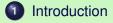
Algebraic Analysis of Visser's Propositional Logic

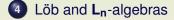
M. Alizadeh TANCL07

August 2007

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic



- 2 BPC, FPC and F_n -logics
- 3 Algebraic models



M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Introduction

 $\vdash_{IPL} A$ iff $\vdash_{S_{4}} A^{t}$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

(日) (圖) (E) (E) (E)

Introduction

$\vdash_{CPL} A$ iff $\vdash_{S_5} A^t$

$\vdash_{IPL} A$ iff $\vdash_{S_A} A^t$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

Introduction

$\vdash_{CPL} A \quad \text{iff} \quad \vdash_{S_5} A^t$ $\vdash_{IPL} A \quad \text{iff} \quad \vdash_{S_4} A^t$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Introduction

$\frac{CPL}{S_5} = \frac{IPL}{S_4} = \frac{?}{K_4} = \frac{?}{GL}$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

÷.

Introduction

$\frac{CPL}{S_5} = \frac{IPL}{S_4} = \frac{?}{K_4} = \frac{?}{GL}$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Introduction

$\frac{CPL}{S_5} = \frac{IPL}{S_4} = \frac{BPL}{K_4} = \frac{FPL}{GL}$

Basic logic is the (global)consequence relation of the kripke models that are transitive and whose valuation is persistent.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

590

Introduction

$\frac{CPL}{S_5} = \frac{IPL}{S_4} = \frac{BPL}{K_4} = \frac{FPL}{GL}$

Basic logic is the (global)consequence relation of the kripke models that are transitive and whose valuation is persistent.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

• The language of BPC contains:

- a countably infinite set of individual variables,
- Iogical constance ⊤ and ⊥, and the logical connectives ∧, ∨ and →.
- The axioms and rules of BPC are in sequent notation.
- A sequent in BPC is an expression of the form A ⇒ B, in which A and B are formulas.

(日) (圖) (E) (E) (E)

The language of BPC contains:

a countably infinite set of individual variables,

590

The language of BPC contains:

- a countably infinite set of individual variables,
- 2 logical constance \top and \bot , and the logical connectives \land , \lor and \rightarrow .

(日) (圖) (E) (E) (E)

Sac

- The language of BPC contains:
 - a countably infinite set of individual variables,
 - ② logical constance \top and \bot , and the logical connectives ∧, ∨ and →.
- The axioms and rules of BPC are in sequent notation.
- A sequent in BPC is an expression of the form A ⇒ B, in which A and B are formulas.

- The language of BPC contains:
 - a countably infinite set of individual variables,
 - 2 logical constance ⊤ and ⊥, and the logical connectives ∧, ∨ and →.
- The axioms and rules of BPC are in sequent notation.
- A sequent in BPC is an expression of the form A ⇒ B, in which A and B are formulas.

Axiomatization

• $A \Rightarrow A$, • $A \Rightarrow \top$. $\bullet \ \mid \Rightarrow A$ • $A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C),$ • $A \Rightarrow B B \Rightarrow C$, • $\frac{A \Rightarrow B A \Rightarrow C}{A \Rightarrow B \land C}$, • $\frac{A \Rightarrow B \ C \Rightarrow B}{A \lor C \Rightarrow B}$, • $\frac{A \wedge B \Rightarrow C}{A \Rightarrow B \land C}$, • $(A \rightarrow B) \land (B \rightarrow C) \Rightarrow A \rightarrow C$, • $(A \rightarrow B) \land (A \rightarrow C) \Rightarrow A \rightarrow B \land C$, • $(A \rightarrow B) \land (C \rightarrow B) \Rightarrow A \lor C \rightarrow B.$

San

Formal Propositional logic, FPC

FPC, is the extension of *BPC* by the Löb's axiom schema or equivalently by all substitution instances of Löb's rule:

$$(\top \to A) \to A \Rightarrow \top \to A, \qquad \frac{A \land (\top \to B) \Rightarrow B}{A \Rightarrow B}.$$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

Some definitions an notations

- For every formula A, we denote 1 A by 1.A.
- under derivability.
- A theory Γ is structural if $\Gamma \vdash A \Rightarrow B$ implies $\sigma(\Gamma) \vdash \sigma(A) \Rightarrow \sigma(B)$ for all substitution σ , where $\sigma(\Gamma) = \{\sigma(A) \Rightarrow \sigma(B) : A \Rightarrow B \in \Gamma\}.$
- An intermediate logic is a consistent structural sequent theory. The theories BPC, *IPC* = *BPC* + ⊤ → *A* ⇒ *A*, *CPC* = *IPC*+ ⇒ (*A* ∨ ¬*A*), and FPC are all intermediate logics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some definitions an notations

