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Consider the relation P |= φ, where P is a program, φ a property.

We can look at this in two ways:

• The denotational view : JP K is a “point” in a mathematical space D(σ),
where σ is the type of P . Then we interpret φ extensionally as

JφK ⊆ D(σ), and P |= φ means JP K ∈ JφK.

• The axiomatic view : we axiomatize P |= φ as a logical theory of which

properties P satisfies. Thinking of properties as “observations”, we can

then seek to construct the meaning of P out of the properties it satisfies:

JP K = {φ | P |= φ}

Then P |= φ means φ ∈ JP K.

How can we reconcile these views, and indeed bring them into exact

correspondence? An elegant and robust mathematical framework for these

ideas is provided by Stone Duality .
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The Classical Stone Representation Theorem (1931):

• The Problem: given an abstract Boolean algebra B, represent it as a

concrete algebra of sets.

• Form the space of ultrafilters over B: i.e. h−1(1) for homomorphisms

h : B −→ 2. This space Pt(B) is naturally topologized by taking basic

opens

Ub = {x | b ∈ x}

Then B ∼= Clop(Pt(B)).

• The spaces that arise this way (totally disconnected compact Hausdorff

spaces) are the Stone spaces . For every Stone space S,

S ∼= Pt(Clop(S)).
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In logical terms:

• B is the Lindenbaum algebra of a propositional theory

• Points are models

• The compactness of Pt(S) subsumes the Compactness Theorem

• The existence of enough points to achieve the above isomorphisms

subsumes the Completeness Theorem — i.e.

φ 6≤ ψ =⇒ ∃x ∈ Pt(B). x |= φ ∧ x 6|= ψ.
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X 7→ Ω(X)

Pt(A)← [ A

Y 7→ Ω(Y )

Pt(B)← [ B

f 7→ f−1

Spaces Theories

Note that maps are part of the picture, as well as spaces. This is important
from the CS point of view — it generalizes the duality of state transformers
and predicate transformers .
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Connecting Program Logics and Semantics:

• Deriving a program logic from a semantics and vice versa, in

such a way that each uniquely determines the other.

• Compositionally (and effectively) deriving program logics for

complex semantic domains.

• A generalized Dynamic Logic covering all the constructs of

denotational semantics — higher order functions, recursive

types, non-determinism, etc.

• Using the logical form to unpack the structure of complex,

recursively defined semantic domains.
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Denotational Metalanguage
Syntax of Types:

σ ::= σ × τ | σ → τ | σ ⊕ τ | σ⊥ | Pσ | X | recX.σ | . . .

Typed terms t : σ.
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Denotational Metalanguage
Syntax of Types:

σ ::= σ × τ | σ → τ | σ ⊕ τ | σ⊥ | Pσ | X | recX.σ | . . .

Typed terms t : σ.

The programme:

• We assign, in a syntax-directed (i.e. compositional) fashion, a propositional

theory L(σ) to each type σ, such that (the Lindenbaum algebra of) L(σ) is

the Stone dual of D(σ), the domain associated (in conventional
denotational semantics) to σ.

• We axiomatize the meaning of terms t : σ → τ as

◦ Endogenous version: φ{t}ψ
◦ Exogenous version: φ ≤ [t]ψ

with the intended meaning

JφK ⊆ JtK−1(JψK).
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This requires giving constructions on theories which yield the Stone

duals of denotational constructions such as function spaces and

powerdomains:

L(σ → τ) = L(σ)→L L(τ)

L(Pσ) = PL(L(σ))

Recursive types are handled by inductive definitions of the logics —

in effect, allowing arbitrary nesting of (generalized) modalities. Cf.
current work on “coalgebraic logic”.
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This requires giving constructions on theories which yield the Stone

duals of denotational constructions such as function spaces and

powerdomains:

L(σ → τ) = L(σ)→L L(τ)

L(Pσ) = PL(L(σ))

Recursive types are handled by inductive definitions of the logics —

in effect, allowing arbitrary nesting of (generalized) modalities. Cf.
current work on “coalgebraic logic”.

