ADAM PRENOSIL Cut elimination, identity
elimination, and interpolation
in super-Belnap logics

Abstract. We develop a Gentzen-style proof theory for super-Belnap logics (extensions
of the four-valued Dunn-Belnap logic), expanding on an approach initiated by Pynko. We
show that just like substructural logics may be understood proof-theoretically as logics
which relax the structural rules of classical logic but keep its logical rules as well as
the rules of Identity and Cut, super-Belnap logics may be seen as logics which relax
Identity and Cut but keep the logical rules as well as the structural rules of classical logic.
A generalization of the cut elimination theorem for classical propositional logic is then
proved and used to establish interpolation for various super-Belnap logics. In particular,
we obtain an alternative syntactic proof of a refinement of the Craig interpolation theorem
for classical propositional logic discovered recently by Milne.
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1. Introduction

The four-valued Dunn—Belnap logic B [7, 8, 4, 5] and its two three-valued
extensions, the strong Kleene logic K [14, 15] and the Logic of Paradox LP
[19], are well-known non-classical logics which have received a good deal
of attention in the past decades, particularly from philosophically minded
logicians. However, it is only in the last few years that a systematic study of
the family of extensions of B, called super-Belnap logics by Rivieccio in [26],
was initiated. This paper is intended as a contribution to the investigation
of this family of logics from a Gentzen-style proof-theoretic point of view.
The starting point of this paper is Pynko’s recent observation [23] that
a Gentzen calculus for LP (for B) may be obtained by adding the inverses
of the logical introduction rules to a standard Gentzen calculus for classical
logic and dropping the Cut rule (and the Identity axiom). Our main con-
tribution is to extend this observation to arbitrary super-Belnap logics and
formulate a useful generalization of the cut elimination theorem for classical
logic to Gentzen calculi for super-Belnap logics. An immediate corollary of
this result is then a broad sufficient condition for a super-Belnap logic to
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enjoy (a slight strengthening of) the Craig interpolation property, covering
many of the new super-Belnap logics introduced in the last few years.

In particular, we show that each super-Belnap logic corresponds to an
extension of Pynko’s calculus by a set of structural rules (rules which do not
contain logical connectives). Super-Belnap logics may therefore be viewed as
a class of logics analogical but orthogonal to the class of substructural logics.
Substructural logics are obtained by keeping the logical rules of the classical
Gentzen calculus fixed (as well as the Identity and Cut rules, although this
is usually not mentioned explicitly) and tinkering with the structural rules
of Exchange, Weakening, and Contraction. The situation with super-Belnap
logics is dual: it is the rules of Exchange, Weakening, and Contraction which
are kept fixed and the rules of Identity and Cut which are free to vary. In
other words, we are justified in calling super-Belnap logics subrefierive and
subtransitive logics by analogy with substructural logics.

Some of the results proved below may be of interest even to the classical
logician. We recall Pynko’s insight that the Logic of Paradox £P may be
used to prove the admissibility of Cut in the Gentzen calculus for classical
logic, and dualize it to prove the antiadmissibility of Identity. We then
generalize the cut elimination procedure to proofs from non-empty sets of
sequential premises, and use it to obtain a syntactic proof of the non-classical
refinement of the Craig interpolation theorem for classical propositional logic
CL discovered recently by Milne [17].

The idea of using (non-deterministic) three-valued semantics to prove
the admissibility of Cut dates back to the work of Schiitte [27]. Later, it
was used by Girard [12] to provide a three-valued semantics for a standard
Gentzen calculus for classical logic without Cut. Dually, Hosli and Jéger [13]
provided a three-valued semantics for a Gentzen calculus for classical logic
without Identity. These ideas were then combined and extended by Lahav
and Avron [16], who provided a uniform way of defining a non-deterministic
four-valued Kripke semantics for a wide range of Gentzen calculi without
Cut or Identity or both. The difference between these approaches and the
approach of Pynko [23], which we build on in the present paper, is that the
latter is concerned with providing a semantics for a calculus which includes
elimination rules (i.e. the inverses of introduction rules). This is precisely
what allows us to define the analytic—synthetic normal form for proofs from
a non-empty set of sequents. Note that the connection betwen deterministic
semantics and the invertibility of logical rules was already pointed out in the
two-valued case by Avron, Ciabattoni, and Zamansky [3].

It is worth recalling here that there are basically two distinct approaches
to providing a Gentzen calculus for a given logic, in particular for B. In the
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first approach, the logic B is the logic of provable sequents. That is, I' kg ¢
if and only if the sequent I' > ¢ is provable. This is the approach taken by
Pynko [21] and Font [9].! On the other hand, we may also draw a connection
between the consequence relation of B and the derivability relation between
sequents and sets of sequents, as Pynko [23] does. In the simplest form,
this correspondence says that I' k5 ¢ if and only if the sequent () > ¢ is
provable from the sequents () > v for v € I'. It is well known that these
two relations coincide e.g. in some standard Gentzen calculi for classical
and intuitionistic logic, but when it comes to B, the two approaches require
us to adopt rather different Gentzen calculi. In particular, the calculi of
Pynko [21] and Font [9] contain the Identity axiom but neither the standard
introduction rules for negation nor the elimination rules, while the calculus
of Pynko [23] it contains both the standard introduction rules for negation
and the elimination rules while leaving out Identity and Cut. In the present
paper we opt for the latter approach.

The paper is structured as follows. Section 2 contains all the necessary
preliminaries regarding super-Belnap logics and the equivalence of Gentzen
and Hilbert relations. Section 3 introduces Gentzen calculi for super-Belnap
logics and Section 4 generalizes the cut elimination theorem for classical logic
to these calculi. In particular, the cut elimination theorem is generalized to
proofs from non-empty sets of sequential premises: each such proof can be
transformed into what we call a structurally atomic analytic—synthetic proof.
Section 5 then exploits this generalization of the cut elimination theorem to
prove new interpolation results for super-Belnap logics. In particular, we
obtain an alternative Gentzen-style proof of Milne’s recent refinement of the
Craig interpolation theorem for classical logic [17].

Starting from the observation due to Pynko that a Gentzen calculus for
the Dunn—Belnap logic B may be obtained by adding the inverses of the
logical introduction rules to a standard Gentzen calculus for classical logic

!Pynko’s calculus uses multiple-conclusion sequents and contains introduction rules for
negated conjunction and disjunction but no structural rules (apart from Identity). The
structural rules of Cut, Exchange, Weakening, and Contraction are then shown by Pynko
to admissible in this calculus. Font also briefly considers a single-conclusion version of
this calculus with the structural rules present. However, the main calculus which he
studies differs from Pynko’s in replacing the introduction rules for negated conjunction
and disjunction by Contraposition and Cut. Font’s calculus, while being strongly adequate
for B in the sense of the theory of Font and Jansana [11], is in fact more of a calculus for
the quasiequational theory of De Morgan lattices: De Morgan lattices form the equivalent
algebraic semantics of Font’s calculus, whereas 5 has no equivalent algebraic semantics. A
cosmetic difference between these calculi and the ones presented here is that we consider
the truth constants T and L to be part of the signature of 13, while Pynko and Font do not.
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and dropping Identity and Cut (Theorem 3.1), we show that each super-
Belnap logic may be obtained by adding a set of structural rules to this
calculus (Proposition 3.3), in particular adding Identity yields a calculus for
LP and adding Cut yields a calculus for K, while adding a limited form of
Cut yields a calculus for the Exactly True Logic of Pietz and Rivieccio [18].
The fact that the logics CL and LP have the same theorems may be used
to prove the classical admissibility of Cut (Theorem 3.9), as remarked on
by Pynko already. Dually, the fact that the logics CL and K have the same
antitheorems may be used to prove the classical antiadmissibility of Identity
(Theorem 3.10). We then introduce structurally atomic analytic-synthetic
proofs as a generalization of cut-free proofs to proofs from non-empty sets
of sequential premises, and provide a procedure for transforming arbitrary
proofs in suitable super-Belnap calculi into such proofs (Proposition 4.8 and
Theorem 4.21). This is exploited in the last section to establish a broad
sufficient condition for (a stronger form of) interpolation, proving new inter-
polation results for super-Belnap logics and strengthening some old ones for
LP and K (Propositions 5.12-5.15).
We emphasize that we only consider propositional logics in this paper.

2. Preliminaries

In this section, we briefly introduce several super-Belnap logics and some
definitions concerning the equivalence of Hilbert and Gentzen relations. For
more details about super-Belnap logics and their history and motivations,
the reader may consult the papers [26, 1, 20].