- For every formula A, we denote $\top \rightarrow A$ by $\top A$,
- A theory Γ over BPC is a set of sequents and rules closed under derivability.
- A theory Γ is structural if $\Gamma \vdash A \Rightarrow B$ implies $\sigma(\Gamma) \vdash \sigma(A) \Rightarrow \sigma(B)$ for all substitution σ , where $\sigma(\Gamma) = \{\sigma(A) \Rightarrow \sigma(B) : A \Rightarrow B \in \Gamma\}.$
- An intermediate logic is a consistent structural sequent theory. The theories BPC, *IPC* = *BPC* + ⊤ → *A* ⇒ *A*, *CPC* = *IPC*+ ⇒ (*A* ∨ ¬*A*), and FPC are all intermediate logics.

Sac

Some definitions an notations

- For every formula A, we denote $\top \rightarrow A$ by $\top A$,
- A theory Γ over *BPC* is a set of sequents and rules closed under derivability.
- A theory Γ is structural if $\Gamma \vdash A \Rightarrow B$ implies $\sigma(\Gamma) \vdash \sigma(A) \Rightarrow \sigma(B)$ for all substitution σ , where $\sigma(\Gamma) = \{\sigma(A) \Rightarrow \sigma(B) : A \Rightarrow B \in \Gamma\}.$
- An intermediate logic is a consistent structural sequent theory. The theories BPC, *IPC* = *BPC* + ⊤ → *A* ⇒ *A*, *CPC* = *IPC*+ ⇒ (*A* ∨ ¬*A*), and FPC are all intermediate logics.

(日) (圖) (E) (E) (E)

Some definitions an notations

- For every formula A, we denote $\top \rightarrow A$ by $\top A$,
- A theory Γ over BPC is a set of sequents and rules closed under derivability.
- A theory Γ is structural if $\Gamma \vdash A \Rightarrow B$ implies $\sigma(\Gamma) \vdash \sigma(A) \Rightarrow \sigma(B)$ for all substitution σ , where $\sigma(\Gamma) = \{\sigma(A) \Rightarrow \sigma(B) : A \Rightarrow B \in \Gamma\}.$
- An intermediate logic is a consistent structural sequent theory. The theories BPC, *IPC* = *BPC* + ⊤ → *A* ⇒ *A*, *CPC* = *IPC*+ ⇒ (*A* ∨ ¬*A*), and FPC are all intermediate logics.

Some definitions an notations

- For every formula A, we denote $\top \rightarrow A$ by $\top A$,
- A theory Γ over BPC is a set of sequents and rules closed under derivability.
- A theory Γ is structural if $\Gamma \vdash A \Rightarrow B$ implies $\sigma(\Gamma) \vdash \sigma(A) \Rightarrow \sigma(B)$ for all substitution σ , where $\sigma(\Gamma) = \{\sigma(A) \Rightarrow \sigma(B) : A \Rightarrow B \in \Gamma\}.$
- An intermediate logic is a consistent structural sequent theory. The theories BPC, *IPC* = *BPC* + ⊤ → *A* ⇒ *A*, *CPC* = *IPC*+ ⇒ (*A* ∨ ¬*A*), and FPC are all intermediate logics.

Some definitions an notations

- eal Brione Mr. 2014. Breadwr (18 2017) 27 clian ar ei lannedd a Mr. 2017 Dir graedd a gwleitau a chwyr a charac a farfar a far ar gan allan a gwleitau a gwleitau a carac a carac a char
 - $\mathcal{D}(=(\mathcal{J}, V)$ such that \mathcal{J} is a Knpke frame and V is a valuation; that is, a map V: *PROP* $\rightarrow \mathcal{P}(W)$, satisfying the condition:

 $w \in V(p)$ and wRv implies $v \in V(p)$,

Let K = ⟨K, ⊰⟩ be an irreflexive Kripke frame. We say the height of K, h(K), is n ∈ ω, if n is the largest number of elements α₀, α₁, ..., α_{n-1} ∈ K such that α₀ ≺ α₁ ≺ ... ≺ α_{n-1}. Otherwise h(K) = ∞.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some definitions an notations