In this way, we can read off presentations of complex semantic
domains as propositional theories , hence unpacking their

structure.
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“Domains” here are ω-algebraic cpo’s. Can be viewed as topological

spaces under the Scott topology.

We are interested in categories of such domains which are

cartesian closed , and closed under various constructions,

e.g. powerdomains :

• Scott domains

• SFP

Stone duality for these categories can be seen as restrictions for the
Stone duality between distributive lattices and “coherent” or

“spectral” spaces — those for which the compact-open sets generate

the topology.
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The lattices of compact-opens for domains are coprime-generated , i.e. every

element is a finite join of coprimes, where a is coprime if:

a ≤
∨

i∈I

bi ⇒ ∃i. a ≤ bi.

(These correspond to “2/3 SFP domains”. SFP or Scott domains require

additional axioms, which in the case of SFP are non-elementary .)

Coprimes correspond to the basic opens ↑(a), a a compact element of D, in

the Scott topology on D.

Our axiomatization involves a predicate C(a) for coprimeness. The key point in

proving completeness (and effectiveness) of the axiomatization is to show that

there are effective coprime normal forms .
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How should we interpret the basic concepts of Domain Theory:

d ⊑ e

and “partial elements”, e.g. in N⊥, Σ∞?

Two views:

• Ontological : Partial elements are possible states of the computation

system, independently of any observer: necessary extensions to our

universe of discourse.

• Epistemic : We (implicitly) assume an observer; (compact) partial elements

are observable properties .

In fact, both readings are useful. The particular feature of domains which allows

this creative ambiguity between points and properties to be used so freely is

that basic points and basic properties (or observations) are ess entially
the same things . E.g. finite streams.
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If D is a domain, we want to make a domain P (D) of subsets of D, to

represent non-deterministic computation over D.

Which sets? the finitely generable ones.
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If D is a domain, we want to make a domain P (D) of subsets of D, to

represent non-deterministic computation over D.

Which sets? the finitely generable ones.

ǫ

〈1〉

〈1, 1〉

〈1, 1, 1〉

〈0〉

〈0, 1〉

〈0, 1, 1〉

〈0, 0〉

〈0, 0, 1〉 〈0, 0, 0〉

The set generated is 0∗1ω ∪ 0ω . Can we generate 0∗1ω?
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Consider two sets which could appear as cross-sections Xn, Xn+1
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Note that:

• Each node labelled with b in Xn has one or more successors in

Xn+1, each labelled with some b′ such that b ⊑ b′.
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Consider two sets which could appear as cross-sections Xn, Xn+1

of a generating tree. These are finite sets of finite elements.

Note that:

• Each node labelled with b in Xn has one or more successors in

Xn+1, each labelled with some b′ such that b ⊑ b′.
• Each node labelled with b′ in Xn+1 has an ancestor labelled with

some b in Xn such that b ⊑ b′.

Abstracting from this situation, we have sets X and Y such that:

• ∀x ∈ X. ∃y ∈ Y. x ⊑ y
• ∀y ∈ Y. ∃x ∈ X.x ⊑ y

We write this as X ⊑EM Y : the Egli-Milner order .
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(i) The generators:

G(P (A)) ≡ {2a : a ∈ |A|} ∪ {3a : a ∈ |A|}

(ii) Axioms:

(2− ∧) 2
∧

i∈I ai =
∧

i∈I 2ai

(3− ∨) 3
∨

i∈I ai =
∨

i∈I 3ai

(2− ∨) 2(a ∨ b) ≤ 2a ∨3b

(3− ∧) 2a ∧3b ≤ 3(a ∧ b)

(2− 0) 20 = 0

(iii) Rules:

(2− ≤)
a ≤ b

2a ≤ 2b

(C −2−3)
{CA(ai)}i∈I (I 6= ∅)

C(2
∨

i∈I ai ∧
∧

i∈I 3ai)
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• The axiomatization (aside from coprimeness) is that of the

Vietoris construction on (coherent) locales. The Hoare and

Smyth powerdomains arise by omitting the 2 and 3 parts

respectively.
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• The axiomatization (aside from coprimeness) is that of the

Vietoris construction on (coherent) locales. The Hoare and

Smyth powerdomains arise by omitting the 2 and 3 parts

respectively.

