
Noname manuscript No.
(will be inserted by the editor)

Expanding FLew with a Boolean connective

Rodolfo C. Ertola Biraben · Francesc Esteva · Llúıs Godo

Abstract We expand FLew with a unary connective

whose algebraic counterpart is the operation that gives

the greatest complemented element below a given argu-

ment. We prove that the expanded logic is conservative

and has the Finite Model Property. We also prove that

the corresponding expansion of the class of residuated

lattices is an equational class.

1 Introduction

In this paper we study the expansion of the substruc-

tural logic FLew, i.e. Full Lambek calculus with ex-

change and weakening, with a unary connectiveB whose

intended algebraic semantics is as follows: given a bounded

integral commutative residuated lattice (or residuated

lattice for short) A, Ba is the maximum, if it exists, of

the Boolean elements of the universe A below a, which

we call the greatest Boolean below a, that is,

Ba = max{b ∈ A : b ≤ a and b is Boolean}.

In fact, this operator is similar to the so-called Baaz-

Monteiro ∆ operator, very often used in the context of

mathematical fuzzy logic systems that are semilinear

expansions of MTL. Baaz [2] studied it in connection

with Gödel logic while Hájek [10] investigated ∆ in BL

logics in general, see also [8, Chapter 2] for a more gen-

eral perspective. Indeed, in such a context of semilinear
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logics, i.e. logics that are complete with respect to a

class of linearly ordered algebras, the semantics of ∆

is exactly the above one for B: in a linearly-ordered

MTL-algebra, ∆a = 1 if a = 1, and ∆a = 0 otherwise,

since the only Boolean elements in a chain are 1 and 0;

moreover, from a logical point of view, ∆ϕ represents

the weakest Boolean proposition implying ϕ.

The operator B can be also related to the join-

complement operation D, also known as dual intuition-

istic negation, already considered by Skolem [19] in

the context of lattices with relative meet-complement,

and later independently studied by e.g. Moisil [11] and

Rauszer [15] as well, the latter in the context of ex-

pansions of Heyting algebras. It turns out that the op-

eration ¬D and its iterations where ¬ is the residual

negation, has also very similar properties to B, and in

some classes of residuated lattices they even coincide.

In this paper we study the operator B in the con-

text of FLew and axiomatize it. We show that the usual

axiomatics of the ∆ operator is actually too strong to

capture the above intended semantics. In fact, the ax-

iom

∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)

is not sound for B over FLew any longer. Thus, B is

a weaker operator than ∆. However, as we will see, B

keeps most of the properties of ∆. In particular, the

expansion of FLew with B is conservative, its corre-

sponding class of algebras is an equational class, and

has the same kind of deduction theorem as ∆. Also, B

may also be interesting as ¬B has a paraconsistent be-

haviour. On the negative side, the expansion of a semi-

linear extension of FLew with B needs not to remain

semilinear.

The paper is structured as follows. In Section 2 we

overview well-known facts about residuated lattices and

its Boolean elements, as well as basic facts about the
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logic FLew. Sections 3 and 4 contain an algebraic study

of the operator B. In particular, in Section 3 we study

basic properties and show, among other things, that

the class RLB of residuated lattices expanded with B

is an equational class and state the modalities, while in

Section 4 we compare B with the mentioned ∆ and with

an operation using the join-complement D. Finally, in

Section 5 we focus on logical aspects, introducing the

logic FLBwe, i.e. the expansion of FLwe with the operator

B, and show that is a conservative expansion and has

the Finite Model Property, and hence it is decidable.

We conclude with some remarks and open problems.

We give appropriate references. However, the paper

is self-contained.

2 Preliminaries

2.1 Residuated lattices and Boolean elements

In this section we recall some properties of residuated

lattices as well as of their Boolean elements that we will

use in the following sections.

Following [9], a bounded, integral, commutative resid-

uated lattice, or residuated lattice for short, is an alge-

bra A= (A;∧,∨, ·,→, 0, 1) of type (2, 2, 2, 2, 0, 0) such

that:

- (A;∧,∨, 0, 1) is a bounded lattice with 0 ≤ a ≤ 1,

for all a ∈ A,

- (A; ·, 1) is a commutative monoid (i.e. · is commu-

tative, associative, with unit 1), and

- → is the residuum of ·, i.e.,

a · b ≤ c iff a ≤ b→ c, for all a, b, c ∈ A,

where ≤ is the order given by the lattice structure. A

negation operator is defined as ¬x = x→ 0.

The class of residuated lattices will be denoted by

RL. It is well known that RL is an equational class

and that it constitutes the algebraic semantics of the

substructural logic FLew (see Section 2.2).

Example 1 In what follows we will have occasion to re-

fer several times to the residuated lattice structure de-

fined on the five-element lattice of Figure 1 by taking

· = ∧ and → its residuum. With these operations, it

actually becomes a five element Gödel algebra, that is,

a residuated lattice with · being idempotent and satis-

fying the pre-linearity law (a→ b) ∨ (b→ a) = 1.

We omit the proof of the following well-known facts,

see e.g. [9]

Lemma 1 Let A ∈ RL. For any a, b, c, d ∈ A, the fol-

lowing properties hold:

0

a

b

1

c

Fig. 1 A five element Gödel algebra

(i) if a ∨ b = 1, a ≤ c, and b ≤ c, then c = 1,

(ii) if a ∨ b = 1, a · c ≤ d, and b · c ≤ d, then c ≤ d,

(iii) if a ≤ b, then ¬b ≤ ¬a,

(iv) a ∧ ¬b ≤ ¬(a ∧ b),
(v) a · ¬b ≤ ¬(a→ b),

(vi) if a ∨ b = 1, then ¬a ≤ b,
(vii) a ≤ ¬¬a.

Special elements in a residuated lattice are those

that behave as elements in a Boolean algebra.

Definition 1 An element a of a residuated lattice A is

called Boolean or complemented iff there is an element

b ∈ A such that a ∧ b = 0 and a ∨ b = 1.

In the rest of this section we state several properties

of Boolean elements that will be useful for the remain-

ing parts of the paper. Even if most of them are folklore,

we include proofs for all of them for the sake of being

self-contained.

An equivalent and simpler condition for an element

to be Boolean is the following.

Lemma 2 An element a in the universe of a residuated

lattice is Boolean iff a ∨ ¬a = 1.

Proof ⇒) Suppose there is an element b such that a∧
b = 0 and a ∨ b = 1. First, using that a ∧ b = 0 and

a · b ≤ a ∧ b, we have that a · b = 0. So, b ≤ a → 0,

i.e. b ≤ ¬a. Secondly, we have that ¬a = ¬a · 1 =

¬a · (a∨ b) = (¬a · a)∨ (¬a · b) = ¬a · b. So, ¬a = ¬a · b.
As ¬a · b ≤ b, it follows that ¬a ≤ b. So, b = ¬a. As we

have that a ∨ b = 1, it follows that a ∨ ¬a = 1.

⇐) By hypothesis, we have (i) a∨¬a = 1. It is enough

to see that a ∧ ¬a = 0. As a · ¬a = 0, it is enough to

prove that a ∧ ¬a ≤ a · ¬a. We have that a ∧ ¬a ≤ ¬a.

So, by monotonicity of ·, we have (ii) a·(a∧¬a) ≤ a·¬a.

We also have that a∧¬a ≤ a. So, again by monotonicity

of ·, we have ¬a ·(a∧¬a) ≤ ¬a ·a = a ·¬a. So, it follows

(iii) ¬a · (a∧¬a) ≤ a ·¬a. Now, using Lemma 1(ii) with

(i), (ii), and (iii), it follows that a ∧ ¬a ≤ a · ¬a, as

desired. �

Proposition 1 Let A ∈ RL and let a be a Boolean

element of A. Then, for all b, c, d ∈ A the following

properties hold:
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(i) a ∧ b = a · b,
(ii) a · a = a,

(iii) a ∧ ¬a = 0,

(iv) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(v) ¬¬a = a,

(vi) a→ b = ¬a ∨ b,
(vii) 0 = ¬(a ∨ ¬a),

(viii) if a ≤ b ∨ c, a ∧ b ≤ d, a ∧ c ≤ d, then a ≤ d,

(ix) if b ∨ c = 1, a ∧ b ≤ d, a ∧ c ≤ d, then a ≤ d,

(x) if a ∧ b ≤ c, then a ∧ ¬c ≤ ¬b,
(xi) if a ∨ ¬b = 1, then b ≤ a.

Proof (i) Suppose that (i) a ∨ ¬a = 1. It is enough to

see that a ∧ b ≤ a · b. We have that a ∧ b ≤ b. So, by

monotonicity of ·, we have (ii) a · (a ∧ b) ≤ a · b. We

also have that a ∧ b ≤ a. So, again by monotonicity of

·, we have ¬a · (a ∧ b) ≤ ¬a · a = 0. So, it follows (iii)

¬a · (a∧b) ≤ a ·b. Now, using Lemma 1(ii) with (i), (ii),

and (iii), it follows that a ∧ b ≤ a · b.
(ii) Using Part (i), a∧ a = a · a. However, a∧ a = a.

So, a · a = a.

(iii) Using Part(i), it follows that a∧¬a = a·¬a = 0.

So, a ∧ ¬a = 0.