A Kripke frame is a pair 𝔅 = (W, R), where W ≠ Ø and R is a transitive relation on W. And a Kripke model is a pair 𝔅 = (𝔅, V) such that 𝔅 is a Kripke frame and V is a valuation; that is, a map V : PROP → 𝒫(𝔅), satisfying the condition:

$w \in V(p)$ and wRv implies $v \in V(p)$,

Let K = ⟨K, ⊰⟩ be an irreflexive Kripke frame. We say the height of K, h(K), is n ∈ ω, if n is the largest number of elements α₀, α₁, ..., α_{n-1} ∈ K such that α₀ ≺ α₁ ≺ ... ≺ α_{n-1}. Otherwise h(K) = ∞.

Some definitions an notations

A Kripke frame is a pair 𝔅 = (W, R), where W ≠ Ø and R is a transitive relation on W. And a Kripke model is a pair 𝔐 = (𝔅, V) such that 𝔅 is a Kripke frame and V is a valuation; that is, a map V : PROP → 𝒫(𝒱), satisfying the condition:

 $w \in V(p)$ and wRv implies $v \in V(p)$,

Let K = ⟨K, ≺⟩ be an irreflexive Kripke frame. We say the height of K, h(K), is n ∈ ω, if n is the largest number of elements α₀, α₁, ..., α_{n-1} ∈ K such that α₀ ≺ α₁ ≺ ... ≺ α_{n-1}. Otherwise h(K) = ∞.

logics of finite hight

F_n - logicsFor every $n \in \omega$, we consider intermediate logics, $F_n = BPC + \Rightarrow \Box^n \bot$, where $\Box^0 \bot = \bot$ and $\Box^n \bot = \top \to \Box^{n-1} \bot$.we have $F_1 \supset F_2 \supset \cdots$.

Theorem

 E_n is strongly complete with respect to the class of all irreflexive models \mathcal{K} with $h(\mathbf{K}) \leq n$.

Corollary $E_{\omega} = FPC$. where $E_{\omega} = (\bigcap_{n=1}^{\infty} E_n) = \{A \Rightarrow B : E_n \vdash A \Rightarrow B, \text{ for all } 1 \le n < \omega\}$

logics of finite hight

F_n - logicsFor every $n \in \omega$, we consider intermediate logics, $F_n = BPC + \Rightarrow \Box^n \bot$, where $\Box^0 \bot = \bot$ and $\Box^n \bot = \top \to \Box^{n-1} \bot$.we have $F_1 \supset F_2 \supset \cdots$.

Theorem

 E_n is strongly complete with respect to the class of all irreflexive models \mathcal{K} with $h(\mathbf{K}) \leq n$.

Corollary $E_{\omega} = FPC.$ where $E_{\omega} = (\bigcap_{n=1}^{\infty} E_n) = \{A \Rightarrow B : E_n \vdash A \Rightarrow B, \text{ for all } 1 \le n < \omega\}.$

logics of finite hight

F_n - logicsFor every $n \in \omega$, we consider intermediate logics, $F_n = BPC + \Rightarrow \Box^n \bot$, where $\Box^0 \bot = \bot$ and $\Box^n \bot = \top \to \Box^{n-1} \bot$.we have $F_1 \supset F_2 \supset \cdots$.

Theorem

E_n is strongly complete with respect to the class of all irreflexive models \mathcal{K} with $h(\mathbf{K}) \leq n$.

Corollary $E_{\omega} = FPC.$ where $E_{\omega} = (\bigcap_{n=1}^{\infty} E_n) = \{A \Rightarrow B : E_n \vdash A \Rightarrow B, \text{ for all } 1 \le n < \omega\}.$

logics of finite hight

F_n - logicsFor every $n \in \omega$, we consider intermediate logics, $F_n = BPC + \Rightarrow \Box^n \bot$, where $\Box^0 \bot = \bot$ and $\Box^n \bot = \top \to \Box^{n-1} \bot$.we have $F_1 \supset F_2 \supset \cdots$.

Theorem

 E_n is strongly complete with respect to the class of all irreflexive models \mathcal{K} with $h(\mathbf{K}) \leq n$.