• The coprimeness axiom corresponds to the nabla modality —
picking out “point-like properties”.

• There is a tight link between bisimulation and the Egli-Milner

ordering, or the Vietoris construction, first identified in this setting,

in my paper: “A Domain Equation for Bisimulation”.

• Note that this Vietoris construction gives “one-level” or “flat”
modalities. To get the usual iterated modalities we must combine

this with a recursive domain equation — yielding a finer

analysis.
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(i) The generators:

G(A→ B) ≡ {(a→ b) : a ∈ |A|, b ∈ |B|}.

(ii) Relations:

(→ −∧) (a→
∧

i∈I bi) =
∧

i∈I(a→ bi)

(→ −∨−L) (
∨

i∈I ai → b) =
∧

i∈I(ai → b)

(→ −∨−R)
CA(a)

(a→
∨

i∈I bi) =
∨

i∈I(a→ bi)

(→ − ≤)
a′ ≤ a, b ≤ b′

(a→ b) ≤ (a′ → b′)



Axiomatizing Function Spaces

Domain Theory in Logical Form TANCL 2007 – 19 / 35

(i) The generators:

G(A→ B) ≡ {(a→ b) : a ∈ |A|, b ∈ |B|}.

(ii) Relations:

(→ −∧) (a→
∧

i∈I bi) =
∧

i∈I(a→ bi)

(→ −∨−L) (
∨

i∈I ai → b) =
∧

i∈I(ai → b)

(→ −∨−R)
CA(a)

(a→
∨

i∈I bi) =
∨

i∈I(a→ bi)

(→ − ≤)
a′ ≤ a, b ≤ b′

(a→ b) ≤ (a′ → b′)

Note the key use of coprimeness in (→ −∨−R).



Axiomatizing Function Spaces

Domain Theory in Logical Form TANCL 2007 – 19 / 35

(i) The generators:

G(A→ B) ≡ {(a→ b) : a ∈ |A|, b ∈ |B|}.

(ii) Relations:

(→ −∧) (a→
∧

i∈I bi) =
∧

i∈I(a→ bi)

(→ −∨−L) (
∨

i∈I ai → b) =
∧

i∈I(ai → b)

(→ −∨−R)
CA(a)

(a→
∨

i∈I bi) =
∨

i∈I(a→ bi)

(→ − ≤)
a′ ≤ a, b ≤ b′

(a→ b) ≤ (a′ → b′)

Note the key use of coprimeness in (→ −∨−R).

Note also the resemblance to intersection types and filter models — again

on one level, combining with recursive types to yield a finer analysis.
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The coprimeness axiom:

(C−→)

{CA(ai)}i∈I {CB(bi)}i∈I

∀J ⊆ I. ∃K ⊆ I. [
∧

j∈J aj =A

∨

k∈K ak & [∀j ∈ J, k ∈ K. bk ≤B bj ]]

C(
∧

i∈I(ai → bi))
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The coprimeness axiom:

(C−→)

{CA(ai)}i∈I {CB(bi)}i∈I

∀J ⊆ I. ∃K ⊆ I. [
∧

j∈J aj =A

∨

k∈K ak & [∀j ∈ J, k ∈ K. bk ≤B bj ]]

C(
∧

i∈I(ai → bi))

Horrific — but effective .
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• A Domain Equation for Bisimulation

ST = P0(Σa∈ActST)

Denotational semantics for process calculi, fully abstract wrt strong

bisimulation, connection to Hennessy-Milner logic.
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• A Domain Equation for Bisimulation

ST = P0(Σa∈ActST)
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• A Domain Equation for Bisimulation

ST = P0(Σa∈ActST)

Denotational semantics for process calculi, fully abstract wrt strong

bisimulation, connection to Hennessy-Milner logic.
• The Lazy Lambda Calculus.