(iv) In a residuated lattice it holds that a · (b∨ c) =

(a · b) ∨ (a · c). Let a be Boolean. Then, using Part (i)

three times, it follows that a∧ (b∨ c) = (a∧ b)∨ (a∧ c).
(v) Suppose that (i) a ∨ ¬a = 1. It is enough to see

that ¬¬a ≤ a. We have that (ii) a · ¬¬a ≤ a. Also, (iii)

¬a · ¬¬a ≤ a, as ¬a · ¬¬a = 0. So, using Lemma 1(ii)

with (i), (ii), and (iii), ¬¬a ≤ a.

(vi) It is enough to prove (i) (¬a ∨ b) · a ≤ b and

(ii) if x · a ≤ b, then x ≤ ¬a ∨ b. To see (i), note that

¬a · a ≤ b and b · a ≤ b, whence (¬a · a)∨ (b · a) ≤ b. So,

using distributivity of · relative to ∨, we get (i). To see

(ii), suppose x · a ≤ b. Then, x ≤ a→ b. In order to get

x ≤ ¬a ∨ b, it is enough to derive (iii) a → b ≤ ¬a ∨ b
and use transitivity of ≤. To get (iii), let us use Lemma

1(ii). As a is Boolean, we have a∨¬a = 1. Now, a ·(a→
b) ≤ b ≤ ¬a ∨ b. Also, ¬a · (a → b) ≤ ¬a ≤ ¬a ∨ b. So,

using Lemma 1(ii), we get (iii).

(vii) As we have ¬c ≤ a ∨ ¬a, for any c ∈ A, then,

using Lemma 1(iii) and Part (iv), we get ¬(a ∨ ¬a) ≤
¬¬c ≤ c.

(viii) As a ≤ b ∨ c, we have a ≤ a ∧ (b ∨ c). Now,

using Part (iv), it follows that a ≤ (a∧b)∨(a∧c). Now,

as a∧ b ≤ d and a∧ c ≤ d, we have, by a basic property

of ∨, that (a∧ b)∨ (a∧ c) ≤ d. So, by transitivity of ≤,

a ≤ d.

(ix) As b ∨ c = 1, reason as in Part (viii).

(x) Suppose a∧b ≤ c. Then a ·b ≤ c. By monotonic-

ity of ·, it follows that (a · b) · ¬c ≤ c · ¬c = 0. Then, as

· is both associative and commutative, (a · ¬c) · b ≤ 0.

So, a · ¬c ≤ ¬b. Finally, using that a is Boolean, we get

a ∧ ¬c ≤ ¬b.
(xi) Let a ∨ ¬b = 1. Then, b · (a ∨ ¬b) = b · 1 =

b. By distributivity of · relative to ∨, it follows that

(b ·a)∨ (b · ¬b) = b. As b · ¬b = 0, we have that b ·a = b.

So, as a is Boolean, b ∧ a = b, i.e. b ≤ a. �

Lemma 3 Let A ∈ RL and let a and b be Boolean

elements of A. Then,

(i) a ∧ b = a · b = ¬(¬a ∨ ¬b),
(ii) (a · b) ∨ (¬a · b) ∨ (a · ¬b) ∨ (¬a · ¬b) = 1.

Proof (i) Firstly, we have that ¬a ≤ ¬a∨¬b. So, using

Lemma 1(iii) , it follows that ¬(¬a ∨ ¬b) ≤ ¬¬a. Now,

using Proposition 1(v) and transitivity of ≤, we have

that ¬(¬a∨¬b) ≤ a. Analogously, we get ¬(¬a∨¬b) ≤
b. Secondly, suppose c ≤ a and c ≤ b, for c ∈ A. Then,

using Lemma 1(iii) again, it follows that ¬a ≤ ¬c and

¬b ≤ ¬c. So, ¬a ∨ ¬b ≤ ¬c. So, using Lemma 1(iii)

once again, ¬¬c ≤ ¬(¬a∨¬b). Now, using Proposition

1(v) and transitivity of ≤, we get c ≤ ¬(¬a ∨ ¬b). (ii)

It follows immediately using Part (i) and Proposition

1(i).

(ii) Suppose that a ∨ ¬a = b ∨ ¬b = 1. Then, 1 =

(a∨¬a) · (b∨¬b) = (a · b)∨ (¬a · b)∨ (a · ¬b)∨ (¬a · ¬b).
�

Proposition 2 Let A ∈ RL and let a and b be Boolean

elements of A. Then, (i) ¬a, (ii) a∨b, (iii) a∧b = a ·b,
(iv) a→ b, (v) 0, and (vi) 1 are Boolean.

Proof (i) Suppose a ∨ ¬a = 1. Then, as a ≤ ¬¬a, we

get ¬¬a ∨ ¬a = 1.

(ii) Use Lemma 3 (ii) and see that

a · b ≤ a ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b),
¬a · b ≤ b ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b),
a · ¬b ≤ a ≤ a ∨ b ≤ (a ∨ b) ∨ ¬(a ∨ b), and

¬a · ¬b ≤ ¬a ∧ ¬b ≤ ¬(a ∨ b) ≤ (a ∨ b) ∨ ¬(a ∨ b).
So, a ∨ b is Boolean.

(iii) Use Parts (i) and (ii), and Lemma 3(i).

(iv) Use Parts (i) and (ii), and Proposition 1(vi).

(v) Use Parts (i) and (ii), and Proposition 1(vii).

(vi) Use the definition of Boolean element and the fact

that ¬1 = 0. �

From Proposition 2 it easily follows that, in any

residuated lattice A, the set of its Boolean elements

B(A) = {a ∈ A : a is Boolean} is the domain of a sub-

algebra of A, which is in fact a Boolean algebra. Indeed,

B(A) = (B(A);∧,∨, ·,→, 0, 1) is the greatest Boolean

algebra contained in A. B(A) is called the Boolean

skeleton or the center of A.



4 Rodolfo C. Ertola Biraben et al.

2.2 On the logic FLew

The logics we are interested in are extensions or expan-

sions of the logic FLew described below.

Definition 2 The language of FLew has four binary

connectives, ∧, ∨, ·, and →, and two constants, 0 and

1. The axioms of FLew are:

(1) (ϕ→ ψ)→ ((ψ → γ)→ (ϕ→ γ)),

(2) (γ → ϕ)→ ((γ → ψ)→ (γ → (ϕ ∧ ψ))),

(3) (ϕ ∧ ψ)→ ϕ and (ϕ ∧ ψ)→ ψ,

(4) ϕ→ (ϕ ∨ ψ) and ψ → (ϕ ∨ ψ),

(5) (ϕ→ γ)→ ((ψ → γ)→ ((ϕ ∨ ψ)→ γ)),

(6) (ϕ · ψ)→ (ψ · ϕ),

(7) (ϕ · ψ)→ ϕ,

(8) (ϕ→ (ψ → γ))→ ((ϕ · ψ)→ γ),

(9) ((ϕ · ψ)→ γ)→ (ϕ→ (ψ → γ)),

(10) 0→ ϕ and ϕ→ 1.

The only rule of FLew is modus ponens:

ϕ ϕ→ ψ

ψ
.

We define ¬ϕ = φ → 0 and ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ →
ϕ).

The following formulas and rules are derivable in

FLew:

(11)
ϕ→ ψ ψ → γ

ϕ→ γ
,

(12) ϕ→ (ψ → ϕ),

(13) ϕ→ ϕ,

(14) ϕ→ (ϕ · 1) and (ϕ · 1)→ ϕ,

(15) (ϕ · (ψ · γ))→ ((ϕ · ψ) · γ) and

((ϕ · ψ) · γ)→ (ϕ · (ψ · γ)),

(16) (ϕ · (ϕ→ ψ))→ ψ,

(17) (1→ ϕ)→ ϕ, ϕ→ (1→ ϕ),

(18)
ϕ ψ

ϕ ∧ ψ
,

(19) (ϕ ∨ ¬ϕ)→ ¬(ϕ ∧ ¬ϕ).

The derivations of (11)-(19) are rather easy, and hence

they are left to the reader.

We will occasionally consider the following exten-

sions of FLew.

Definition 3 Consider the following axiomatic exten-

sions of FLew:

– Intutitionistic logic IL is FLew plus

(Contr) ϕ→ (ϕ · ϕ).

– The logic MTL is FLew plus the axiom

(Prel) (ϕ→ ψ) ∨ (ψ → ϕ).

– SMTL logic is MTL plus the axiom

(PC) ¬(ϕ ∧ ¬ϕ)

– WNM logic is MTL plus the axiom

(WNM) ¬(ϕ&ψ) ∨ (ϕ ∧ ψ → ϕ&ψ)

– NM logic is WNM plus the axiom

(Inv) ¬¬ϕ→ ϕ

– BL logic is MTL plus the axiom

(Div) (ϕ ∧ ψ)→ (ϕ&(ϕ→ ψ))

– Product logic is BL plus (PC) and the axiom

(C) ¬ϕ ∨ ((ϕ→ ϕ&ψ)→ ψ)

– Gödel logic G is BL plus (Contr)

–  Lukasiewicz logic  L is BL plus (Inv).

In MTL and its extensions the connective ∨ is defin-

able by φ∨ ψ := ((φ→ ψ)→ ψ)∧ ((ψ → φ)→ φ), and

in BL and its extensions the connective ∧ is definable

as well as ϕ ∧ ψ := ϕ&(ϕ → ψ). Moreover, in IL one

can prove the formula (φ ·ψ)↔ (φ∧ψ), i.e. connectives

∧ and · are equivalent in IL.