Corollary

 $\begin{array}{l} E_{\omega} = FPC. \quad \text{where} \\ E_{\omega} = (\bigcap_{n=1}^{\infty} E_n) = \{A \Rightarrow B : \ E_n \vdash A \Rightarrow B, \text{ for all } 1 \leq n < \omega\}. \end{array}$

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge , \vee , and \rightarrow , such that

with top and bottom; and

for — we have the additional Identities and quasi-identities

• $a \rightarrow b \land c = (a \rightarrow b) \land (a \rightarrow c);$ • $b \lor c \rightarrow a = (b \rightarrow a) \land (c \rightarrow a);$ • $a \rightarrow a = 1;$ • $a \le 1 \rightarrow a;$ and; • $(a \rightarrow b) \land (b \rightarrow c) \le a \rightarrow c.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

with top and bottom; and

ullet for o we have the additional Identities and quasi-identities

- $a \to b \land c = (a \to b) \land (a \to c);$
- $b \lor c \to a = (b \to a) \land (c \to a);$
- $\bullet a \rightarrow a = 1;$
- $a \leq 1 \rightarrow a;$ and;
- $(a \rightarrow b) \land (b \rightarrow c) \leq a \rightarrow c.$

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- \bullet for \rightarrow we have the additional Identities and quasi-identities
- $b \lor c \to a = (b \to a) \land (c \to a);$
- $\bullet a \rightarrow a = 1;$
- $a \leq 1 \rightarrow a;$ and;
- $(a \rightarrow b) \land (b \rightarrow c) \leq a \rightarrow c.$

Basic algebra

A Basic algebra $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

• $a \rightarrow b \land c = (a \rightarrow b) \land (a \rightarrow c);$ • $b \lor c \rightarrow a = (b \rightarrow a) \land (c \rightarrow a);$ • $a \rightarrow a = 1;$ • $a \le 1 \rightarrow a;$ and; • $(a \rightarrow b) \land (b \rightarrow c) \le a \rightarrow c.$

Basic algebra

A Basic algebra $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

• $a \rightarrow b \land c = (a \rightarrow b) \land (a \rightarrow c);$ • $b \lor c \rightarrow a = (b \rightarrow a) \land (c \rightarrow a);$ • $a \rightarrow a = 1;$ • $a \le 1 \rightarrow a;$ and; • $(a \rightarrow b) \land (b \rightarrow c) \le a \rightarrow c.$

Basic algebra

A Basic algebra $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

$$a \rightarrow b \land c = (a \rightarrow b) \land (a \rightarrow c);$$

- $a \to a = 1;$
- $a \leq 1 \rightarrow a; \quad \text{and};$

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

- $a \to a = 1;$
- $a \le 1 \to a; \quad \text{and};$
- $(a \to b) \land (b \to c) \leq a \to c.$

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

- $a \to a = 1;$
- $a \leq 1 \rightarrow a; \quad \text{and};$

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

- $a \rightarrow a = 1;$
- $a \leq 1 \rightarrow a$; and;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Basic algebra

A *Basic algebra* $\mathfrak{B} = \langle |\mathfrak{B}|, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a structure with constants 0 and 1, and binary functions \wedge, \vee , and \rightarrow , such that

- with respect to 0, 1, ∧, and ∨ we have a distributive lattice with top and bottom; and
- $\bullet~\mbox{for} \rightarrow \mbox{we have the additional Identities and quasi-identities}$

•
$$a \rightarrow b \land c = (a \rightarrow b) \land (a \rightarrow c);$$

• $b \lor c \rightarrow a = (b \rightarrow a) \land (c \rightarrow a);$
• $a \rightarrow a = 1;$
• $a \le 1 \rightarrow a;$ and;

 $(a \rightarrow b) \land (b \rightarrow c) \leq a \rightarrow c.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Models

An *algebraic model* of *BPC* consists of a pair $\underline{\mathcal{B}} = \langle \mathcal{B}, I \rangle$ with \mathcal{B} a Basic algebra and *I* a map from the set of all propositional variables of the language of *BPC* to *B*. The map *I* can be uniquely extended to all formulas. A sequent $\phi \Rightarrow \psi$ is satisfied by a model, $\models \phi \Rightarrow \psi$, if $I(\phi) \leq I(\psi)$. A sequent $\phi \Rightarrow \psi$ is valid in a Basic algebra \mathcal{B} , if it is satisfied in for all interpretations *I*. Let *T* be a theory and *s* a sequent *s* is a logical consequence of *T*, written: $T \models s$, if $\models T$ implies $\models s$, for all algebraic models.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Models