We shall be using the paradigm of abstract algebraic logic, see e.g. Font’s
recent textbook [10]. In particular, by a logic, also sometimes called a Hilbert
relation, we shall mean a relation £ between sets of formulas and formulas
in a given language, written I' -, ¢, which satisfies the following conditions:

ok (reflexivity)
if 'k, then T, A F ¢ (monotonicity)
if 'Fpforall p € ® and ®,A+ ¢, then T, A+ (cut

)
if I' - ¢, then o[I'] F o for each substitution o (structurality)
If moreover T' F ¢ implies that there is some finite set of formulas IV C T’
such that TV I ¢, then the logic is called finitary.

A (logical) matriz is an algebra A in a given language equipped with a set
of designated values F' C A. Each matrix (A, F') defines a logic Log(A, F)
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such that
' Frog(a,r) @ if and only if v[I'] C F implies v(p) € F

for each valuation v : Fm — A, where Fm denotes the algebra of formulas
in the given language. If K is a class of matrices, then we define LogK =
MNack Log A. Each logic is then the logic of some class of matrices.

Suppose that a logic £ has a constant L such that 1L F, p for some
variable p. Then L is never designated in a non-trivial model of £. By an
explosive rule in such a logic, we shall now mean a rule of the form I' - L,
denoted also I' - (. An ezplosive extension of L is then an extension of
Lezp by a set of explosive rules. If L), is an explosive extension of £, then
I'tr.,, ¢ if and only if either TFz @ or ', 0.

Theorems of a logic £ are formulas ¢ such that () b,z . Antitheorems
of L are sets of formulas I' such that I' -, 0.

DEFINITION 2.1. An inference rule is admissible (antiadmissible) in a logic
if adding it does not yield any new theorems (antitheorems).

We now recall some (slightly adapted) definitions introduced by Raftery
in his paper [24] concerning the equivalence of Hilbert and Gentzen systems.
Raftery takes sequents to be pairs of finite sequences, but for the sake of
simplicity we shall adopt the definition that a sequent is a pair of finite
multisets of formulas, written as I' > A. This obviates the need for explicitly
introducing the structural rule of Exchange. An atomic sequent is a sequent
in which all formulas are atoms. The empty sequent is the sequent () > ().

A Gentzen relation GL is a relation between sets of sequents and sequents
which satisfies natural analogues of the above four conditions defining Hilbert
relations. A Gentzen relation is finitary if S gz I' > A implies that there
is some finite S’ C S such that S" Fgs I' > A.

We say that two sets of formulas I' and A are equivalent in £ in case
'k, 6 for each 6 € A and A F, « for each v € I, and likewise for sequents.
Two sets of rules are equivalent in a Hilbert or Gentzen relation if the least
Hilbert or Gentzen relations extending the relation by those rules coincide.

A Hilbert or Gentzen calculus is just a set of rules in a given language,
i.e. pairs of sets of formulas (sequents) interpreted as premises and formulas
(sequents) interpreted as conclusions. A calculus axiomatizes a Hilbert or
Gentzen relation if it is the least such relation which contains all of the rules
of the calculus. Proofs in a given calculus are defined as suitably labelled
well-founded trees (trees where all branches are finite), and a formula or a
sequent is provable in a calculus from a set of formulas or sequents if and
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only if it the corresponding rule is valid in the relation axiomatized by the
calculus. In finitary calculi, proofs are suitably labelled finite trees.

A Gentzen relation GL and a Hilbert relation £ are simply equivalent if
there is a definable transformer 7 from sequents to sets of formulas in the
sense of Raftery [24] (adapted to multisets) such that

Stae > Aif and only if 7[S] . (' > A),
I' F; ¢ if and only if p[S] Fz p(e),

' Adbge pr(I' > A),

@ A2 Tp(p),

where p is the inclusion transformer ¢ — {0} > ¢}. Note that the second
and third conditions (or alternatively, the first and fourth conditions) are in
fact redundant in this definition.

In the following, we will only be concerned with Gentzen relations which
validate the rule of Weakening, hence S Fgy 0 will imply S Fge T' > A
for each sequent I' > A. For such Gentzen relations, we may therefore
define S kg, 0 as an abbreviation for S Fgs @ > (. The antitheorems
and antiadmissible rules of a Gentzen relation which validates the rule of
Weakening may then be defined as in the case of Hilbert relations, replacing
the constant L by the empty sequent () > ().

We now turn to our attention to super-Belnap logics, i.e. extensions of B.
The signature of the logic B consists of the distributive lattice conjunction
and disjunction connectives A and V, the De Morgan negation operator —,
and the two truth constants T and L representing the top and bottom of the
lattice order, respectively. Figure 1, borrowed from the paper [20], shows
several important matrices which define the super-Belnap logics studied in
this paper. In all of these matrices, the De Morgan negation corresponds to
reflection across the horizontal axis of symmetry, while the other connectives
and constants are interpreted according to the lattice order.

The most important super-Belnap logics may now be introduced se-
mantically as follows: B = LogBy4, LP = LogLP3, K = LogKs, and
ETL = LogETLy4. That is, ET L is the Exactly True Logic of Pietz and
Rivieccio [18]. The matrix B4 comes with a natural information order, de-
noted C, which then specializes to the two submatrices LP3 and K3 of By.
This order is obtained by reading the diagram of B4 left-to-right rather than
bottom-up. It extends to valuations v,w : Fm — By in the natural way:
v C w if and only if v(p) C w(p) for each atom p. A valuation v : Fm — By
is called classical if its range is the two-element Boolean submatrix of By.
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Figure 1. Some logical matrices for super-Belnap logics

S

o\ ° \ /o
° ° ° °
B, Ks LP; ETL,

PROPOSITION 2.2. The connectives of By, LP3, and K3 are monotone with
respect to the information order.

The information order on By, LPg3, and Kj is precisely the Leibniz
order in the sense of Raftery [25] if we assign all polynomials to the positive
polarity. By contrast, the Leibniz order on ETL, is the identity relation.

We now axiomatize the super-Belnap logics introduced above relative B:
the logic K is axiomatized by the rule of resolution pV ¢, —qVr = pVr, the
logic £T L is axiomatized by the rule of disjunctive syllogism p, —pVq F ¢, the
logic LP is axiomatized by the law of the excluded middle @ - p\V —p. The
logic K= = KN LP, called Kleene’s logic of order by Font [9], is axiomatized
by the rule (p A —p)Vrt (¢V —q) Vr, as proved in [1]. Moreover, we define
ECQ as the extension of B by the rule p, —p - (). It was shown in [20] that
ECQ is the logic of the matrix ETL4 x By.

The join of two logics is defined as the least logic extending both of them.
In particular, it is known that CL =LP VK =LPVETL.

3. Gentzen calculi for super-Belnap logics

We now introduce a natural Gentzen calculus which is simply equivalent
to the Dunn—Belnap logic B in the sense of Raftery and describe some of
its extensions. We then consider the interderivability, admissibility, and
antiadmissibility of the introduction and elimination rules for the logical
connectives in the Gentzen calculi for CL, LP, and K, and use these facts to
provide a semantic proof of the admissibility of Cut and the antiadmissibility
of Identity in the standard Gentzen calculus for classical logic.

The Gentzen calculus GCB defined by the rules in Figure 2 may be
described simply as a standard Gentzen calculus for classical logic without
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the rules of Cut and Identity but with the inverse of each introduction rule
for each logical connective or constant. For example, the notation

'> A > Ay
' Ao Ay

is meant to indicate that the calculus contains the three rules

> A > Ay I'> ANy ' Ao Ay
' Ao ANy '> Ap > Ao

the first one being called the right introduction rule for conjunction and the
second and third being called the right elimination rules for conjunction.
The sequents @ > T and L > ) are the only two axioms of this Gentzen
calculus. The Gentzen relation axiomatized by GCB will be called GB.

THEOREM 3.1 ([23]). The Gentzen relation GB is simply equivalent to the
Hilbert relation B wvia the transformer T :I'> A — {— AT V\/ A}

The transformers 7 : I' > A — {—=ATV\VA} and p: ¢ — {0 > ¢}
therefore define two mutually inverse isomorphisms between the lattice of
Hilbert relations extending B and the lattice of Gentzen relations extending
GB, and moreover these isomorphisms preserve finitarity [24, Corollary 7.5].
In other words, when we talk about (finitary) super-Belnap logics, we may
as well be talking about (finitary) Gentzen relations extending GB.

