iso} = X_{fin}$ is dense in X.

Profinite Completions

Corollary. Let A be a distributive lattice or Boolean algebra. Then A is isomorphic to its profinite completion iff A is finite.