An *algebraic model* of *BPC* consists of a pair $\underline{\mathcal{B}} = \langle \mathcal{B}, I \rangle$ with \mathcal{B} a Basic algebra and I a map from the set of all propositional variables of the language of *BPC* to \mathcal{B} . The map I can be uniquely extended to all formulas. A sequent $\phi \Rightarrow \psi$ is satisfied by a model , $\models \phi \Rightarrow \psi$, if $I(\phi) \le I(\psi)$. A sequent $\phi \Rightarrow \psi$ is valid in a Basic algebra \mathcal{B} , if it is satisfied in for all interpretations I. Let T be a theory and s a sequent. s is a logical consequence of T, written: $T \models s$, if $\models T$ implies $\models s$, for all algebraic models .

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

Models

An *algebraic model* of *BPC* consists of a pair $\underline{\mathcal{B}} = \langle \mathcal{B}, I \rangle$ with \mathcal{B} a Basic algebra and *I* a map from the set of all propositional variables of the language of *BPC* to *B*. The map *I* can be uniquely extended to all formulas. A sequent $\phi \Rightarrow \psi$ is satisfied by a model , $\models \phi \Rightarrow \psi$, if $I(\phi) \le I(\psi)$. A sequent $\phi \Rightarrow \psi$ is valid in a Basic algebra \mathcal{B} , if it is satisfied in for all interpretations *I*. Let *T* be a theory and *s* a sequent. *s* is a logical consequence of *T*, written: $T \models s$, if $\models T$ implies $\models s$, for all algebraic models .

Models

An *algebraic model* of *BPC* consists of a pair $\underline{\mathcal{B}} = \langle \mathcal{B}, I \rangle$ with \mathcal{B} a Basic algebra and I a map from the set of all propositional variables of the language of *BPC* to \mathcal{B} . The map I can be uniquely extended to all formulas. A sequent $\phi \Rightarrow \psi$ is satisfied by a model, $\models \phi \Rightarrow \psi$, if $I(\phi) \le I(\psi)$. A sequent $\phi \Rightarrow \psi$ is valid in a Basic algebra \mathcal{B} , if it is satisfied in for all interpretations I. Let T be a theory and s a sequent. s is a logical consequence of T, written: $T \models s$, if $\models T$ implies $\models s$, for all algebraic models.

Algebraic Completeness and soundness

Theorem

For all theories T and sequents s, $T \vdash s$ iff $T \models s$.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

(日) (圖) (E) (E) (E)

subdirectly irreducible Ba

Proposition

Let *F* be a filter of basic algebra \mathfrak{A} . Then the binary relation $\theta(F) = \sim$ on *A* defined by

$$a \sim b$$
 iff $\exists f \in F$ such that $a \wedge f = b \wedge f$.

is a congruence relation on A.

(日) (圖) (E) (E) (E)

subdirectly irreducible Ba

Proposition

Let *F* be a filter of basic algebra \mathfrak{A} . Then the binary relation $\theta(F) = \sim$ on *A* defined by

$$a \sim b$$
 iff $\exists f \in F$ such that $a \wedge f = b \wedge f$.

is a congruence relation on A.

(日) (圖) (E) (E) (E)

subdirectly irreducible Ba

Corollary

Let \mathfrak{A} be a non-trivial basic algebra, then the following conditions are equivalent.

- A is subdirectly irreducible,
- 2 A contains a least prime filter(least with respect to the inclusion relation),
- I has a second greatest element.

Corollary

The only simple algebras in the variety of Basic algebras are two elements Basic algebras.

subdirectly irreducible Ba

Corollary

Let \mathfrak{A} be a non-trivial basic algebra, then the following conditions are equivalent.

- A is subdirectly irreducible,
- 2 A contains a least prime filter(least with respect to the inclusion relation),
- I has a second greatest element.

Corollary

The only simple algebras in the variety of Basic algebras are two elements Basic algebras.

Embedding

L₁-algebra

A basic algebra \mathfrak{A} is called an L_1 -algebra iff $\Box 0 = 1$. **2**^I is the zero-generated L_1 -algebra.

Proposition

Let \mathfrak{A} be an L_1 - algebra with $a, b \in A$ such that $a \leq b$. Then there is a homomorphism h of \mathfrak{A} onto 2^l so that $h(a) \leq h(b)$.