Moreover, it takes but a moment’s reflection to see that each extension
of GB may in fact be axiomatized by structural rules, i.e. rules which do
not contain any occurrence of a logical connective or constant. Note that
what we call Cut, Weakening, and Contraction are strictly speaking sets of
structural rules. For example, Contraction is a set of rules which includes
the rules p,p>qFpr>qand p,q,q > 7+ p,q > 7 etc.

PROPOSITION 3.2. Each sequent is equivalent in the Gentzen relation GB to
a finite set of atomic sequents. FEach finite set of sequents is equivalent in
the Gentzen relation GB to a single sequent of the form () > .

PRrROOF. Both of these claims may be proved by a straightforward induction
over the complexity of the sequent or the finite set of sequents. [ |

PROPOSITION 3.3. Each (finitary) extension of GB may be axiomatized as
an extension of the calculus GCB by a set of (finitary) structural rules.
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Figure 2. The Gentzen calculus GCB for B

Logical rules

'> A ' Ay o, 0, T > A
' ANy oA, ' > A

o, ['> A P, I'> A e Ao, 0

eV, I'> A ' AoV
o, > A ' A
o A —p —o,I'> A

T.I'> A ' AL
0>T I'>A I'>A 10

Structural rules

I'> A I'> A QO’QO,FDA FDA?QDvQO
o, I'> A ' Ap o, I'> A ' Ap

ProOF. It suffices to show that each (finitary) Gentzen rule is equivalent
in GB to a (finitary) structural rule. Let {I'; > A; |i € I} F T > A be a
Gentzen rule. By Proposition 3.2 there is for each i € I a finite set of atomic
sequents S; equivalent to I'; > A; and there is a finite set of atomic sequents
S equivalent to I' > A. Then the Gentzen rule in question is equivalent to
the finite set of rules (J;c; S; = A > II for A > II € S. Moreover, these rules
are finitary if the Gentzen rule in question is finitary. [ |

If a Hilbert relation £ is the extension of B by the rules I'; - ; for ¢ € I,
then the rules p[I';] - p(y¢;) axiomatize the corresponding Gentzen relation
GL extending GB by [24, Theorem 7.1]. Proposition 3.3 now claims that we
may always simplify such an axiomatization to a structural axiomatization.
For example, the rule p A —p F ¢ V —q axiomatizing the logic LP N ECQ
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corresponds to the Gentzen rule (schema)

D> >0
Y
while the rule (pA—p)Vr F (gV —q) Vr axiomatizing the logic K= corresponds
to the Gentzen rule (schema)

' Ap o, I'> A
v, I'> Ay

which may be seen as a combination of Identity and Cut.

Extensions of the Gentzen calculus GCB by a set of structural rules will
be called super-Belnap (Gentzen) calculi. Our goal here is to develop the
rudiments of the proof theory of super-Belnap calculi. The rules which each
super-Belnap calculus has in addition to the rules of GCB will be called
its specific structural rules, as opposed to the common structural rules of
Weakening and Contraction shared by all super-Belnap calculi.

Note that although the introduction and elimination rules of super-
Belnap calculi are finitary, we do not exclude non-finitary structural rules.
(The existence of non-finitary super-Belnap logics was proved in [20].) Proofs
in such calculi are well-founded trees, i.e. trees with no infinite branches.

Some of the important specific structural rules are listed in Figure 3.
Identity corresponds to the rule () = p V —p which axiomatizes LP, while
Cut corresponds to the rule pV —q,q V r = p V r which axiomatizes K.
Limited Cut in either of the two equivalent forms corresponds to the rule
p,—p V q F g which axiomatizes £7 L, and Explosive Cut corresponds to
the rule p, —p F () which axiomatizes £CQ. Adding these rules to GCB
yields the calculi GCLP, GCK, GCET L, and GCECQ which axiomatize
the Gentzen versions of these logics.

ProposiTION 3.4. Cut is a derivable rule in each super-Belnap calculus
which contains both Identity and Limited Cut.

PRrOOF. Recall that CL=LPVK =LPVETL. ]

We now turn our attention to the super-Belnap calculi for the best known
extensions of B, namely CL, LP, and K. It turns out that for CL we may pick
and choose any combination of introduction and elimination rules, provided
we include at least one of these for each connective. For LP we may do
without the elimination rules provided that we are only interested in which
sequents are derivable from the empty set of sequents, and dually for K we
may do without the introduction rules provided that we are only interested
in sets of sequents from which the empty sequent is derivable.
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Figure 3. Some specific structural rules

Identity
e
Cut

e A o, "> A
LT AA

Limited Cut

0> o, I'>A I'> A @ o> 0
' A I'> A

Explosive Cut

PROPOSITION 3.5. In the presence of Identity and Cut, the left (right) intro-
duction and elimination rules for each connective are interderivable.

PrROOF. We only prove the claim for conjunction, as the argument for dis-
junction is dual and the arguments for negation and for the truth constants
are simpler. To simulate the left introduction rule by the left elimination
rule, we use the following strategy:

PAYPD>PAY
PAYPD> Ay p AP o, 0, ' > A
PAY D> AN, T > A
AP, o AP, T > A
N, T > A

The left elimination rule may then be simulated by the following proof:
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o> >
o, P> o, >
0, > @AY oA, > A
o, 0, T > A

To simulate the right introduction rule for conjunction by the left elimination
rule, we use the following strategy:

PAYD>pAY
' A e O,V > PAY
| VAN T v, 0> Ao A
T AA @AY
' Ao Ay

The right elimination rules may then be simulated by the following proofs:

o>y >

o, P> P>

' AoAY OAY D> > ANy OAY D> Y
> Ap ' A9

We need both Identity and Cut to establish the interderivability of the
introduction and elimination rules. However, if we are only interested in
the admissibility (antiadmissibility) of the elimination (introduction) rules,
the presence of Cut (Identity) is not needed. This claim (for admissibility)
is called the Inversion Lemma by Troelstra and Schwichtenberg [29], and it
constitutes a step in the standard proof of cut elimination for classical logic.

PROPOSITION 3.6 ([29], Proposition 3.5.4, p. 79). Each elimination rule is
admissible in the calculus which contains the common structural rules, the
introduction rules for all connectives, and Identity.

This proposition explains why the elimination rules are invisible from
the standard point of view, which is concerned only with sequents provable
from an empty set of premises.

PROPOSITION 3.7. FEach introduction rule is antiadmissible in the calculus
which contains the common structural rules, the elimination rules for all
connectives, and Cut.
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PRrROOF. Let us say that a sequent I' > A explodes directly relative to a
multiset of sequents S if there is a proof of § > @ from S U{T' > A} which
does not contain any introduction rules and in which each sequent is used
precisely the specified number of times as a premise of the proof. Explicit
reference to the set of side assumptions S will be suppressed in the following.
It now suffices to prove by induction over the height h of the premise I' > A
in the proof of ) > () that

if o A, T > A explodes directly, so does ¢, 9, ' > A

o if I'> A, A explodes directly, so does {T' > A, o} U{T' > A, ¢}
o if pV,T' > A explodes directly, so does {p,I' > A} U {p, I > A}
o if ' > A,V 9 explodes directly, so does I' > A, p, ¥

o if —p, T' > A explodes directly, so does T' > A,

o if ' > A, —¢p explodes directly, so does ¢, I" > A

e if T.I" > A explodes directly, so does I' > A

e if ) > T explodes directly, so does ()

e if | > () explodes directly, so does ()

e if ' > A, L explodes directly, so does I' > A

We only deal with the first item, the rest of them are entirely analogical. The
sequent @ A1, T > A cannot be the last sequent of a proof of ) > ), hence
the base case holds trivially. Now suppose that an instance of p A, ' > A
explodes directly via a proof where this sequent has height h + 1. If the
rule which follows this instance of ¢ A ¥, I" > A is any rule other than an
elimination rule applied to A1), we may simply use the inductive hypothesis
for h. If, on the other hand, this instance of o Ay, " > A occurs as a premise
of the left conjunction elimination rule, then clearly ¢,,I" > A explodes
directly (with respect to the same multiset of sequents S). [ |

The above proof is height-preserving in the same sense as the original
Inversion Lemma. Notice the slight twist involving multisets forced on us by
the fact that a proof has only one conclusion but it may have many premises.

The resolution calculus for classical logic is essentially the restriction of
the calculus GCK to atomic sequents. Proposition 3.7 is therefore a more
sophisticated version of the trivial observation that we never need to apply
resolution to clauses of the form p VvV —p.