All these logics are algebraizable, and hence they

are strongly complete with respect to their correspond-

ing classes of algebras. Namely, FLew is complete with

respect to the variety RL of residuated lattices, MTL is

complete with respect to the variety of pre-linear resid-

uated lattices (MTL-algebras) and IL is complete with

respect to the variety of contractive residuated lattices

(Heyting algebras). Moreover, all axiomatic extensions

of MTL are semilinear logics, that is, they are strongly

complete with respect to the corresponding class of lin-

early ordered algebras. For instance, Gödel logic is com-

plete with respect to the class of linearly ordered Heyt-

ing algebras, or Gödel chains.

3 Residuated lattices enriched with B

As explained in the previous section, the set of Boolean

elements of a residuated lattice A form a Boolean al-

gebra denoted the center or Boolean skeleton of A.

Cignoli and Monteiro considered Boolean elements in

 Lukasiewicz algebras in [6] and [7]. However, as far as

we know, the operator defining the greatest Boolean el-

ement below, the operator B studied in this paper, has

not yet been studied in the general context of residuated

lattices. One relevant exception is the paper [17], where

Reyes and Zolfaghari define modal operators � and ♦
in the context of Bi-Heyting algebras that are shown to

correspond respectively to the largest and the smallest

complemented element below and above, respectively.

Thus, the � operation coincides with B. In the cited

paper, using dual negation (or join-complement) D al-

ways in the context of Bi-Heyting algebras, the authors

also study a family of modal operators �n and ♦n, in a

way similar to the one we shall employ in Section 4.2.
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We will be considering residuated lattices A en-

riched with a unary operator B such that, for all a ∈ A,

Ba is the greatest Boolean element below a, as defined

in the Introduction. It is immediate to see that B can

be characterized by the following three conditions, for

any a, b in A:

(BE1) Ba ≤ a,

(BE2) Ba ∨ ¬Ba = 1,

(BI) if b ≤ a and b ∨ ¬b = 1, then b ≤ Ba.

We will denote the class of residuated lattices with B

by RLB . Namely, an RLB-algebra is an algebra A =

(A;∧,∨, ·,→, B, 0, 1) such that (A;∧,∨, ·,→, 0, 1) is a

residuated lattice and B satisfies the above three con-

ditions.

First of all, note that B is new, that is, B is not ex-

pressible by a {∧,∨, ·,→, 0}-term. Indeed, for instance,

in the Gödel algebra G2×G3 (the direct product of the

two-element Boolean algebra with the three-element

Gödel algebra) we have, for any {∧,∨, ·,→ 0}-term t,

that ta ∈ {0, a, 1}, where a = (1, 1/2) is the join re-

ducible coatom, while Ba = (1, 0) is the join-irreducible

atom, which does not belong to {0, a, 1}.
In the next proposition we see that all operations

remain independent.

Proposition 3 The set of operators {∧,∨, ·,→, 0, B}
is independent.

Proof That ∧ is independent of the rest may be seen

by taking the algebra of Example 1 with · such that

b · c = 0, b · b = b, and c · c = c, for the coatoms b and

c. Then, observe that the subset S with bottom, both

coatoms, and top is closed for ∨, ·, →, 0, and B, but

b ∧ c /∈ S.

That ∨ is independent of the rest may be seen by tak-

ing the algebra that results from inverting the algebra

of Example 1 and considering that the subset S with

bottom, both atoms a1 and a2 and top is closed for ∧,

·, →, 0 and B, but a1 ∨ a2 /∈ S.

That · is independent of the rest may be seen by taking

the four-element chain such that a · b = a · a = b · b = a,

for the atom a and the coatom b and considering that

the subset S with bottom, the coatom, and the top is

closed for ∧, ∨, →, 0, and B, but b · b /∈ S.

That → is independent of the rest may be seen by tak-

ing the algebra of Example 1 and considering that the

subset S with bottom, the atom a, the coatom b, and

top is closed for ∧, ∨, ¬, and B, but b→ a /∈ S.

That 0 is independent of the rest may be seen by taking

the two element Boolean algebra and considering that

the top is closed for ∧, ∨, ·, →, and B, but ¬1 = 0.

The case of the independence of B has already been

considered. �

Lemma 4 Let A ∈ RLB and let a ∈ A. Then,

(i) Ba = a iff a is Boolean,

(ii) Ba = 1 iff a = 1, and

(iii) BBa = Ba.

Proof (i) Suppose Ba = a. As, using (BE2), we have

Ba∨¬Ba = 1. So, a∨¬a = 1. For the other conditional,

suppose a∨¬a = 1. Then, as a ≤ a, using (BI), it follows

that a ≤ Ba. The other inequality follows by (BE2).

(ii) Suppose Ba = 1. Using (BE1), it folows that

1 ≤ a. So, a = 1. For the other conditional, suppose

a = 1. Then, a ≤ 1. Using (BI) and the fact that 1 is

Boolean (see Proposition 2(vi)), it follows that 1 ≤ Ba.

(iii) Considering (BE1), it is enough to see that

Ba ≤ BBa, which follows using (BI) and (BE2). �

We also have the following properties.

Lemma 5 Let A ∈ RLB and let a, b ∈ A. Then,

(i) Monotonicity of B: if a ≤ b, then Ba ≤ Bb,
(ii) B(a ∧ b) = Ba ∧Bb,
(iii) B(a ∧ b) ≤ a · b,
(iv) B(a · b) = B(a ∧ b),
(v) B(a · b) = Ba ·Bb,
(vi) Ba ∨Bb ≤ B(a ∨ b),

(vii) B(a→ b) ≤ Ba→ Bb,

(viii) B0 = 0,

(ix) B¬a ≤ ¬Ba.

Proof (i) Suppose a ≤ b. Using (BI), it is enough to

have Ba ≤ b and Ba∨¬Ba = 1. Now, the former follows

by (BE1) and the hypothesis, and the latter is (BE2).

(ii) B(a ∧ b) ≤ Ba ∧ Bb follows from a ∧ b ≤ a, b

using monotonicity of B. The other inequality follows

using (BI), (BE1), and (iii) in Proposition 2.

(iii) By (i) in Proposition 1 and part (ii) we have

B(a ∧ b) = Ba ∧ Bb = Ba · Bb. The goal follows using

Ba ≤ a, Bb ≤ b, and monotonicity of ·.
(iv) From a·b ≤ a∧b by (i), we get B(a·b) ≤ B(a∧b).

For the other inequality, using (BI), it is enough to have

B(a∧ b) ≤ a · b and B(a∧ b) Boolean. Now, the former

is (iii) and the latter follows from (BE2).

(v) As Ba is Boolean, by (i) of Proposition 1, we

have Ba ∧Bb = Ba ·Bb. Moreover, by (ii), B(a ∧ b) =

Ba ∧Bb. We get our goal using (iv).

(vi) It follows using (i) (Monotonicity of B).

(vii) We have a→ b ≤ a→ b. Then, (a→ b) · a ≤ b.
Hence, by monotonicity of B, B((a→ b) · a) ≤ Bb. So,

using (v), B(a → b) · Ba ≤ Bb. So, B(a → b) ≤ Ba →
Bb.
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(viii) It follows because 0 is Boolean.

(ix) It follows from (vii) and (viii) considering that

¬a = a→ 0. �

Regarding the inequalities in the previous lemma,

that is, (iii), (vi), (vii), and (ix), their reciprocals do

not hold. Indeed, inequality a · b ≤ B(a ∧ b) fails in

the three-element Gödel algebra G3 taking the top and

the middle element. Inequality B(a ∨ b) ≤ Ba ∨ Bb
fails in the algebra of Example 1 taking a and b to be

the coatoms. Also, inequality ¬Ba ≤ B¬a fails in G3,

taking a to be the middle element. So, also inequality

Ba→ Bb ≤ B(a→ b) fails.

The operator B may not exist for every element in

a residuated lattice. However, B exists in every finite

residuated lattice.

Proposition 4 Let A ∈ RL be finite. Then, B exists

in A.

Proof In a finite residuated lattice A, for any a ∈ A, it

actually holds that Ba =
∨
{b ∈ A : b ≤ a and b∨¬b =

1}. It is enough to see that if b1 ≤ a, b1 ∨ ¬b1 = 1,

b2 ≤ a and b2 ∨ ¬b2 = 1, then (i) b1 ∨ b2 ≤ a and (ii)

(b1 ∨ b2)∨¬(b1 ∨ b2) = 1. Now, (i) follows immediately

and (ii) follows using (ii) in Proposition 2. �

On the other hand, there are infinite residuated lat-

tices where B does not exist. Indeed, we have the fol-

lowing example due to Franco Montagna (see [1]).

Proposition 5 There is an (infinite) Gödel algebra A

and a ∈ A such that Ba does not exist, i.e. where B

does not exist.

Proof Let [0, 12 , 1]G be the three-element Gödel alge-

bra. Let us consider

A1 = {a ∈ ([0, 12 , 1]G)N such that {i ∈ N : ai = 0} is

finite},
A2 = {a ∈ ([0, 12 , 1]G)N such that {i ∈ N : ai 6= 0} is

finite}, and

A = A1 ∪A2.

The set A is the domain of a subalgebra of ([0, 12 , 1]G)N.

Indeed, if a, b ∈ A1, then a ∧ b ∈ A1 and a → b ∈ A1,

if a, b ∈ A2, then a ∧ b ∈ A2 and a→ b ∈ A1, if a ∈ A1

and b ∈ A2, then a ∧ b ∈ A2 and a → b ∈ A2, and if

a ∈ A2 and b ∈ A1, then a ∧ b ∈ A2 and a → b ∈ A1.

Also, 0 ∈ A2. So, A is the domain of a subalgebra A of

([0, 12 , 1]G)N.