Theorem(Embedding

Let \mathfrak{A} be an L_1 -algebra. Then there is an index set I such that \mathfrak{A} can be embedded into $\prod 2^{I}$.

Embedding

L₁-algebra

A basic algebra \mathfrak{A} is called an L_1 -algebra iff $\Box 0 = 1$. **2**^I is the zero-generated L_1 -algebra.

Proposition

Let \mathfrak{A} be an L_1 - algebra with $a, b \in A$ such that $a \leq b$. Then there is a homomorphism h of \mathfrak{A} onto $\mathbf{2}^l$ so that $h(a) \leq h(b)$.

Theorem(**Embedding**)

Let \mathfrak{A} be an L_1 -algebra. Then there is an index set I such that \mathfrak{A} can be embedded into $\prod 2^{I}$.

Embedding

L₁-algebra

A basic algebra \mathfrak{A} is called an L_1 -algebra iff $\Box 0 = 1$. **2**^I is the zero-generated L_1 -algebra.

Proposition

Let \mathfrak{A} be an L_1 - algebra with $a, b \in A$ such that $a \leq b$. Then there is a homomorphism h of \mathfrak{A} onto $\mathbf{2}^l$ so that $h(a) \leq h(b)$.

Theorem(Embedding)

Let \mathfrak{A} be an L_1 -algebra. Then there is an index set I such that \mathfrak{A} can be embedded into $\prod_{i \in I} \mathbf{2}^{\mathbf{I}}$.

Minimal varieties

Theorem

The minimal varieties of basic algebras are the class of all Boolean algebras and the class of all L_1 -algebras.

Proof.

Let \mathcal{V} be a non-trivial subvariety of the variety of all basic algebras. Then \mathcal{V} has a simple algebra \mathfrak{B} . So \mathfrak{B} is either 2 or $\mathbf{2^{l}}$. Therefore \mathcal{V} contains either $V(\mathbf{2})$ or $V(\mathbf{2^{l}})$, i.e., \mathcal{V} contains either the class of all Boolean algebras or the class of $\mathbf{L_{1}}$ -algebras.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Minimal varieties

Theorem

The minimal varieties of basic algebras are the class of all Boolean algebras and the class of all L_1 -algebras.

Proof.

Let \mathcal{V} be a non-trivial subvariety of the variety of all basic algebras. Then \mathcal{V} has a simple algebra \mathfrak{B} . So \mathfrak{B} is either 2 or 2^I. Therefore \mathcal{V} contains either V(2) or $V(2^{I})$, i.e., \mathcal{V} contains either the class of all Boolean algebras or the class of L₁-algebras.

(日)

3

San

Maximal intermediate logics

Theorem

CPC and F_1 are the only maximal intermediate logics among the intermediate logics ordered by \subseteq . Each intermediate logic is contained in **CPC** or F_1 .

Proof.

Let *T* be an intermediate logic and put $\mathcal{V}(T) = \{\mathfrak{A} \mid \mathfrak{A} \models T\}$. Then it contain either the class of all Boolean algebras or the class of all *L*₁-algebras. Hence *T* contained in **CPC** or **F**₁. Note that **CPC** + **F**₁ is inconsistent.

Maximal intermediate logics

Theorem

CPC and F_1 are the only maximal intermediate logics among the intermediate logics ordered by \subseteq . Each intermediate logic is contained in **CPC** or F_1 .

Proof.

Let *T* be an intermediate logic and put $\mathcal{V}(T) = \{\mathfrak{A} \mid \mathfrak{A} \models T\}$. Then it contain either the class of all Boolean algebras or the class of all L_1 -algebras. Hence *T* contained in **CPC** or **F**₁. Note that **CPC** + **F**₁ is inconsistent.

(日)

Definitions

Löb algebra

A basic algebra $\mathfrak{A} = \langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is called a *Löb algebra*, *La*, iff for all $x \in A$, $\Box x \to x = \Box x$, where $\Box x = 1 \to x$.

L_n-algebra

A basic algebra \mathfrak{A} is called an L_n -algebra, for $n \in N$, iff $\Box^n 0 = 1$.

Remark $\mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq ... \subseteq \mathcal{L}_n \subseteq ... \subseteq \mathcal{L} \subseteq \mathcal{B}.$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

(日) (圖) (E) (E) (E)

Definitions

Löb algebra

A basic algebra $\mathfrak{A} = \langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is called a *Löb algebra*, *La*, iff for all $x \in A$, $\Box x \to x = \Box x$, where $\Box x = 1 \to x$.