Having proved the Inversion Lemma and its dual, we may now prove the
admissibility of Cut and the antiadmissibility of Identity in the standard
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calculus for classical logic using a semantic argument. This is because for
us these are not mere fragments of some calculus, but rather calculi in their
own right with a perfectly good semantics provided by the logics LP and K.
(By contrast, the Inversion Lemma is not needed to prove the admissibility
of Cut in the non-deterministic framework of Lahav and Avron [16].)

The following proposition is already well-known (at least its first part)
but we include a proof nonetheless for the sake of being self-contained and
showing that the argument is indeed purely semantic.

PROPOSITION 3.8 (Weak conservativity). The logics CL and LP have the
same theorems. The logics CL and K have the same antitheorems.

ProOF. Each theorem of LP is a theorem of CL. Conversely, suppose that
v : Fm — LPj3 is a valuation such that v(p) is not designated. Then in
particular v(¢p) is a minimal element of the information order on LP3. Since
the operations of LPg are monotone with respect to the information order
by Proposition 2.2, it follows that w(p) is not designated for all classical
valuations w C v.

The second claim has a dual proof. Each antitheorem of K is an anti-
theorem of CL. Conversely, suppose that v : Fm — Kg is a valuation such
that v(¢p) is designated. Then in particular v(y) is a maximal element of the
information order on Kg. The same argument as above shows that w(yp) is
designated for all classical valuations w J v. [ |

The admissibility of Cut and the antiadmissibility of Identity are now
immediate consequences of the previous three propositions. We emphasize
again that this route to proving the admissibility of Cut in the Gentzen
calculus for classical logic was already taken by Pynko [23]. We therefore
only provide a proof of the latter assertion.

THEOREM 3.9 (Admissibility of Cut). In the Gentzen calculus which contains
Identity, the common structural rules of Weakening and Contraction, and
the introduction rules for all connectives, the Cut rule is admissible.

THEOREM 3.10 (Antiadmissibility of Identity). In the Gentzen calculus which
contains Cut, the common structural rules, and the elimination rules for all
connectives, the Identity rule is antiadmissible.

PROOF. Suppose that the empty sequent is derivable from the set of sequents
S in the Gentzen calculus which containts Cut, the common structural rules,
the elimination rules, and the Identity rule. Then it is derivable from S
in GCCL. Using the equivalence between Hilbert and Gentzen versions
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of super-Belnap logics, Proposition 3.8 implies that the empty sequent is
derivable from S in GCK. Proposition 3.7 then implies that the empty
sequent is derivable from S in the calculus which contains Cut, the common
structural rules, and the elimination rules. [ |

These proofs, based on Proposition 3.8, of course do not yield a procedure
for eliminating Cut or Identity from a given proof.

In the rest of this section, we translate some of the results of [20] into the
language of super-Belnap calculi. Claims about super-Belnap logics made
without proof in the rest of this section are established in [20].

Theorem 3.9 generalizes to arbitrary super-Belnap calculi, even though
Propositions 3.6 and 3.7 are of course specific to LP (and LP V ECQ).
Cut is the strongest non-axiomatic rule in super-Belnap logics, therefore the
folowing theorem completely settles the question of admissibility of non-
axiomatic rules in Gentzen calculi for super-Belnap logics.

THEOREM 3.11. Cut is admissible in each super-Belnap calculus.

PRrROOF. The logics B and K have the same theorems, as do LP and CL.
Moreover, each super-Belnap logic L is either below K or above LP. In the
former case, £V IC = K, while in the latter case LV K = CL. In both cases
L and £V K have the same theorems, i.e. the same sequents are provable in
each super-Belnap calculus for £ and in its extension by Cut. [ |

When it comes to antiadmissibility, there is no such single theorem to
cover all situations. Let us therefore only consider one simple example.

PROPOSITION 3.12. Limited Cut is antiadmissible in the calculus GCECQ
which extends GCB by Fxplosive Cut.

Proor. £CQ and £T L have the same antitheorems. ]

It is mot the case that Identity is antiadmissible in all super-Belnap cal-
culi, in contrast to Theorem 3.11. In particular, it is not antiadmissible in
either of the calculi GCECQ and GCET L, since the logics LP V ECQ and
CL = LPVETL have more antitheorems than £CQ and £T L, one example
being the formula (p A —p) V (¢ A —q).

4. Analytic—synthetic proofs and structural atomicity

The Gentzen-style proof theory of classical logic has mainly been concerned
with which sequents are provable, meaning provable from an empty set of
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premises. Accordingly, its “Hauptsatz” states that with an empty set of
premises, we may restrict to proofs which do not contain Cut.

In the current context of super-Belnap calculi, we are mainly interested in
proving sequents from other sequents. We would therefore like to formulate
an appropriate generalization of this result which would cover proofs from
non-empty sets of premises. Since in classical logic we may be interested
in proving sequents from other sequents as well, such a generalization may
be of interest even to the classical logician. In particular, we shall use it in
the following section to provide an alternative syntactic proof of (a certain
refinement of) the Craig interpolation theorem for classical logic.

We propose to generalize the notion of a cut-free proof to proofs from
a non-empty set of premises by decomposing this notion into a conjunction
of two distinct conditions: structural atomicity and analyticity—syntheticity.
The former notion concerns only the applications of structural rules in the
proof, whereas the latter notion concerns only logical rules.

DEFINITION 4.1. A proof is structurally atomic if both the premises and
conclusions of all occurrences of structural rules in the proof are atomic
sequents. A proof is analytic—synthetic if in each branch of the proof all
instances of elimination rules precede all instances of introduction rules.

Structurally atomic analytic—synthetic proofs may therefore be divided
into three parts: a part consisting of elimination rules at the top, a part
consisting of atomic instances of structural rules in the middle, and a part
consisting of introduction rules at the bottom (each of these parts may be
empty). The importance of structural atomicity is precisely that it yields
this tripartite structure in conjunction with analyticity—syntheticity. Note
that, as the following lemma shows, “local” analyticity—syntheticity implies
“global” analyticity—syntheticity in the presence of structural atomicity.

LEMMA 4.2. A structurally atomic proof is analytic—synthetic if and only if
no elimination rule in it immediately follows an introduction rule.

ProoF. Elimination rules may not immediately follow and introduction
rules may not immediately precede any occurrence of a structural rule in
a structurally atomic proof. Therefore if in some branch of the proof an
instance of an introduction rule precedes an instance of an elimination rule,
then there must be a pair of rules in between these two which consists of an
introduction rule followed by an elimination rule. [ |

Before we show that each proof may be transformed into a structurally
atomic analytic—synthetic proof, it is worth observing that if we restrict to
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classical logic (i.e. if the specific structural rules are Identity and Cut) and
to an empty set of premises, we obtain essentially ordinary cut-free proofs:
clearly no elimination rules may occur in such proofs, and all instances of Cut
are restricted to atomic sequents. The following proposition, whose proof
is immediate, is now all it takes to transfom structurally atomic analytic—
synthetic proofs from an empty set of premises in GCCL into cut-free proofs
in the standard sense of the term. Note that by an atomic version of a rule,
we mean the restriction of the rule to inferences in which all of the premises
as well as the conclusion are atomic sequents.

PROPOSITION 4.3. The following are equivalent for atomic sequents I' > A:

(i) T > A has the form p, T’ > A, p.
(i) T > A is derivable using atomic versions of Identity and Weakening.

(ii) T' > A is derivable using atomic versions of Identity, Cut, Weakening,
and Contraction.

We may dualize this observation and simplify the structure of structurally
atomic analytic—synthetic proofs of the empty sequent in an analogical way.

PROPOSITION 4.4. The following are equivalent for sets of atomic sequents S':

(i) O > 0 is derivable from S using atomic instances of Contraction followed
by atomic instances of Cut.

(i) O > 0 is derivable from S wusing atomic versions of Contraction, Weak-
ening, Identity, and Cut.