Now, take a to be such that ai = 1 if i is even and

ai = 1
2 if i is odd. Next, consider the set {b ∈ A : b ≤ a

and b is Boolean}. It consists of all elements b such that

bi = 0 for all odd i and for all but finitely many even

i, and bi = 1 otherwise. It can be seen that this set has

no maximum in A. �

Actually, Montagna’s example of Proposition 5 can

be generalized as follows.

Proposition 6 Let V a variety of MTL-algebras such

that there is a linearly ordered algebra A ∈ V with a

proper filter F (i.e. {1} ( F ( A). Then, V contains

an infinite algebra where B does not exist.

Proof Let D ∈ V a chain and F be a filter of A sat-

isfying the hypothesis of the proposition. Let us define

F¬ = {x ∈ D | ∃y ∈ F, x ≤ ¬y} and let C = F ∪F¬. It

is easy to check that C is the domain of a subalgebra

of D. Finally define the following sets:

A1 = {a ∈ CN such that {i ∈ N : ai ∈ F} is finite},
A2 = {a ∈ CN such that {i ∈ N : ai ∈ F¬} is finite},
A = A1 ∪A2.

One can check that again A is the domain of a sub-

algebra of CN, taking into account that if x ∈ F and

y ∈ F¬, then x∧ y, x ∗ y, x→ y ∈ F¬, and if x, y ∈ F¬,

then x→ y ∈ F .

Thus, A is a subalgebra and taking an element a

such that ai = 1 if i is even and ai = b, for a given

b ∈ F \ {1}, then the same argument as in Montagna’s

example proves that Ba does not exist. �

For readers familiar with the main systems of math-

ematical fuzzy logic and their algebraic semantics (see

[8]), we provide the following corollary with further ex-

amples of subvarieties of residuated lattices containing

algebras where B does not exist.

Corollary 1 In the following varieties of MTL-algebras,

there is an infinite algebra where B does not exist:

– the variety generated by any continuous t-norm,

– the varieties generated by either the NM t-norm or

a WNM t-norm.

Proof In all these varieties there is an algebra A sat-

isfying the conditions of Proposition 6.

If the t-norm is either a Gödel, Product, or a WNM

t-norm (including NM), then take as A the standard

chain and as F the positive elements respect to ¬,

i.e., the elements such that ¬x ≤ x. If the t-norm is

 Lukasiewicz, then take A as the Chang algebra and F

as the set of its positive elements. Finally, if the contin-

uous t-norm is a proper ordinal sum, then take A as the

standard chain and F = [a, 1], where a ∈ (0, 1) is the

end point of a component. It is clear that in all cases F

is a proper filter and thus Proposition 6 applies. �

Some papers (e.g. [4]) consider the notion of com-

patible operation. Operation B is not compatible, that

is, the congruences of RL and RLB are not the same. To
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see this, take the three-element Heyting or Gödel alge-

bra G3 with universe {0,m, 1} and the equivalence rela-

tion given by θ = {(0, 0), (m,m), (m, 1), (1,m), (1, 1)}.
It holds that θ is a RL-congruence, but not an RLB-

congruence, as Bm = 0 and B1 = 1.

Taking modality to mean a finite combination of the

unary operators ¬ andB, the next statement shows how

many different modalities there are in RLB .

Proposition 7 In RLB there are nine different modal-

ities. They may be ordered as follows: on the one hand,

the positive modalities B ≤ Id ≤ ¬¬ ≤ ¬B¬ (with also

B ≤ B¬¬ ≤ ¬¬) and, on the other hand, the negative

modalities B¬ ≤ ¬ ≤ ¬B¬¬ ≤ ¬B. See Figure 2.

Proof The inequalities are immediate. The reverse in-

equalities can be seen not to be the case by considering

either the only atom in the three-element Gödel algebra

G3 or any of the two non-comparable elements of the

Heyting algebra obtained by adding a top element to

the Boolean algebra of 4 elements. There are no other

modalities, because if we apply operations ¬ and B to

the given nine modalities, we do not get anything new,

as ¬¬B = B, BB = B, and B¬B = ¬B. �

¬B¬

¬¬

Id

B

B¬¬

¬B

¬B¬¬

¬

B¬

Fig. 2 The positive and negative modalities of ¬ and B

3.1 An equational class

It is natural to inquire whether the class RLB of residu-

ated lattices with the B operator is in fact an equational

class. To this end, we start by focusing our attention on

the following equations, where we will be using x 4 y

as an abbreviation for x ∨ y ≈ y:

(BI1) Bx 4 B(x ∨ y),

(BI2) B1 ≈ 1.

Lemma 6 The equations (BI1) and (BI2) are valid in

RLB.

Proof Both equations follow immediately from lemmas

4(ii) and 5(vi), respectively. �

We are also interested in the equation

(BI3) B(x ∨ ¬x) 4 Bx ∨B¬x,

but it is not easy to see that it also holds in RLB .

Towards this goal, we first state and prove the following

result.

Lemma 7 In RLB the following equation holds:

(B(x ∨ ¬x) ∧ x) ∨ ¬(B(x ∨ ¬x) ∧ x) ≈ 1.

Proof Using Lemma 1(i), and using T for the left hand

side of the given equation, it is enough to get

(i) B(x ∨ ¬x) ∨ ¬B(x ∨ ¬x) ≈ 1,

(ii) B(x ∨ ¬x) 4 T , and

(iii) ¬B(x ∨ ¬x) 4 T .

Part (i) is immediate because of (BE2).

To see (ii), using Proposition 1(viii), note that we have

that B(x ∨ ¬x) 4 x ∨ ¬x, (immediate using (BE1)),

B(x ∨ ¬x) ∧ x 4 T (also immediate), and B(x ∨ ¬x) ∧
¬x 4 T , which follows from B(x∨¬x)∧¬x 4 ¬(B(x∨
¬x) ∧ x), which holds because of Lemma 1(iv).

To see (iii), note that B(x ∨ ¬x) ∧ x ≤ B(x ∨ ¬x).

So, using Lemma 1(iii), it follows that ¬B(x ∨ ¬x) 4
¬(B(x ∨ ¬x) ∧ x). And so, ¬B(x ∨ ¬x) 4 T . �

Proposition 8 The equation (BI3) is valid in RLB.

Proof Using Proposition 1(ix), it is enough to check

the following three conditions:

(i) Bx ∨ ¬Bx ≈ 1,

(ii) B(x ∨ ¬x) ∧Bx 4 Bx ∨B¬x, and

(iii) B(x ∨ ¬x) ∧ ¬Bx 4 Bx ∨B¬x.

Now, (i) is immediate due to (BE2) and (ii) is also

immediate considering that B(x ∨ ¬x) ∧Bx 4 Bx.

Regarding (iii), it is clear that it follows from B(x ∨
¬x) ∧ ¬Bx 4 B¬x, which in turn follows, using BI,

from

(iv) B(x ∨ ¬x) ∧ ¬Bx 4 ¬x and

(v) (B(x ∨ ¬x) ∧ ¬Bx) ∨ ¬(B(x ∨ ¬x) ∧ ¬Bx) ≈ 1.

Now, (v) is immediate using Proposition 2(i) and (iii).

Concerning (iv), using Proposition 1(x), it follows from

B(x ∨ ¬x) ∧ x 4 Bx, which immediately follows, using

BI, from B(x ∨ ¬x) ∧ x 4 x and Lemma 7. So, we are

done. �

The following theorem answers positively the ques-

tion posed above.
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Theorem 1 RLB is an equational class. An equational

basis relative to RL is the following set of equations :

(BE1) Bx 4 x,

(BE2) Bx ∨ ¬Bx ≈ 1,

(BI1) Bx 4 B(x ∨ y),

(BI2) B1 ≈ 1,

(BI3) B(x ∨ ¬x) 4 Bx ∨B¬x.

Proof It is enough to prove (BI) using the given equa-

tions. Suppose (i) b ≤ a and (ii) b ∨ ¬b = 1. From (i),

using (BI1), it follows (iii) Bb ≤ Ba. From (ii), using

(BI2), it follows B(b ∨ ¬b) = 1, which, using (BI3),

implies that Bb ∨ B¬b = 1, which, using (iii) implies

Ba∨B¬b = 1, which in turn, using (BE1), implies that

Ba∨¬b = 1. Now, by the fact that b ·1 = b, we get (iv)

b · (Ba∨¬b) = b. From (iv), using distributivity, we get

(b ·Ba)∨ (b ·¬b) = b. However, b ·¬b = 0. Consequently,

b ·Ba = b. So, as b is Boolean, using (i) in Proposition

1, b ∧Ba = b, i.e. b ≤ Ba. �

It is also natural to inquire whether the given equa-

tions are independent.

Proposition 9 The set {(BE1), (BE2), (BI1), (BI2),

(BI3)} is independent.

Proof To see that (BE1) is independent of the rest,

take the three-element Gödel algebra G3 and define

B0 = 0, and Ba = 1, if a is not 0.

To see that (BE2) is independent of the rest, take the

four-element Gödel chain G4 and define B0 = 0, B1 =

1, Ba = 0, for the only atom a of the chain, and Bc = c,

for the remaining element c.

To see that (BI1) is independent of the rest, take the

Gödel algebra G3 ×G3. If a is any of the four Boolean

elements, then put Ba = a, else put Ba = 0.

To see that (BI2) is independent of the rest, take again

G3, but now define Ba = 0, for every a.