D = [D −→ D]⊥

Connections with ideas from filter models and intersection types.

• The Finitary Non-Well Founded Sets

S = V (S)

The Stone Space of the free modal algebra! Carries an interesting

set-theory, in which the universe is a set.
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A quiz for modal logicians:

What is the Stone space of the free modal algebra?

Which kind of set theory does it provide a model for?

We study an example: the space F of finitary non-well-founded sets . By

finitary we mean:

• not the strictly finite

• not the unboundedly infinite
• but the finitary i.e. those objects appearing as “limits” of finite ones.

We can describe F as the Stone space of the free modal algebra (on no
generators) . Here we take a modal algebra to be a Boolean algebra B
equipped with a unary operator 3 satisfying the axioms

(MA) 3(a ∨ b) = 3a ∨3b 30 = 0.

This is the algebraic variety corresponding to the minimal normal modal logic

K. The Boolean algebra is equipped with a constant 0, so the free algebra over

no generators can be non-trivial. We shall show that it is indeed non-trivial!
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We firstly describe F, qua topological space, as the solution of a

domain equation in Stone. We use the Vietoris construction PV .

Given a Stone space S, PV (S) is the set of all compact (which

since S is compact Hausdorff, is equivalent to closed) subsets of S,

with topology generated by

2U = {C | C ⊆ U} (1)

3U = {C | C ∩ U 6= ∅} (2)

where U ranges over the open sets of S. We can read 2U as the

set of all C such that C must satisfy U , and 3U as the set of C
such that C may satisfy U . The allusion to modal logic notation is

thus deliberate, and we shall shortly see a connection to standard
modal notions.
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We consider domain equations X ∼= F (X) for endofunctors F : C −→ C. We

want extremal solutions of such an equation: either an initial algebra
α : FA→ A, or a final coalgebra β : A→ FA. (The Lambek lemma then
guarantees that the arrow is an isomorphism). These concepts generalize the

lattice-theoretic notions of least and greatest fixpoint. In most cases of interest,

initial algebras can be constructed as colimits:

lim
→

(0→ F0→ F 2
0→ · · · )

generalizing the construction of the least fixpoint as
∨

k F
k⊥, while final

coalgebras can be constructed as limits:

lim
←

(1← F1← F 2
1← · · · )

generalizing the construction of the greatest fixpoint as
∧

k F
k⊤. (In the

domain theoretic case, the limit-colimit coincidence means that the two

constructions coincide, and we obtain both an initial algebra and a final

coalgebra.) For the finitary case we are considering, the functors will be
ω-continuous in the appropriate sense, and the limit or colimit can be taken

with respect to the ω-chain of finite iterations.
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We define F as the final coalgebra of the Vietoris functor on Stone. Since

PV is cocontinuous, F is constructed as the limit of the ωop-chain

lim
←

(0← PV 0← P2
V 0← · · · )

We give a picture of the first few terms of the construction:

∗ � {∗} � {∅, {∗}} � {∅, {∅, {∗}}} � · · ·

∅

.............

�

{∅}

............

�

{∅, {∅}}

............

�

· · ·

1 PV 1 P2
V 1 P3

V 1
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F can equivalently be described as the ultrametric completion of the
hereditarily finite sets .

d(S, T ) =

{

0, S ∼ T

2−k, least k such that S 6∼k T otherwise

Example of Cauchy Sequence:

1/2 1/4 1/8 · · ·

The corresponding sequence of sets is

∅, {∅}, {∅, {∅}}, {∅, {∅}, {{∅}}}, . . .
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As we have seen, the Vietoris construction can be described

logically as an operation on theories . For the coherent case, V (L),

for a distributive lattice L, is the distributive lattice generated by 2a,
3a, (a ∈ L), subject to the axioms:

2(a ∧ b) = 2a ∧2b 3(a ∨ b) = 3a ∨3b (3)

21 = 1 30 = 0 (4)