PROOF. Suppose that (ii) holds. We first show that Weakening is not
needed. Observe that each atomic instance of Weakening by p on the right
(on the left) may be permuted below each immediately following atomic in-
stance of Cut where p is not the cut formula on the right (on the left) of the
appropriate premise of Cut and below each immediately following atomic
instance of Contraction where p is not the contracted formula on the right
(on the left). On the other hand, an atomic instance of Weakening by p on
the right (on the left) followed by an atomic instance of Cut where p is the
cut formula on the right (on the left) of the appropriate premise of Cut may
be replaced by several atomic instances of Weakening. That is, the proof
segment

r'>A
I'>Ap p, IV > A/
L,V AA
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may be replaced by the proof segment

I'> A
LIV AA

where we have condensed several instances of Weakening into one step, and
likewise for Weakening on the left. Similarly, a proof segment consisting of
an atomic instance of Weakening by p on the right (on the left) followed by
an atomic instance of Contraction where p is the contracted formula on the
right (on the left) may simply be omitted from the proof. Since Weakening
cannot be the last rule in a proof of the empty sequent, it follows that
every instance of Weakening (starting with the bottommost ones) in a proof
of the empty sequent from S which only uses atomic versions of Identity,
Cut, Weakening, and Contraction may be permuted downward until it is
removed from the proof. This yields a proof which only uses atomic versions
of Identity, Cut, and Contraction. Moreover, each instance of Identity in
such a proof may only be followed by an instance of Cut, which, however,
is then clearly redundant. Thus we obtain a proof which only uses atomic
versions of Cut and Contraction. Finally, each instance of Contraction may
be permuted above each instance of Cut, yielding a proof which consists of
atomic instances of Contraction followed by atomic instances of Cut. [ |

We find it somewhat remarkable that although elimination rules have
no place in the standard Gentzen calculi for classical logic, cut-free proofs
arise naturally as the intersection of two classes of proofs defined in terms
of elimination rules and atomic sequents.

Transforming a structurally atomic proof into one which is moreover
analytic—synthetic is not difficult, as the following proposition shows.

PROPOSITION 4.5. If a sequent has a structurally atomic proof from a given
set of sequents in a super-Belnap calculus, then it has a structurally atomic
analytic—synthetic proof.

PRrOOF. By Lemma 4.2, it suffices to produce a structurally atomic proof
in which no elimination rule immediately follows an introduction rule. We
shall first deal with finite proofs.

Let us call an instance of an elimination rule problematic if it immediately
follows an instance of an introduction rule. The depth of a given occurrence
of a rule will be the length of the longest branch of the subproof which ends
this rule. It suffices to show that a finite structurally atomic proof which
contains exactly one problematic rule of depth d and it is the final rule of
the proof may be reduced to a finite structurally atomic proof which either
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contains no problematic rules or it contains exactly one problematic rule and
it has height lower than d.

There are only two cases: either the formula being broken down by the
problematic rule is a side formula of the introduction rule above or it is
the principal formula of the introduction rule above. In the former case, it
is straightforward to permute the problematic rule above the introduction
rule, thereby either decreasing its depth or making it unproblematic. In
the latter case, the problematic rule may be eliminated directly. We again
only consider the case of conjunction, the case of disjunction being dual and
the cases of negation and the truth constants being simpler. The required
reduction are straightforward: the proof segment

o, I'> A
AP D> A
@, > A
is replaced simply by
e, ¢, I'> A
while the proof segments
'>Ap I'> Ay ' Ae ' A9y
> ANy I'> ApoAY
F'> A e Ay
are replaced simply by
I>Ap L'e Ay

It is moreover clear that these reductions preserve structural atomicity.

It remains to deal with proofs which are not finite. We do so by breaking
them into finite parts. By a non-structural segment of a proof, we shall mean
a maximal subproof which does not contain any structural rules (a subproof
being a suitably labelled subtree of a proof). That is, a non-structural
segment is a subproof which (i) does not contain any structural rules, (ii) its
root is either the conclusion of the whole proof or the premise of a structural
rule, and (iii) its terminal nodes are either premises of the whole proof
or conclusions of a structural rule. Each sequent in the proof belongs to
some non-structural segment (possibly with only one node) and each non-
structural segment is a finite proof, since it is finitely branching (by virtue of
not containg any structural rules) and it does not contain an infinite branch
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(by virtue of being a subtree of a well-founded tree). Each non-structural
segment may be assigned a finite structural height, defined as the number of
occurrences of structural rules which occur below its conclusion.

We now transform the original proof into an analytic—synthetic proof
in w stages while preserving structural atomicity. In stage 0, we transform
the non-structural segment of structural height 0 into an analytic—synthetic
proof and append the appropriate subproofs of the original proof above the
premises of this non-structural segment which are not premises of the original
proof. In stage n+1, we transform each non-structural segment of structural
height n 4+ 1 of the proof obtained after stage n into an analytic—synthetic
proof. Note that after stage n, each non-structural segment of structural
height m > n is in fact a non-structural segment of structural height m in
the original proof. In stages m > n, the non-structural segments of height
at most n are left unchanged. The limit case of this process is a suitably
labelled tree in which each non-structural segment of structural height n is
precisely as it was after stage n.

Suppose that this tree has an infinite branch. In particular, this branch
contains infinitely many instances of structural rules. Now observe that two
instances of structural rules are only connected by a branch in the limit stage
if they were already connected at some finite stage, and they are already
connected before stage n + 1 if they were already connected before stage n.
There is therefore a branch in the original proof containing infinitely many
instances of structural rules. Since this cannot be the case, the limit stage
in fact yields a well-founded tree and therefore a proof. [

In order to transform each proof in a given calculus into a structurally
atomic analytic—synthetic one, it therefore suffices to reduce every instance
of a structural rule of the calculus into a proof which only contains logical
rules and atomic instances of rules of the calculus. Rules which admit such
reductions will be said to enjoy the expansion property, which is essentially
nothing but the syntactic propagation property of Terui [28].

DEFINITION 4.6. A set of structural rules R satisfies the expansion property
if the conclusion of each instance of a rule p € R has a proof from the
corresponding instances of premises of p which only uses the logical rules
and atomic instances of rules in R.

A super-Belnap calculus satisfies the expansion property if the set of its
structural rules does. A rule p satisfies the expansion property if {p} does.

PROPOSITION 4.7. The structural rules of a super-Belnap calculus satisfy
the expansion property if and only if for each proof of a sequent I' > A from
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a set of sequents S in the calculus, there is a structurally atomic proof of

' A from S.

PROOF. In the left-to-right direction, it suffices to replace each non-atomic
instance of a structural rule with a suitable structurally atomic proof. Con-
versely, let p be a structural rule of the calculus. Proposition 4.5 implies
that there is a structurally atomic analytic—synthetic proof of the (atomic)
conclusion of p from the (atomic) premises of p. But such a proof cannot
contain any logical rules. [ |

The structural rules of GCCL satisfy the expansion property.

PRrROPOSITION 4.8. Identity, Weakening, and Contraction satisfy the expan-
sion property. So does the set of rules { Cut, Contraction}.

PROOF. In all cases this may be proved by induction over the complexity of
the main formula of the rule, i.e. the formula denoted ¢ in Figures 2 and 3.
The proof for Identity is well known. For Weakening, the proof segment

I'> A
oA, ' > A

is replaced by

I'> A
o, I'> A

o, > A
NP, T > A

while the proof segment

I'> A
' Ajp A

is replaced by
'>A | R AN

' Ap ' Ay
' Ao Ay

For Contraction, the proof segment

AP, oA, T > A
e ADT > A

is replaced by
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AP, oA, T > A
o, e AN, I > A
e, Y, 0,9, '> A
o, v, v, T > A

o, 0, T'> A
oA, T > A

while the proof segment

I'> A oA, oA\

> ApAY
is replaced by
FDA,QO/\¢,Q0/\1/J FDA)SO/\IZJWO/\QP
L' A, p,0 A > AY, oAy
R NN ITeady
FDA,Q@ FDA,@Z)
> AjpAY

Finally, in the case of Cut the proof segment

' Ao Ay o NP, T > A
LT > AA
is replaced by
' Ao A9 o AN, T > A
L>ApAY I'>Ap o, T > A’
' Ay O, 0, T > A A
OO, T > AA A
LT > AA

where the last step condenses several instances of Contraction.
The other connectives are again either dual or simpler to handle. [ |

COROLLARY 4.9. If a sequent has a proof from a given set of sequents in one
of the calculi GCB, GCLP, GCK, or GCCL, then it has a structurally
atomic analytic—synthetic proof.

Proor. This follows from Propositions 4.5 and 4.8. [ |
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The above procedure for reducing structural rules to atomic structural
rules and then transforming the resulting proof into a proof which is more-
over analytic—synthetic subsumes a cut elimination procedure for classical
propositional logic in view of Proposition 4.3.