Finally, to see that (BI3) is independent of the rest, take

the four-element Boolean G2 ×G2 algebra and define,

for any a, if a = 1, then Ba = 1, else Ba = 0. �

3.2 Subdirectly irreducible RLB-algebras

In this section we show the subdirectly irreducible mem-

bers of RLB are those whose Boolean elements are only

the top and bottom elements.

Definition 4 Let A ∈ RLB. A set F contained in A is

said to be a RLB-filter iff for all a, b ∈ A it satisfies

(1) 1 ∈ F ,

(2) if a ∈ F and a ≤ b, then b ∈ F ,

(3) if a, b ∈ F , then a · b ∈ F ,

(4) if a ∈ F , then Ba ∈ F .

Proposition 10 Let A ∈ RLB. The lattice of RLB-

congruences is isomorphic to the set of RLB-filters. In-

deed, let f : Con(A) −→ Fil(A) be defined by: if ≡ is

a RLB-congruence, then f(≡) is the RLB-filter F≡ =

{a ∈ A : a ≡ 1}. Then, the function f is an isomor-

phism such that if F is a RLB-filter, then f−1(F ) is the

RB-congruence ≡F b defined by a ≡F b iff a → b, b →
a ∈ F .

Proof It is obvious that F≡ is a RLB-filter. In order to

prove that ≡F is a congruence we need to prove that if

a ≡F b, then Ba ≡F Bb, since the other conditions are

known to be true for any residuated lattice. So, suppose

a→ b and b→ a ∈ F . Then, by the fourth condition in

the definition of filter, B(a → b) ∈ F . Now, using (vi)

in Lemma 5 and the second condition in the definition

of filter, it follows that Ba→ Bb ∈ F . Analogously, we

obtain that Bb → Ba ∈ F . Finally, it is also obvious

that f−1 ◦ f = Id. �

From there we can characterize a family of RLB-

filters.

Proposition 11 Let A ∈ RLB. For any element a ∈
B(A), then Fa = [a, 1] = {x ∈ A : a ≤ x ≤ 1} is a

RLB-filter.

Proof It is obvious that Fa satisfies the first two condi-

tions of a RLB-filter. The third is an easy consequence

of the fact that if a ∈ B(A), then a∗x = a∧x and thus

if x, y ∈ Fa, then a = a∧ y ≤ x ∗ y and thus x ∗ y ∈ Fa.

Finally, if x ∈ F , then a = Ba ≤ Bx. �

From now on we will denote by Fa the principal

filter defined by a ∈ B(A). In order to characterize

the subdirectly irreducible RLB-algebras we will use

the result of [21, Theorem 97]: an algebra A is sub-

directly decomposable iff there exists a family of non-

trivial congruences σi such that their intersection is the

identity. In our case, this means that A is subdirectly

irreducible iff there is a unique coatom in the lattice of

RLB-congruences of A.

Proposition 12 Let A ∈ RLB. Then, A is subdirectly

irreducible iff B(A) = {0, 1}.

Proof Observe first that if F is a RLB-filter of A, then

F contains a Boolean element a (by the third condi-

tion of RLB-filter) and thus F contains Fa. Thus, to

obtain the intersection of the non-trivial RLB-filters of

A it is enough to compute the intersection of the fil-

ters Fa. However, this intersection is not the identity iff

there exist a unique Boolean element a such that a is

a coatom of B(A). So, being B(A) a Boolean algebra,

this implies that B(A) = {0, 1}. �
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4 Comparing B with other operations

The operation B is strongly related to other opera-

tions considered in the literature, e.g. the Monteiro-

Baaz ∆ operation and operations defined using the join-

complement D. This section is devoted to explore these

relationships.

4.1 Comparing B with ∆

The operation ∆ was already considered by Monteiro

in his paper about symmetric Heyting algebras in 1980

(see [13]). Monteiro considered the same definitions of

possibility and necessity operations given by Moisil in

[11] (see p. 67 in [13]). However, instead of using Moisil’s

notation, Monteiro used ∇ and ∆ to denote them, re-

spectively. When doing so, he did not explicitly men-

tion Moisil. However, many works by Moisil appear in

the list of references of [13], including [11] and [12].

Monteiro also considered the ∆ operator in the setting

of linear symmetric Heyting algebras and studied the

properties of ∆ in the totally linear case as well [13,

Ch. 5, Sect. 3]. In 1996, independently, Baaz in [2] con-

sidered an expansion of Gödel logic with a connective

he also called ∆ satisfying certain axioms and the rule

ϕ/∆ϕ. Although he did not cite Monteiro, the proposed

axioms are equivalent to the properties that Monteiro

proved for his ∆ operator in the framework of totally

linear symmetric Heyting algebras. Baaz also provided

a deduction theorem using ∆: Γ, ϕ ` ψ iff Γ ` ∆ϕ→ ψ.

In 1998, Hájek considered Baaz’s ∆ in the context of

BL-algebras and BL logic (see pp. 57-61 [10]). He gave

for ∆ exactly the same axioms as Baaz presented in [2]

for Gödel logic. He observed that all ∆ axioms make

it behave like a necessity operator, with the exception

of the axiom ∆(ϕ ∨ ψ) → (∆ϕ ∨ ∆ψ), that is charac-

teristic of possibility operations (see Remark 2.4.7 of

[10]). The ∆ operation has also been considered in the

more general context of Mathematical fuzzy logic, see

several chapters in the handbook [8]. More recently, in

[1] the authors study in depth, among other things, the

expansion of FLew with the ∆ operator and show that

is conservative.

In MTL,∆ can always be defined over chains, namely

as ∆1 = 1 and ∆x = 0 for all x 6= 0, and thus, ∆ and B

over MTL-chains coincide. But there are (non-linearly)

MTL-algebras where ∆ does not exist. Nevertheless,

this is not a problem because MTL is semilinear, and

the semantics of ∆ over chains is clear. However, there

is not a clear semantical interpretation of the axioms of

∆ in the general context of residuated lattices.

In the context of a residuated lattice, the operator

∆ is introduced e.g. in [1] by the same equations as in

MTL or BL (cf.[10, p. 58]):

(∆E1) ∆x 4 x,

(∆E2) ∆x ∨ ¬∆x ≈ 1,

(∆I1) ∆(x ∨ y) 4 ∆x ∨∆y,

(∆I2) ∆1 ≈ 1,

(∆I3) ∆x 4 ∆∆x,

(∆I4) ∆(x→ y) 4 ∆x→ ∆y,

where, again, x 4 y abbreviates x ∨ y ≈ y. Note that

∆I3 may be derived from the rest: it is enough to check

that an operator satisfying the rest of the equations,

satisfies all the equations in Theorem 1, and hence the

quasi-equation (BI) as well; then use (iii) of Lemma 4.

Also, regarding their defining equations, the only dif-

ference between ∆ and B is that ∆ satisfies ∆(x∨ y) 4
∆x ∨ ∆y, whereas B only satisfies the particular case

y = ¬x, that is, B only satisfies B(x∨¬x) 4 Bx∨B¬x.

We will denote by RL∆ the class of residuated lat-

tices expanded with ∆.

It will be useful to bear in mind the following fact.

Lemma 8 Let A ∈ RL∆ and a ∈ A. Then, ∆a = a iff

a is Boolean.

Proof Supposing ∆a = a, using (∆E2) it follows that

a is Boolean. On the other hand, suppose a is Boolean.

Considering (∆E1), it is enough to prove that a ≤
∆a. By Lemma 1(ii), it is enough in turn to prove

∆a ∨ ∆¬a = 1, a · ∆a ≤ ∆a, and a · ∆¬a ≤ ∆a. The

first condition holds using (∆I1) and (∆I2), since a is

Boolean. The second condition is immediate. For the

third, observe that a ·∆¬a ≤ a · ¬a = 0 ≤ ∆a.

Actually, ∆ is somewhat stronger than B in the fol-

lowing sense.

Proposition 13 Let A ∈ RL. If ∆ exists in A, then

so does B, with B = ∆.

Proof Considering Theorem 1, all we have to see is

that ∆ satisfies the equational basis given for B. This is

immediate excepting (BI1). Let us see that the equation

∆x 4 ∆(x∨ y) also holds. As we have x→ (x∨ y) ≈ 1,

using (∆I2) and (∆I4) we get 1 4 ∆x → ∆(x ∨ y),

which gives ∆x 4 ∆(x ∨ y). �

On the other hand, we have the following result.

Proposition 14 There exist finite residuated lattices

where B exists, but ∆ does not.

Proof Consider the coatoms b and c in the Gödel al-

gebra of Example 1. Using Proposition 4, it is clear

that B exists, as the algebra is finite. To see that ∆

does not exist, note that (∆E1) and (∆E2) imply that

∆b = ∆c = 0. So, ∆b∨∆c = 0. However, ∆(b∨ c) = 1,

due to (∆I2). Then, (∆I1) is not satisfied. �
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This example makes clear the basic difference be-

tween∆ andB when we define them over MTL-algebras.

It is well known that MTL∆, the expansion of MTL

with ∆, is semilinear, i.e. each algebra of the variety is a

subdirect product of lineraly ordered MTL∆-algebras.

Moreover, we have seen that ∆ and B coincide over

chains. Thus, the example proves that MTLB , the ex-

pansion of MTL with B, is not semilinear. In fact, this

was already clear from Proposition 12, since there ex-

ist subdirectly irreducible MTLB-algebras (like the one

defined in the previous example) that are not linearly

ordered.

4.2 Comparing B with an operation using the

join-complement

The join-complement operation D has a long history.