2(a ∨ b) ≤ 2a ∨3b 3(a ∧ b) ≥ 3a ∧2b. (5)

In the boolean case, where we have a classical negation, 2 and 3

are inter-definable (e.g. 2a = ¬3¬a), and the axiomatization

simplifies to (MA).
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The construction MA(B) lifts to a functor on Bool, the category of Boolean

algebras. We can iterate this construction to get the initial solution of

B = MA(B) in Bool:

lim
→

(2 ⊂ - MA(2) ⊂ - MA2(2) ⊂ - · · · )

Concretely this is the Lindenbaum algebra of the propositional theory which is

inductively generated by these iterates. This is the standard modal system
K—but with no propositional atoms. Thus another role for domain equations is

revealed: systematizing the inductive definition of the formulas and inference

rules of a logic.

To see how hereditarily finite sets can be completely characterized by modal

formulas (the “master formula” of the set), we define:

F(∅) = 20 (= ¬31) (6)

F({x1, . . . , xn}) = 2

n
∨

i=1

F(xi) ∧

n
∧

i=1

3F(xi). (7)
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The link between B and F is given by Stone duality :

Proposition 1 B is the Stone dual of F.

Again, this is an instance of very general results.
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We define a domain D as the solution (both initial algebra and final coalgebra)

of the equation
D = P0

P (D) = 1⊥ ⊕ PP (D). (8)

Here PP (·) is the Plotkin powerdomain.

Proposition 2 F ∼= Max(D), where D is the solution of the domain equation

(8).

We note that D has “partial sets”.

Example 3

⊥

⊥

! {⊥,∅, {⊥,∅}}
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We now consider F as a set-theoretic universe (F,∈,=). Since we have

F ∼= PV (F) unfold : F
∼=
−→ PV (F)

we can define
S ∈ T ≡ S ∈ unfold(T ).

Note that in this set theory, the universe V is a set!
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we can define
S ∈ T ≡ S ∈ unfold(T ).

Note that in this set theory, the universe V is a set!

• Using the monadic structure of the Vietoris construction, we can easily

deduce that this structure satisfies the Empty Set, Union, Pairing, and

Powerset axioms.
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and Choice. Choice relies on standard topological results about selection
functions . The continuity requirement for Separation enforces restrictions

on the use of negation.
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We now consider F as a set-theoretic universe (F,∈,=). Since we have

F ∼= PV (F) unfold : F
∼=
−→ PV (F)

we can define
S ∈ T ≡ S ∈ unfold(T ).

Note that in this set theory, the universe V is a set!

• Using the monadic structure of the Vietoris construction, we can easily

deduce that this structure satisfies the Empty Set, Union, Pairing, and

Powerset axioms.

• A suitable axiom of Infinity holds, since e.g. x = {∅} ∪ {{y} | y ∈ x} has

a (unique) solution in F.
• Clearly, we cannot have full (classical) separation, since we have V ∈ V .

We do , however, have continuous versions of Separation, Replacement,

and Choice. Choice relies on standard topological results about selection
functions . The continuity requirement for Separation enforces restrictions

on the use of negation.

This set theory, and generalizations to “κ-finitary” universes, has been studied

by Forti and Honsell.
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Some Precursors (among many):

• Scott information systems, intersection types and filter models, Martin-Löf,
Plotkin, Kozen, . . .

• Mike Smyth, Powerdomains and Predicate Transformers: A Topological

View, in ICALP 1983. Smyth’s slogan: open sets “are” c.e. sets. My slogan:

open sets are finitely observable properties .

Some Successors (among many):

• Thomas Jensen, Strictness Analysis in Logical Form
• Marcelo Bonsangue et al.

• Achim Jung and Drew Moshier

• Michael Huth, Marta Kwiatkowska et al.

• Coalgebraic Logic (e.g. Moss, Jacobs, Kurz, Venema et al.)

• Work on Quantales (Resende et al.)
• Work on Constructive Mathematics taking the observational point of view

(e.g. Spitters)
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