Several remarks are now in order concerning this procedure. Firstly,
it illustrates again that the admissibility of Cut is related to the problem
of reducing arbitrary instances of structural rules to atomic instances, as
observed already by Terui [28]. Secondly, it shows that admitting elimination
rules in a Gentzen calculus may be useful even if we are only interested in
sequents provable from an empty set of premises. Although the final result
of this transformation applied to such a proof does not contain any instances
of elimination rules, the intermediate reductions do. And thirdly, it is worth
noting explicitly that the notion of a structurally atomic analytic—synthetic
proof does not single out any particular structural rule for special treatment,
unlike the notion of a cut-free proof.

Things need not always go as smoothly as in the case of Identity and
Cut, of course. For example, the Explosive Cut rule cannot be replaced by
its atomic version. It would be tempting to reduce the proof segment

D> oA VAP >0
0> 0

to the following would-be proof segment

D> oA VAP >0
D> oA 0> 0, >0
0> P> 0
D0

but of course the right-hand premise of the final inference was not obtained
by an Explosive Cut. The reader may verify that if ¢ and v are distinct
atoms, then the above instance of Explosive Cut is in fact not derivable in
any way in GCB from the atomic version of the rule.

To handle such situations, we use brute force: we simply add all the
missing specific structural rules to the calculus. This may seem like cheating
at first sight, but we shall see in the following section that even this brute
force solution may be exploited to obtain useful results if we have a useful
syntactic description of these rules, which we shall now provide.

We call a set of sequents elimination-derivable (introduction-derivable)
from a set of sequents S if each sequent in it is derivable from S using only
elimination rules (only introduction rules). Let At(I' > A) denote the set of
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all atomic sequents elimination-derivable from the sequent I' > A. We shall
use the notation o(I' > A) for o[I'] > o[A].

LEMMA 4.10.

(i) An atomic sequent is elimination-derivable from p A, T' > A if and only
if it is elimination-derivable from p,, T > A.

(ii) An atomic sequent is elimination-derivable from T' > A, o A1) if and only
if it is elimination-derivable from either I' > A, or I' > A, 4.

(iii) An atomic sequent is elimination-derivable from oV, T > A if and only
if it is elimination-derivable from either o, I' > A or ¢, ' > A.

(iv) An atomic sequent is elimination-derivable from I' > A oV if and only
if it is elimination-derivable from I' > A, @, ).

(v) An atomic sequent is elimination-derivable from —p,I' > A if and only
if it is elimination-derivable from T' > A .

(vi) An atomic sequent is elimination-derivable from T' > A, —¢ if and only
if it is elimination-derivable from o, T > A.

PrOOF. The right-to-left implications are trivial. To prove the converse
implications, it suffices to replace () > () by a given atomic sequent in the
proof of Proposition 3.7. [ |

LEMMA 4.11. The sequent I' > A is introduction-derivable from At(T > A).

PRrROOF. The claim can be proved by a straightforward induction on the
complexity of I' > A. [

LEMMA 4.12. At(o(I' > A)) is elimination-derivable from o[At(I > A)].

PROOF. We prove the claim by induction over the complexity of the sequent
I' > A, i.e. the number of connectives in it. If I' > A is atomic, the claim
holds trivially by the definition of At(o(I' > A)). Now consider sequents
of the form I' > A, o A . Lemma 4.11 yields that At(o(I' > A, A ) =
At(c(T > A,p)) UAt(o(T > A,v)). By the induction hypothesis both
sets of sequents At(o(I' > A,¢)) and At(c(I' > A,®)) are elimination-
derivable from o [At(T" > A, ¢)] and o[At(T" > A, )], respectively. Moreover,
At > A,p) UALT > A,¢) C At(I' > A, ¢ A v), therefore the set of
sequents At(o(I' > A, pAv)) is elimination-derivable from the set of sequents
o[At(T > A, pAv)]. The remaining cases are either analogical or simpler. m

LEMMA 4.13. o[At(T' > A)] is introduction-derivable from At(o[l' > A]).
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PROOF. We prove the claim by induction over the complexity of I' > A. If
I' > A is atomic, we are to show that o(I' > A) is introduction-derivable
from At(o(I' > A)). But this holds by Lemma 4.11. Now consider sequents
of the form I' > A, p A¢. By Lemma 4.10 we know that At(I' > A, o A) =
At(I' > A, p)UAL(T > A, ¢) and likewise for At(o(I' > A, pAv)). The claim
now follows immediately from the induction hypothesis. The remaining cases
are either analogical or simpler. [ |

Given a structural rule p, we now provide a syntactically defined set of
rules which contains p, satisfies the expansion property, and moreover each
of the rules is valid in each logic which validates p.

DEFINITION 4.14. Let {I'; > A; |i € I} F T' > A be a structural rule and o
be a substitution. Then a o-expansion of this structural rule is a structural
rule of the form (J,c; At(o(T; > A;)) F A > II for A > Il in At(o(I' > A)).

For example, the left-hand version of the Limited Cut rule in Figure 3 is
a schema standing for a set of structural rules which contains the rule

h>p  pri>s
r> s

whose o-expansion for o(p) = p A ¢ and o(r) = r and o(s) = s is the rule

0>p 0>q D,q, T > 8
r> s

interpreted as

0> 0> o, 0, > A
I'> A

The following observations are now immediate.

PROPOSITION 4.15. If a structural rule is valid in a super-Belnap Gentzen
relation, then so are all of its expansions.

PROOF. This claim follows immediately from the fact that At(T' > A) is
equivalent in GB to I' > A for each sequent I' > A by Lemma 4.11. [ |

We will in fact be interested in expansions of a particular kind. In the
following definition, positive and negative occurrences of atoms are defined
inductively as expected, e.g. the atom p occurs negatively and the atom ¢
occurs positively in the formula —p V q.
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DEFINITION 4.16. A formula is balanced if each atom occurs only positively
or only negatively in it. A substitution o is balanced if the formula o(p) is
balanced for each atom p. A substitution o is non-conflicting if o(p) and
o(q) do not share any variables for distinct atoms p and ¢. A substitution o
is atomic if o(p) is an atom for each atom p.

LEMMA 4.17. Fach substitution o is the composition 0,0 oppe of a balanced
non-conflicting substitution and a surjective atomic substitution.

PRrooF. Let 0, and 7, for each atom p be atomic substitutions such that
(1p 0 0p)(q) = ¢q for each atom ¢ and moreover the ranges of o, and o, are
disjoint for distinct atoms p and ¢. Let 7, and d, be atomic substitutions
such that (d, 0,)(¢) = ¢ for each ¢ and the ranges of +, and ~, are distinct
for distinct atoms p and ¢ and moreover the ranges of v, and o, are disjoint
for all atoms p and ¢q. Suppose also that there are x atoms which do not
lie in the range of any of the functions o, or +,, where & is the cardinality
of the set of all atoms. Such substitutions always exist, since each set of
cardinality k may be decomposed into x disjoint subsets of cardinality k.
Now given a substitution o we define a non-conflicting substitution oy
so that onc(p) = (0p 0 0)(p). When then modify oy to obtain a balanced
non-conflicting substitution oy, by changing each negative occurrence of a
variable ¢ in oy¢(p) to vp(q). The substitution oz, may now be defined so
that 0ga(q) = 7(¢) whenever ¢ is in the range of 0}, and 0,(q) = (7,0,)(q)
whenever ¢ is in the (disjoint) range of v,. Moreover, we may define 0g,(q)
for ¢ outside the ranges of these functions so that oy, is a surjective atomic
substitution. [ |

A balanced (non-conflicting) expansion of a structural rule is defined as
a o-expansion of the rule for some balanced (non-conflicting) substitution o.

PropoSITION 4.18. The set of all balanced non-conflicting expansions of a
structural rule satisfies the expansion property.

PrOOF. Let {I'; > A;|i € I} F T > A be a given structural rule. Let
us write S Felim S’ S Fintro S', and S F,; S’ to abbreviate the claims that
each sequent in S’ has a proof from S which uses, respectively, only the
elimination rules, only the introduction rules, and only atomic instances of
balanced non-conflicting expansions of the given rule.

We are to show that J;c; T[At(c(I > Ay))] Far T[At(o(T' > A))] for
each instance given by 7 of each o-expansion of the given rule, where o is a
balanced non-conflicting expansion.
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By Lemma 4.17 there is a balanced non-conflicting substitution 7y, and
a surjective atomic substitution 7y, such that 7 = 75, 0 Tupe. Observe that
Thne © 0 is also a balanced non-conflicting expansion.