In 1919 Skolem considered lattices expanded with both

meet and join relative complements (see §2 of [19] or pp.

77-85 of [20]). He just worked from an algebraic point of

view. He noted that existence of both top 1 and bottom

0 is implied. Also, he briefly considered the meet and

join-complements, for which, for an arbitrary argument

a, he used the notations 0
a and 1− a, respectively.

In 1942 Moisil defined possibility as ¬¬ and neces-

sity as DD in a setting where he had both intuitionistic

negation ¬ and its dual D (see §4 of [11] or p. 365 in

[12]). He did not mention Skolem. In 1949 Ribenboim

proved that distributive lattices with D form an equa-

tional class (see [18]). In fact, the meet is not needed,

as the class with join and join-complement D is already

an equational class. In 1974 Rauszer, mainly consider-

ing algebraic aspects, studied a logic with conjunction,

disjunction, conditional and its dual (see [15]). She also

included both intuitionistic negation ¬ and its dual D,

though these can be easily defined. Her axiomatization

included the expected axioms plus the rules modus po-

nens and ϕ/¬Dϕ. She also provided a deduction the-

orem using the formula (¬D)n. She neither mentioned

Skolem nor Moisil.

In the context of a join semi-lattice A, it is possi-

ble to postulate the existence of the join-complement

Da = min{b ∈ A : for all c ∈ A, c ≤ a ∨ b}, for a ∈ A.

This is equivalent to the following two conditions:

(DI) b ≤ a ∨Da, for all a, b ∈ A,

(DE) for any a, b ∈ A, if for all c ∈ A, c ≤ a ∨ b,
then Da ≤ b.

In a join semi-lattice the existence of D implies the

existence of both top 1 = a ∨ Da, for any a, and bot-

tom 0 = D(a ∨ Da), for any a. Moreover, D can be

equationally characterized by the following three equa-

tions, where, again, we use x 4 y as an abbreviation for

x ∨ y ≈ y:

(DI) y 4 x ∨Dx,

(DE1) D(x ∨Dx) 4 y,

(DE2) Dy 4 x ∨D(x ∨ y).

In what follows, we will denote by RLD the class of

residuated lattices expanded with an operation D sat-

isfying these equations. Obviously, by definition, RLD

is an equational class. Notice that in a residuated lat-

tice A, having in the signature the symbols 0 and 1 for

the bottom and top elements, respectively, the above

definition of D can be simplified to Da = min{b ∈ A :

a ∨ b = 1}, and the condition (DE) simplifies to be

(DE′) for any a, b ∈ A, if a ∨ b = 1, then Da ≤ b.

Moreover the equations (DI) and (DE1) can also be

simplified to:

(DI′) x ∨Dx ≈ 1,

(DE1′) D1 ≈ 0.

Remark 1 Note that, while x 4 ¬¬x holds in RL,

from (DE′) and (DI′) it follows that DDx 4 x holds

in RLD. Note also that in a Heyting algebra D is the

dual of ¬, since in that case ¬ coincides with the meet

complement.

As in the case of the operator B, D may not exist

in some residuated lattices, but it always exists in finite

residuated lattices.

Proposition 15 Let A be a finite residuated lattice.

Then D exists in A.

Proof It is enough to prove that
∧
{b ∈ A : a ∨ b = 1}

exists in A. For that, it is enough to see that if a∨b1 = 1

and a ∨ b2 = 1, then a ∨ (b1 ∧ b2) = 1. Now, from the

antecedent it follows that (a∨b1)·(a∨b2) = 1 and using

twice the distributive law of · with respect to ∨, we have

that (a ·a)∨ (a · b2)∨ (b1 ·a)∨ (b1 · b2) = 1. Any subterm

t of the left-hand term is such that t ≤ a ∨ (b1 ∧ b2). �

Following [15] and [17], we consider now the com-

pound operation ¬D and its relation to B. First, let us

state the following fact.

Lemma 9 Let A ∈ RLD and a, b ∈ A. Then,

(i) ¬Da ≤ a,

(ii) if a ≤ b, then Db ≤ Da and ¬Da ≤ ¬Db.

Proof (i) follows from a ∨Da = 1 using Lemma 1(vi).

(ii) Assume a ≤ b. Then, 1 = a ∨ Da ≤ b ∨ Da.

Hence, by (DE) we have Db ≤ Da. Now, apply Lemma

1(iii) to get ¬Da ≤ ¬Db. �
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In [5, Section 5] the authors prove a result about

iterations of the operation ¬D in the context of meet-

complemented distributive lattices with D. Once triv-

ially adapted to RLD, it is the following fact.

Proposition 16 (i) For any natural n > 0, let RLDn

be the subvariety of RLD defined by adding to those of

RLD the following equation:

(¬D)n+1x ≈ (¬D)nx.

Then, the sequence of varieties RLD1 ⊂ RLD2 ⊂ . . . ⊂
RLDn ⊂ . . . is strictly increasing.

(ii) There are algebras of RLD where none of the

equations given in (i) hold.

Next, consider the following example of a Heyting

algebra where B exists but D does not.

Example 2 B exists in the Heyting algebra 1+(N×N)∂

of Figure 3, where (N×N)∂ is obtained ‘turning upside

down’ the partial order N×N. In that Heyting algebra,

Ba = 1 if a = 1 else Ba = 0. However, D does not exist

for the elements (0, n) and (n, 0), with non-zero n.

(0,2)

(0,1) (1,0)

(2,0)

Fig. 3 The residuated lattice 1 + (N × N)∂ , where B exists
but D does not

There are also RL-algebras where D exists, but B

does not (see the end of Section 2 of [5] for an example

of a Heyting algebra). Note that in Franco Montagna’s

example, neither B nor D exist.

In the following case, existence of D implies exis-

tence of B.

Proposition 17 Let A ∈ RL and ¬a ∨ ¬¬a = 1, for

all a ∈ A. Then, if D exists in A, then B also exists in

A, with B = ¬D.

Proof Let us take an a ∈ A. Then, ¬Da exists in A.

We have to see (i) ¬Da ≤ a, (ii) ¬Da∨¬¬Da = 1, and

(iii) if b ≤ a and b ∨ ¬b = 1, then b ≤ ¬Da. Now, (i)

holds as seen in Lemma 9(i) and (ii) follows from the

hypothesis that ¬a ∨ ¬¬a = 1, for any a ∈ A. To see

(iii), suppose (iv) b ≤ a and (v) b∨¬b = 1. We have that

(iv) implies Da ≤ Db as seen in Lemma 9(ii) and (v)

implies, using (DE), that Db ≤ ¬b. So, by ≤ transitivity

it follows that Da ≤ ¬b. Then, in a residuated lattice

we have b ≤ ¬Da, as desired. �

Remark 2 Given the conditions of Proposition 17, tak-

ing any of the coatoms in the algebra of Example 1, it

is easy to check that the equation Dx ≈ ¬Bx does not

hold. Also, the reciprocal of Proposition 17 is not the

case, as the algebra in Example 2 satisfies the equation

¬x ∨ ¬¬x ≈ 1 and B exists in that algebra, but D does

not exist.

Taking into account that De Morgan laws are sat-

isfied in any MTL algebra, we can easily obtain the

following consequence of the previous proposition.

Corollary 2 Let A be a SMTL-algebra, i.e. an MTL

algebra such that for all a ∈ A, a ∧ ¬a = 0. Then, for

any a ∈ A, if Da exists, then so does Ba, and Ba =

¬Da.

Lemma 10 Let A ∈ RLD and a ∈ A. Then, the fol-

lowing are equivalent:

(i) a is Boolean,

(ii) ¬Da = a,

(iii) Da = ¬a.

Proof (i)⇒ (ii) Suppose a∨¬a = 1. Then, using (DE),

Da ≤ ¬a. Then, a ≤ ¬Da. Now, by Lemma 9(i) we

have ¬Da ≤ a. So, ¬Da = a.

(ii) ⇒ (iii) Suppose ¬Da = a. Then, ¬¬Da = ¬a.

As Da ≤ ¬¬Da, we have that Da ≤ ¬a. Now, by (DI),

a ∨Da = 1. So, also ¬a ≤ Da. Then, Da = ¬a.

(iii)⇒ (i) Suppose Da = ¬a. As using (DI) we have

a ∨Da = 1, it follows that a ∨ ¬a = 1. �

As a direct consequence we have the following fact.

Corollary 3 Let A be a residuated lattice where both

B and D exist. Then, Da ≤ ¬Ba, for all a ∈ A. Equiv-

alently, Ba ≤ ¬Da, for all a ∈ A.

Proof Let a ∈ A. We have that Ba ≤ a. Hence, using

Lemma 9(ii), Da ≤ DBa. Now, since Ba is Boolean,

using Lemma 10 it follows that Da ≤ ¬Ba. �

Remark 3 The equality B ≈ ¬D does not hold. In-

deed, consider the join-irreducible coatom c in the Heyt-

ing algebra in Figure 4, where 0 = Bc < ¬Dc.

Lemma 11 Let A be a RLD-algebra and a, b ∈ A. We

have that if b ≤ a and b ∨ ¬b = 1, then b ≤ ¬Da.

Proof Suppose b ≤ a. Then, ¬Db ≤ ¬Da. Now, using

the hypothesis b∨¬b = 1 and Lemma 10, we have that

¬Db = b. So, b ≤ ¬Da. �
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c

¬Dc

Bc

Dc

Fig. 4 Behaviour of B and D in a coatom of a residuated
lattice

Proposition 18 Let A be a RLD-algebra, let a ∈ A,

and let us have a finite number of elements b ∈ A such

that b ≤ a. Then, Ba = (¬D)na, for some n ∈ N.