L_n-algebra

A basic algebra \mathfrak{A} is called an L_n -algebra, for $n \in N$, iff $\Box^n \mathfrak{0} = 1$.

Remark $\mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq ... \subseteq \mathcal{L}_n \subseteq ... \subseteq \mathcal{L} \subseteq \mathcal{B}$

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Definitions

Löb algebra

A basic algebra $\mathfrak{A} = \langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is called a *Löb algebra*, *La*, iff for all $x \in A$, $\Box x \to x = \Box x$, where $\Box x = 1 \to x$.

L_n-algebra

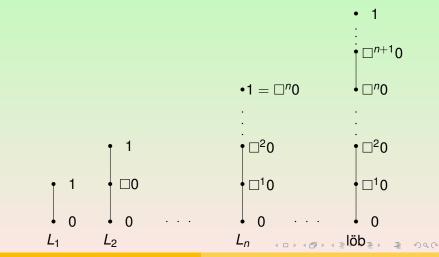
A basic algebra \mathfrak{A} is called an L_n -algebra, for $n \in N$, iff $\Box^n \mathfrak{0} = 1$.

Remark

 $\mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq ... \subseteq \mathcal{L}_n \subseteq ... \subseteq \mathcal{L} \subseteq \mathcal{B}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Zero-generated L_n-algebras



M. Alizadeh TANCL07

Algebraic Analysis of Visser's Propositional Logic

Some facts

Proposition

Every L_n -algebra, for $n \in N$, is a Löb algebra.

Proof.

For every $m \ge 0$, we have $\Box^{m+1}a \rightarrow a = \Box a \rightarrow a$. So $\Box a \rightarrow a = \Box a$.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

Some facts

Proposition

Every L_n -algebra, for $n \in N$, is a Löb algebra.

Proof.

For every
$$m \ge 0$$
, we have $\Box^{m+1} a \to a = \Box a \to a$.
So $\Box a \to a = \Box a$.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

(日) (四) (至) (至) (至)

Some facts

Example

Consider the set of natural numbers with Sup ω (i.e., the ordinal ω + 1) and define $n \wedge m := min(n, m)$, $n \vee m := max(n, m)$,

$$n \to m = \left\{ egin{array}{cc} m+1, & ext{if } n > m, \ \omega, & ext{if } n \leq m, ext{ for } n, m \in \omega + 1. \end{array}
ight.$$

 $\perp := 0$ and $\top := \omega$. The ordering is the natural one. This Löb algebra is not a L_n-algebra for any $n \in N$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Some facts

Proposition

Every Löb algebra with no infinite chain of elements is a L_n -algebra, for some $n \in N$. In particular every finite Löb algebra is a L_n -algebra, for some $n \in N$.

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Amalgamation

proposition

Every proper filter of an L_n -algebra is irreflexive.

oroposition

The length of every chain of prime filters with respect to \prec in an L_n -algebra is at most *n*.

Corollary

The Stone algebra of an L_n -algebra is an E_n -algebra.

Theorem

The variety \mathcal{L}_n , for $n \in N$, has the amalgamation property.

Amalgamation

proposition

Every proper filter of an L_n -algebra is irreflexive.

proposition

The length of every chain of prime filters with respect to \prec in an L_n -algebra is at most *n*.

Corollary

The Stone algebra of an L_n -algebra is an E_n -algebra.

Theorem

The variety \mathcal{L}_n , for $n \in N$, has the amalgamation property.

Amalgamation

proposition

Every proper filter of an L_n -algebra is irreflexive.

proposition

The length of every chain of prime filters with respect to \prec in an L_n -algebra is at most *n*.

Corollary

The Stone algebra of an L_n -algebra is an E_n -algebra.

Theorem

The variety \mathcal{L}_n , for $n \in N$, has the amalgamation property.

Amalgamation

proposition

Every proper filter of an L_n -algebra is irreflexive.

proposition

The length of every chain of prime filters with respect to \prec in an L_n -algebra is at most *n*.

Corollary

The Stone algebra of an L_n -algebra is an E_n -algebra.

Theorem

The variety \mathcal{L}_n , for $n \in N$, has the amalgamation property.

Thank You!

M. Alizadeh TANCL07 Algebraic Analysis of Visser's Propositional Logic

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三三 - のへぐ