We have (7sa) © (Tube) [At(0 (T > Ay))] Felim Tsa[At((Tabe © o) (T > A;))]
by Lemma 4.12. Also | J;c; At((Thnc00) (I > A)) Fag At((Tpncoo)(I' > A)).
Applying 74, to this consequence preserves the relation 5. Lemma 4.13 now
yields that 7ea[At((Thne © 0)(I' > A))] Fintro (Tsa © Tabe)[At(o (I’ > A))] and

Tsa © Tnbe = T |

A trivial way of ensuring that a super-Belnap calculus satisfies the expan-
sion property is therefore to add all balanced non-conflicting expansions of
all structural rules to the calculus by fiat. Obtaining a reasonable description
of the resulting set of rules is the only (optional) part of the transformation
procedure from a Hilbert axiomatization to a well-behaved Gentzen calculus
which is specific to each individual super-Belnap logic.

Finally, recall that an important feature of cut-free proofs in the standard
Gentzen calculus for classical logic is the subformula property. This property
is useful when trying to reduce the infinite space of all possible proofs of a
given sequent to a finite one (in a finitary calculus).

DEFINITION 4.19. A proof has the subformula property if each formula of
the proof is a subformula of some formula either in the premises or in the
conclusion. A calculus has the subformula property if each sequent provable
from a given set of sequents has a proof with the subformula property.

It is not the case that each structurally atomic analytic—synthetic proof
has the subformula property. For example, we may apply Weakening by a
variable p which occurs neither in the premises nor in the conclusion to each
side of an atomic sequent I' > A, and then Cut on p. However, it is easy
to transform such a proof into one which has the subformula property. In
the following proposition, by a non-trivial super-Belnap calculus we mean a
super-Belnap calculus for a non-trivial logic.

PROPOSITION 4.20. If a sequent has a structurally atomic analytic—synthetic
proof from S in a non-trivial super-Belnap calculus, then it has a structurally
atomic analytic—synthetic proof from S with the subformula property.

PROOF. Suppose first that the premises do not contain any atom (as a
subformula). Each such premise is easily seen to be equivalent in GB either
to the empty sequent or to the empty set of sequents. In the former case,
the empty sequent (from which every other sequent is provable using only
the atomic form of Weakening followed by introduction rules) is provable
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from the constant sequent using only elimination rules. If each premise falls
under the latter case, then the conclusion is provable from an empty set of
premises. Moreover, each non-trivial super-Belnap logic has the same set of
constant theorems as B. Therefore if the conclusion does not contain any
atom, then it is in fact derivable from an empty set of premises in GCB. By
Propositions 4.5, 4.7, and 4.8 it has a structurally atomic analytic—synthetic
proof from () in GCB. But such a proof only uses introduction rules and the
common structural rules, therefore it has the subformula property.
Otherwise, let ¢ be an atom which occurs either in the premises of in the
conclusion of the proof. Observe that each atom p which occurs neither in
the premises nor in the conclusion of a structurally atomic analytic—synthetic
proof may only occur in atomic sequents, and the only rules which may
apply to sequents containing p are structural ones. Replacing all occurrences
of p by ¢ now yields a structurally atomic analytic—synthetic proof which
moreover has the subformula property. [ |

Putting the results of this section together yields the following theorem.

THEOREM 4.21. If a sequent has a proof from a set of sequents S in a super-
Belnap calculus which satisfies the expansion property, then it has a struc-
turally atomic analytic—synthetic proof from S with the subformula property.

Proor. This folows from Propositions 4.5, 4.7, and 4.20. [ ]

5. Interpolation in super-Belnap logics

We now apply the results proved in the previous section to obtain some
interpolation theorems for super-Belnap logics. We say that a logic has the
(simple) Craig interpolation property, or briefly has interpolation, if ¢ b 1
implies the existence of a formula y called the interpolant of ¢ and v such
that ¢ k2 x and x F, ¢ and each atom which occurs in x occurs in both ¢
and . We prove by a simple argument that the logics B, IC, £T L and some
others enjoy interpolation, in fact in a somewhat stronger form.

Let £, £1, and Lo be logics such that £1,L£s C L. We say that £ enjoys
(L1, Lo)-interpolation if ¢ b, 1) implies the existence of an interpolant y
such that ¢ Fz, x and x 2, ¥ and each atom which occurs in x occurs in
both ¢ and . In that case £L = L1 V Ly. Clearly (£, £)-interpolation for £
amounts precisely to interpolation for L.

PROPOSITION 5.1. Let L be an extension of a base logic Ly such that L, p
for some constant formula L. If L has interpolation or (L, Ly)-interpolation,
then so do all of its explosive extensions.
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PROOF. Let Leyp be an explosive extension of L. If ¢ k¢ . 1, then ei-
ther ¢ 2 9 or ¢ Fr.,, 0. In the former case the existence of the inter-
polant is guaranteed by the assumption that £ has interpolation or (£, Ly)-
interpolation, in the latter case we may take L as the interpolant. [ |

Let us now review what is known about interpolation in super-Belnap
logics. Interpolation for the Dunn—Belnap logic B was proved early on by
Anderson and Belnap [2, p. 161]. Interpolation for the strong three-valued
Kleene logic K was proved using different techniques by Bendova [6] and
Milne [17].2 In the same paper, Milne also observed that interpolation for
the Logic of Paradox LP is equivalent to interpolation for K in view of
Lemma 5.2 (ii), which he calls the Duality Principle. Moreover, he proved
that classical logic CL enjoys (KC, LP)-interpolation. Finally, Bendova ob-
served in her paper that the logic K= does not enjoy interpolation: the rule
(pA—p)VrF (gV —q)Vris valid in K= but lacks an interpolant. The same
example shows that XS vV £CQ does not enjoy interpolation, either. As far
as we are aware, this exhausts the present state of knowledge about inter-
polation in super-Belnap logics. To the best of our knowledge, interpolation
has so far not been studied in other super-Belnap logics, which have only
been introduced very recently.

LEMMA 5.2. The following equivalences hold:
(i) ¢ b if and only if — b —p.
(ii) @ brp Y if and only if — b —p.

PROOF. The first equivalence is well known and the second was observed by
Milne [17]. ]

LEMMA 5.3 ([20]). If L is a proper extension of B, then p,—ptr qV —q.

PROPOSITION 5.4. Let L be a proper extension of B. If L enjoys inter-
polation, then either L = LP or ECQ C L.

PrROOF. By Lemma 5.3 we have p, —p 2 ¢V —q. Only a constant formula
may be an interpolant of this rule, and all constant formulas are equivalent in

2Both of the papers [6] and [17] in fact consider the fragment of K without the truth
constants T and L, therefore they have to formulate the interpolation property with more
care. However, ordinary interpolation for K is a straightforward consequence of their
interpolation results. We consider this to be yet another reason to include the truth
constants in the signature of super-Belnap logics. Likewise, Anderson and Belnap in fact
consider the corresponding fragment of 3, although in their case no adjustments are needed
in the definition of the interpolation property.
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B to either L or T. Therefore either p, —pt, L or T -z ¢V —q. Moreover,
it was shown by Pynko [22] that each proper extension of LP lies above
ECQ. [

Taking into account that there is a continuum of explosive extensions
of B as well as a continuum of logics in the interval [B, LP] as proved in [20],
we immediately obtain the following corollary to Propositions 5.1 and 5.4.

COROLLARY 5.5. There is a continuum of super-Benap logics with inter-
polation and a continuum of super-Belnap logics without interpolation.

The interpolation properties defined above extend naturally to Gentzen
relations. To obtain the appropriate definitions for Gentzen relations, it
suffices to replace the formulas ¢, v, and x by sequents.

PROPOSITION 5.6. Let L; be a super-Belnap logic and GL; be the Gentzen
relation simply equivalent to L; via T for i € {0,1,2}. Then Ly enjoys
(L1, Lo)-interpolation if and only if GLy enjoys (GL1, GLy)-interpolation.

ProOOF. This holds by virtue of the fact that a variable occurs in 7(I" > A)
or p(p) respectively if and only if it occurs in T' > A or ¢. [ ]

Moreover, in the Gentzen case it suffices by Proposition 3.2 to find a set
of sequents which jointly plays the role of the interpolant.

We now provide a broad sufficient condition for a super-Belnap logic £
to enjoy (£, B)-interpolation (and therefore ordinary interpolation).

DEFINITION 5.7. A cut formula of a structural rule is a formula which only
occurs in the premises of the rule. A side formula of a structural rule is a
formula which occurs only on the left-hand sides or only on the right-hand
sides of sequents in the rule.

A cut formula (a side formula) of an instance of a structural rule is the
appropriate instance of the atomic cut formula (the atomic side formula).
It may happen, although this case is not very interesting, that a formula is
both a cut formula and a side formula of a structural rule.