Proof In the case a is Boolean, Ba = (¬D)0a. In the

case a is not Boolean, take ¬Da. Now, Lemma 11 says

we will not be missing Boolean elements. Repeating the

procedure we will find the first Boolean below a. �

Proposition 19 (i) In every algebra of RLDn , for any

natural number n ≥ 0, B exists, with B = (¬D)n.

(ii) There are RLD-algebras where B does not exist.

Proof (i) It is enough to see that (¬Dx)n satisfies (BE1),

(BE2), and (BI). It always satifies (BE1), as it is easily

seen by induction using ¬Da ≤ a and ≤-transitivity.

We get (BE2) applying Lemma 10 on the hypothesis

that (¬D)n+1 = (¬D)n. Finally, to get (BI), suppose

both (i) b ≤ a and (ii) b∨¬b = 1. From (i) it follows (iii)

¬Db ≤ ¬Da. From (ii), using Lemma 10, we get (iv)

¬Db = b. From (iii) and (iv) we get b ≤ ¬Da. Repeat

the argument n times to get b ≤ (¬D)na.

(ii) cf. end of Section 2 in [5]. �

In the next proposition we will use the following De

Morgan properties for ¬ and D. In the proof we use the

abreviation {xi} for {xi ∈ A : i ∈ I}.

Lemma 12 Let A be a complete RLD-algebra. Then,

both (i) ¬
∨
{xi} =

∧
{¬xi} and (ii) D

∧
{xi} =

∨
{Dxi}.

Proof We prove only (ii), (i) is already known. By (DI)

we have that xj ∨Dxj = 1. Then, xj ∨
∨
{Dxi} = 1 for

all j ∈ I and so
∧
{xi} ∨

∨
{Dxi} = 1. So, by (DE) we

obtain that D
∧
{xi} ≤

∨
{Dxi}.

For the other inequality, using (DI′), we have that∧
{xi} ∨ D

∧
{xi} = 1. Now, from

∧
{xi} ≤ xj and

xj ≤ xj ∨ D
∧
{xi} we obtain

∧
{xi} ≤ xj ∨ D

∧
{xi},

and taking into account that D
∧
{xi} ≤ xj ∨D

∧
{xi},

we have that
∧
{xi} ∨D

∧
{xi} ≤ xj ∨D(

∧
{xi}. Now,

by (DI′) we obtain that {xi} ∨D
∧
{xi} = 1, which, by

(DE), implies Dxj ≤ D
∧
{xi}, for all j ∈ I. Thus, we

finally get
∨
{Dxi} ≤ D

∧
{xi}. �

In the next proposition we use the notation N and

N+, for the set of natural numbers including 0 and ex-

cluding 0, respectively.

Proposition 20 Let A be a complete RLD-algebra.

Then, Ba exists, with Ba =
∧
{(¬D)na : n ∈ N}, for

any a ∈ A.

Proof Considering the definition of B, it is enough to

prove, for a ∈ A, (i)
∧
{(¬D)na : n ∈ N} ≤ x, (ii)∧

{(¬D)na : n ∈ N} ∨ ¬
∧
{(¬D)na : n ∈ N} = 1, and

(iii) if b ≤ a and b ∨ ¬b = 1, then b ≤
∧
{(¬D)na : n ∈

N}. Now, (i) follows, because a ∈ {(¬D)na : n ∈ N},
as a = (¬D)0a. Regarding (ii) and using Lemma 10, it

is enough to prove that ¬D
∧
{(¬D)na : n ∈ N} =∧

{(¬D)na : n ∈ N}. As it is always the case, for

any b ∈ A, that ¬Db ≤ b, it suffices to prove that∧
{(¬D)na : n ∈ N} ≤ ¬D

∧
{(¬D)na : n ∈ N}. Now,

using both properties of Lemma 12, we have that the

right hand side of the just given inequality is equal to∧
{(¬D)na : n ∈ N+}. It is clear that

∧
{(¬D)na : n ∈

N} ≤
∧
{(¬D)na : n ∈ N+}, because

∧
{(¬D)na : n ∈

N} ≤ (¬D)ma, for m ∈ N+. Regarding (iii), suppose

(iv) b ≤ a and b ∨ ¬b = 1, the last of which implies,

by Lemma 10, that (v) ¬Db = b. In order to prove

that b ≤
∧
{(¬D)na : n ∈ N}, it is enough to prove

that b ≤ (¬D)na, for all n ∈ N, which easily follows

by induction, as b ≤ a = (¬D)0a, by (iv), and suppos-

ing that b ≤ (¬D)na, it follows, using Lemma 9, that

¬Db ≤ (¬D)n+1a, and, using (v), b ≤ (¬D)n+1a, as

required. �

In Example 2 we saw that the existence of B in

a residuated lattice does not force the existence of D.

Now, let us see that operation ∆ is stronger than B in

this respect.

Proposition 21 Let A ∈ RL. If ∆ exists in A, then

also D exists in A, with D = ¬∆. We also have ∆ =

¬D.

Proof Suppose A is a residuated lattice where ∆ ex-

ists. Then, also ¬∆ exists. We have to prove that Da =

¬∆a, for any a ∈ A. We have that a ∨ ¬∆a = 1, as

∆a∨¬∆a = 1 and ∆a ≤ a, it . Now, suppose a∨ b = 1.

Then, ∆(a ∨ b) = ∆1 = 1. It is also the case that

∆(a ∨ b) = ∆a ∨ ∆b. So, ∆a ∨ ∆b = 1. Using Lemma

1(vi), ¬∆a ≤ ∆b. Moreover, ∆b ≤ b. So, ¬∆a ≤ b.
Let us see that we also have ∆a = ¬Da, for all

a. From the first part it follows that ¬Da = ¬¬∆a.

However, from (∆E2), using Lemma 1(vi), it follows

that ¬¬∆a ≤ ∆a. As due to Lemma 1(vii) we have

∆a ≤ ¬¬∆a, it follows that ∆a = ¬Da. �

Remark 4 The reciprocal of Proposition 21 is not the

case, as D exists in Example 1, but ∆ does not.
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Corollary 4 Let A ∈ RL. If ∆ exists in A, then also

B and D exist, and we have ∆ = B = DD = ¬D.

Proof Considering Propositions 13 and 21, it is enough

to prove that ∆ = DD, which is obtained checking

that ¬∆¬∆ = ∆. As for any a ∈ A, ∆a is Boolean

due to (∆E2), using Lemma 8 it is enough to check

that ¬¬∆a = ∆a, which follows again from (∆E2) and

Lemma 1(vi). �

5 The logic FLB
ew

In this section we introduce an expansion of FLew with

a unary connective B, whose intended algebraic seman-

tics is the variety of RLB-algebras studied in the previ-

ous sections.

Indeed, we define FLBew as the expansion of FLew
with the following axiom schemas:

(B1) Bϕ→ ϕ,

(B2) Bϕ ∨ ¬Bϕ,

(B3) B(ϕ ∨ ¬ϕ)→ (Bϕ ∨B¬ϕ),

(B4) B(ϕ→ ψ)→ (Bϕ→ Bψ).

and with the following additional rule:

(B) From ϕ derive Bϕ.

We will simply denote the notion of (finitary) derivation

in FLBew by `, without danger of confusion.

Note that we have the following facts.

Lemma 13 (i) ` Bϕ→ BBϕ and

(ii) Bϕ→ ψ ` Bϕ→ Bψ.

Proof For (i) check the following derivation:

1. Bϕ ∨ ¬Bϕ (B2)

2. B(Bϕ ∨ ¬Bϕ) 1, rule (B)

3. BBϕ ∨B¬Bϕ (B3), 2, mp

4. BBϕ→ (Bϕ→ BBϕ) FLew
5. B¬Bϕ→ ¬Bϕ (B1)

6. ¬Bϕ→ (Bϕ→ BBϕ) FLew
7. B¬Bϕ→ (Bϕ→ BBϕ) 5, 6, FLew
8. Bα→ BBα 3, 4, 7, FLew

(ii) follows easily using (i). �

Clearly, FLBew is a Rasiowa implicative logic (cf. [16]).

Then, it follows that it is algebraizable in the sense of

Blok and Pigozzi [3]. It is also straightforward to check

that its equivalent algebraic semantics is in fact the

variety of RLB-algebras. Algebraizability immediately

implies strong completeness of FLBew with respect to

RLB .

Theorem 2 For every set Γ ∪ {ϕ} of formulas, Γ `
ϕ iff for every A ∈ RLB and every A-evaluation e,

e(ϕ) = 1, whenever e[Γ ] ⊆ {1}.

In FLBew the usual form of the deduction theorem

does not hold. Indeed, we may have that ϕ ` Bϕ, but

0 ϕ → Bϕ, as can be easily seen to fail in the three-

element Gödel algebra {0, 12 , 1}, where B(1) = 1 and

B( 1
2 ) = B(0) = 0: for any evaluation e in this algebra,

if e(ϕ) = 1, then e(Bϕ) = 1, but for e(ϕ) = 1
2 we have

e(Bϕ) = 0, and thus e(ϕ→ Bϕ) = 0.

Actually, FLBew enjoys the same form of deduction

theorem holding for logics with the ∆ operator (cf. [2,

Proposition 2.2]).

Theorem 3 Γ, ϕ ` ψ iff Γ ` Bϕ→ ψ.