DEFINITION 5.8. A generalized cut rule is a structural rule such that each
formula which occurs in the rule is either a cut formula or a side formula.

For example, Limited Cut and Explosive Cut are generalized cut rules,
whereas Identity and the rule for = combining Identity and Cut are not.

DEFINITION 5.9. A rule does not introduce new wvariables if all variables
which occur in the conclusion also occur some of the premises.
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In particular, a generalized cut rule does not introduce new variables,
and neither do any of the elimination rules. As far as interpolation goes,
Weakening is the only problematic rule which may introduce new variables.

PROPOSITION 5.10. If a structural rule is a generalized cut rule, then so are
all of its balanced non-conflicting expansions. If a structural rule does not
introduce new variables, then neither do any of its expansions.

ProOOF. Let {I'; > A;|¢ € I} T > A be a generalized cut rule (let us
call it p) and let o be a balanced non-conflicting substitution. It is easy
to prove that an atom which only occurs positively in a sequent A > II
(i.e. only occurs positively in formulas in IT and only occurs negatively in
formulas in A) will only occur on the right-hand side of each sequent in
At(A > II), and likewise an atom which only occurs negatively in A > IT will
only occur on the left-hand side of each sequent in At(A > II). Therefore
if p is a side formula in p, then each atom of o(p) will be a side formula of
the o-expansion of p, using the fact that o is balanced and non-conflicting.
It is also easy to observe that At(I' > A) and I' > A contain exactly the
same atoms. Therefore if p is a cut formula of p, then each atom of o(p) will
also be a cut formula of the o-expansion of p, using again the fact that o is
non-conflicting. The same observation regarding the atoms which occur in
At(T" > A) also proves the second claim. [ ]

THEOREM 5.11. Each extension GL of GB by a set of generalized cut rules
enjoys (GL, GB)-interpolation.

PRrOOF. If a generalized cut rule is valid in GB, then so are all of its balanced
non-conflicting expansions by Proposition 4.15. By Proposition 5.10 these
are all generalized cut rules. Now consider the extension of GCB by the
set of all balanced non-conflicting expansions of all rules in the given set
of generalized cut rules. This calculus satisfies the expansion property by
Proposition 4.18. By Theorem 4.21 we may therefore restrict to structurally
atomic analytic—synthetic proofs in this calculus. Moreover, Weakening is
the only structural rule of this calculus which introduces new variables.

Consider a structurally atomic analytic—synthetic proof of I' > A from
the premises .S in this calculus. Let us call a node in this proof critical if
all inferences above the node are elimination rules or structural rules and
all inferences below are introduction rules. Each branch of the proof either
intersects a critical node or terminates in a logical axiom.

If each critical node only contains variables which occur in some premise
of the proof, then the set of critical nodes forms an interpolant between S
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and I" > A, since each variable which occurs in a critical sequent also occurs
in the conclusion. To prove the theorem, it therefore suffices to show that
if p does not occur in S and an atomic sequent A > II,p or p, A > II has
a structurally atomic analytic—synthetic proof in the calculus, then so does
A > TI. This is because each critical node A > II may then be transformed
into a sequent A’ 1> II' which only contains variables which occur in S by
finitely many applications of this transformation, and moreover the sequent
A > II is derivable from A’ > II' using finitely many atomic instances of
Weakening. This transformation may be performed on all critical nodes
simultaneously, since no branch of the proof contains two such nodes.
Thus, consider an atom p which does not occur in S and a sequent
A > II,p or p, A > II which has a structurally atomic analytic—synthetic
proof from S in the calculus. The tree of all ancestors of this instance of
p is defined in the obvious way. The leaves of this tree must be the results
of Weakening, since no other rule in the proof above A > II introduces new
variables. Crucially, since all the specific structural rules are generalized cut
rules, the atom in question must be a side formula of each specific structural
rule in this tree. It is now immediate that we may delete all the ancestors
of this instance of p from the subproof, and obtain a (structurally atomic
analytic-synthetic) proof of A > II. [ |

The following results are now immediate corollaries of the above theorem.
The first claim of the following proposition was proved in [2], as recalled
above, while the others appear to be new.

PROPOSITION 5.12. The logic B enjoys interpolation. The logic K enjoys
(K, B)-interpolation. The logic ETL enjoys (ET L, B)-interpolation.

PROPOSITION 5.13. The logic LP enjoys (B, LP)-interpolation.
PRrOOF. The claim now follows immediately from Lemma 5.2. [ |

PROPOSITION 5.14. The logic LPV ECQ has (LPV ECQ, LP)-interpolation.

PrROOF. The logic LP enjoys (LP, LP)-interpolation and LP V ECQ is an
explosive extension of LP. The claim now follows by Proposition 5.1. ]

Interpolation for some other super-Belnap logics may also be established
using Theorem 5.11, including the extensions of B or £T L by the rules

(P1 A=p1) V...V (pn A —pn) F 0,
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and the extensions of B by the rules

(i A=p1) V...V (P A=pn)Vq,—qVrEr

It was proved in [26] and [20] that these two rule schemas define strictly
increasing sequences of extensions of B and £T L.

Moreover, a slight modification of Proposition 5.12 yields a syntactic
proof of Milne’s non-classical refinement of the Craig interpolation theorem
for classical propositional logic. The reader is encouraged to compare this
proof with the standard syntactic proof of interpolation for classical logic
based on the cut elimination theorem, found e.g. in [29, Section 4.4.2]

PROPOSITION 5.15 ([17]). The logic CL enjoys (K, LP)-interpolation.

PROOF. Recall that the calculus GCCL extends GCB by Identity and Cut.
We wish to separate each structurally atomic analytic—synthetic proof in this
calculus into a part which contains no instances of Cut and a part which
contains no instances of Identity. To this end, suppose that a branch of the
proof contains an instance of an Identity rule followed by a Cut, and suppose
that no other instances of Cut occur between these two rules. Then only
the common structural rules may occur between these two rules, therefore
one of the premises of the Cut has the form p,I"' > A, p by Proposition 4.3.
If the cut formula of such an instance of Cut is p, this instance of Cut may
be replaced by Weakening. If it is some other formula, then the conclusion
of the cut has the form p, I’ > A/, p and thus may be derived using Identity
and Weakening only. Repeated applications of this transformation yield
a structurally atomic analytic—synthetic proof in which there is no branch
containing both Identity and Cut.

Define the separating set of this proof as the set of all sequents in the
proof such that only elimination rules and structural rules other than Iden-
tity occur above them and only introduction rules occur below. Each branch
of the proof either intersects the separating set or ends with an instance of
Identity (or one of the axioms @ > T or L > (). Moreover, as in the proof
of Theorem 5.11, each variable in the separating set must occur both in the
premises and in the conclusion of the proof. The separating set therefore
again jointly plays the role of the (K, LP)-interpolant. [

It is easy to see that for CL, LP, K, and ET L the interpolation theorems
above are optimal in a natural sense. Let £; and L5 be super-Belnap logics.

PROPOSITION 5.16. If CL enjoys (L1, La)-interpolation, then L1 2O K and
Lo D LP. If LP enjoys (L1, Lo)-interpolation, then Lo = LP. If K (ETL)
enjoys (L1, La)-interpolation, then L1 =K (L1 =ETL).
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ProOOF. The logics £1 and Lo are non-trivial in each case. Note that the
rule (p A —p) V ¢ I q is equivalent over B to the rule pV q,—qVrEpVvr.

Since (pA—p)Vq Fer q, we have (pA—p)Vq g, x and x bz, ¢ for some
x which does not contain any variable other than ¢q. Then clearly x 45 q,
hence (p A —p) V q bz, ¢ and £1 D K. Likewise, since () Fer p vV —p, we
have () k¢, x and x bz, pV —p for some x which does not contain any
variables. Then clearly x -5 T, hence T ., pV —p and L2 O LP. The
same argument shows that £o O LP in the case of LP.

Finally, since (p A —p) V q Fx g, we have (p A —p) V q Fi ¢, we have
(p AN =p)Vqtr x and x kg, g for some x which does not contain any
variable other than g. Then clearly x 4Fg ¢, hence (p A —p) V q Fr, ¢ and
L1 O K. The argument for £T L is entirely analogical. [

In conclusion, we hope that the above constitutes sufficient evidence that
a systematic investigation of the family of super-Belnap logics, in addition
to having some intrinsic interest of its own, may shed some new light even
on well studied systems such as classical propositional logic.
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