Proof ⇒) We prove by induction on every formula χi
(1 ≤ i ≤ n) of the given derivation of ψ from Γ ∪ {ϕ}
that Γ ` Bϕ → χi. If χi = ϕ, then the result follows

due to axiom schema (B1). If χi belongs to Γ or is

an instance of an axiom, then the result follows using

modus ponens and the derivability of the schema χi →
(Bϕ→ χi). If χi comes by application of modus ponens

on previous formulas in the derivation, then the result

follows, because from Bϕ → χk and Bϕ → (χk → χi)

we may derive (Bϕ&Bϕ)→ (χk&(χk → χi)) and then

also Bϕ → χi, using transitivity of → applied to the

derivable formulas Bϕ→ (Bϕ&Bϕ) and (χk & (χk →
χi)) → χi. Finally, if χi = Bχk comes using rule (B)

from formula χk, then from Bϕ → χk we may derive

Bϕ→ Bχk using Lemma 13(ii).

⇐) To the derivation given by the hypothesis add

a step with ϕ. In the next step put Bϕ, which follows

from the previous formula using rule (B). Finally, derive

ψ using modus ponens. �

Thanks to this B-deduction theorem, the logic FLBew
has the following property: if we expand FLBew with any

further rule ϕ1, . . . , ϕn/α, then it is possible to dispose

of the rule just adding the axiom (Bϕ1∧· · ·∧Bϕn)→ ϕ.

This property is also the case for the logics FL∆ew and

FLDew.

Proposition 22 FLBew is a conservative expansion of

FLew.

Proof Use Proposition 4 and the Finite Model Prop-

erty of FLew (see [14]). �

One could analogously define the expansion of MTL

(which is in turn the extension of FLew with the pre-

linearity axiom (ϕ → ψ) ∨ (ψ → ϕ)) with B, with

the same additional axioms and rule, yielding the logic

MTLB , which is again algebraizable and strongly com-

plete with respect to variety MTLB of MTLB-algebras.
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However, unlike the case of expansion with ∆, MTLB is

not a semilinear logic, that is, it is not complete with re-

spect to the class of MTLB-chains. The reason for this,

as it is easily seen in the example of Figure 1, is that

the ∨-form of rule (B), “from ψ ∨ ϕ derive ψ ∨Bϕ”, is

not derivable in MTLB . Indeed, taking elements b and

in the five Gödel algebra of the example it is clear that

B(b) = B(c) = 0 while B(b ∨ c) = B(1) = 1.

As a final result, we can show that FLBew inherits

from FLew the Finite Model Property (FMP). Before

proving this, we introduce some preliminary notation.

For a logic L ∈ {Flew or FLBew}, let us denote

by Fm(L, V ar) the set of L-formulas built from a set

V ar of propositional variables. Now let us define the

enlarged set of propositional variables V ar∗ = V ar ∪
{“Bϕ” | Bϕ ∈ Fm(FLBew, V ar)}, where “Bϕ” is in-

tended to denote a fresh propositional variable, one

for each formula Bϕ ∈ Fm(FLBew, V ar). Then, we can

define a one-to-one translation of every formula ϕ ∈
Fm(FLBew, V ar) into a formula ϕ∗ ∈ Fm(FLew, V ar

∗),

by just inductively defining:

- 0∗ = 0,

- if ϕ = p ∈ V ar, then ϕ∗ = p,

- if ϕ = Bψ, then ϕ∗ = “Bψ”,

- if ϕ = ψ�χ, then ϕ∗ = ψ∗�χ∗, for � ∈ {∧,∨,&,→}.

If Γ is a set of formulas, we will write Γ ∗ = {ϕ∗ | ϕ ∈
Γ}. Note that for any ψ ∈ Fm(FLew, V ar

∗), there is a

formula ϕ ∈ Fm(FLBew, V ar) such that ϕ∗ = ψ.

Moreover, we need the following result that will al-

low us to reduce proofs in FLBew to proofs in FLew.

Lemma 14 Let T be the set of all instances of axioms

of FLBew. For each set Γ ∪ {ϕ} ⊆ Fm(FLBew, V ar), it

holds that

Γ `FLB
ew
ϕ iff Γ ∗ ∪ Cg∗ ∪ T ∗ `FLew ϕ∗,

where Cg = {Bϕ↔ Bψ | Γ `FLB
ew
ϕ↔ ψ}.

The proof is quite straightforward and analogous to

those of similar results that can be found in the litera-

ture in slightly different contexts.

Theorem 4 FLBew enjoys the FMP, that is, if Γ 6`FLB
ew

ϕ, then there is a finite A ∈ RLB and an A-evaluation

e such that e(Γ ) = 1 and e(ϕ) < 1.

Proof If Γ 6`FLB
ew
ϕ, by Lemma 14, it holds that Γ ∗ ∪

Cg∗ ∪ T ∗ 6`FLew
ϕ∗, and by strong completeness and

FMP of FLew, there is a finite algebra C ∈ RL and

C-evaluation v such that v(Γ ∗ ∪ Cg∗ ∪ T ∗) = 1 and

v(ϕ∗) < 1. Then, the result will follow from the follow-

ing facts:

Claim 1: G = {v(“Bϕ”) | Bϕ ∈ Fm(FLBew, V ar)} is

a set of Boolean elements of C.

Proof of the claim: It is enough to check that v((Bϕ)∗)∨
¬v((Bϕ)∗) = v((Bϕ)∗ ∨¬(Bϕ)∗) = v((Bϕ∨¬Bϕ)∗) =

1, where the latter holds because Bϕ∨¬Bϕ is the axiom

(BE2) of FLBew. a

Claim 2: Let A be the RL-algebra generated by the

set X = {v(ϕ) | ϕ ∈ Fm(FLew, V ar
∗)}, which is finite

since A is a subalgebra of C. Then, B exists in A and

B(A) = G. Therefore, A is indeed an RLB-algebra.

Proof of the claim: That A is finite is obvious, and thus,

by Proposition 5, B exists. On the other hand, the el-

ements of G keep being Boolean in A. Hence, the only

missing thing to check is that any Boolean element of

A already belongs to G. This is also clear since Boolean

elements are closed by propositional combinations with

connectives. a

Claim 3: Let us define the A-evaluation (taking A as

RLB-algebra) e : V ar → A defined by e(p) = v(p).

Then, for any ϕ, e(ϕ) = v(ϕ∗), in particular, e(Bϕ) =

v(“Bϕ”).

Proof of the claim: We prove that e(ϕ) = v(ϕ∗) by

structural induction.

- if ϕ is a propositional variable, it holds by construc-

tion

- if ϕ = ψ � χ for � ∈ {∧,∨,&,→}, by induction

hypothesis we have e(ψ) = v(ψ∗) and e(χ) = v(χ∗),

and hence e(ϕ) = e(ψ�ψ) = e(ψ)�e(χ) = v(ψ∗)�
v(χ∗) = v(ψ∗ � χ∗) = v((ψ � χ)∗) = v(ϕ∗).

- If ϕ = Bψ, then we have to prove that v(“Bψ”) =

B(e(ψ)), the latter being equal to e(Bψ) by defini-

tion. Therefore, we have to prove in turn that the

three defining conditions (BE1), (BE2), and (BEI)

are satisfied by v(“Bψ”) = v((Bψ)∗) to be the great-

est Boolean below e(ψ), assuming by induction that

v(ψ∗) = e(ψ).

(BE1) Since Bψ → ψ is axiom (BE1) of FLBew, we have

that 1 = v((Bψ → ψ)∗) = v((Bψ)∗)→ v(ψ∗) =

v((Bψ)∗)→ e(ψ). Hence, v((Bψ)∗) ≤ e(ψ).

(BE2) is clear from Claim 1.

(BI) We have to check that if b ∈ B(A) is such that

b ≤ e(ψ) = v(ψ∗), then b ≤ v((Bψ)∗). If b ∈
B(A), by construction of A, then there exists

a formula χ such that b = v((Bχ)∗). On the

other hand, by (ii) of Lemma 12, we know that

Bχ→ ψ,Bχ∨¬Bχ ` Bχ→ Bψ. Thus, we also

know that if v((Bχ)∗) ≤ v(ψ)∗ and v((Bχ)∗) ∨
¬v((Bχ)∗) = 1, then v((Bχ)∗ ≤ v((Bψ)∗). Now,

the two conditions are satisfied, hence we have

b = v((Bχ)∗ ≤ v((Bψ)∗).
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This closes the proof of Claim 3. a

Finally, from these claims it readily follows that e(Γ ) =

v(Γ ∗) = 1 and e(ϕ) = v(ϕ∗) < 1, as required. �

6 Conclusions and dedication

In this paper we have conisered the expansion of FLew
with the operator B, that in algebraic terms provides

the greatest Boolean below a given element of a residu-

ated lattice. Among other things, we have axiomatized

it and shown that the resulting logic is a conservative

expansion enjoying the Finite Model Property. The ax-

ioms for B turn out to be very close to those of the

Monteiro-Baaz ∆ operator, in fact only one axiom is a

weaker version of the one for ∆. Even if the properties

are very similar, that small difference causes, e.g. that

in the context of MTL, the expansion with B is not any

longer a semilinear logic, in contrast to the expansion

with ∆.

As a matter of fact, we have chosen this topic for

our humble contribution to honour the memory of our

beloved and late friend Franco Montagna, because it

was suggested by Franco to the first author during the

preparation of their joint manuscript [1], together with

Amidei, where they study the expansion of FLew and

other substructural logics with ∆.
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