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Rigs and really local rigs

Definition

A rig is a structure (A, ·, 1,+, 0) such that (A, ·, 1) and (A,+, 0) are
commutative monoids and distributivity holds in the sense that a · 0 = 0
and (a + b) · c = a · c + b · c for all a, b, c ∈ A.

Let E be a category with finite limits. For any rig A in E we define the
subobject Inv(A)→ A× A by declaring that the diagram below

Inv(A)

��

! // 1

1
��

A× A ·
// A

is a pullback. The two projections Inv(A)→ A are mono in E and induce
the same subobject of A.
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Rigs and really local rigs

Definition

A rig morphism f : A→ B between rigs in E is local if the following
diagram

InvA

��

// InvB

��
A

f
// B

is a pullback.

If E is a topos with subobject classifier > : 1→ Ω then there exists a
unique map ι : A→ Ω such that the square below

Inv(A)

��

! // 1

>

��
A

ι
// Ω
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Rigs and really local rigs

Definition (Lawvere, [1])

The rig A in E is really local if ι : A→ Ω is local.

An application of the internal logic of toposes shows the following:

Lemma

The rig A is really local if and only if the following sequents hold

0 ∈ Inv(A) ` ⊥
(x + y) ∈ Inv(A) `x ,y x ∈ Inv(A) ∨ y ∈ Inv(A)

x ∈ Inv(A) ∨ y ∈ Inv(A) `x ,y (x + y) ∈ Inv(A)

in the internal logic of E .
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Integral rigs and really local integral rigs

Definition
A rig is called integral if the equation 1 + x = 1 holds.

In every integral rig A the relation a ≤ b if and only if a + b = b, determines a
partial order. Moreover, respect to this order (A,+, 0) becomes a join-semilattice.

Lemma

If A is integral then the canonical 1→ Inv(A) is an iso.

Lemma (Really local integral rigs)

An integral rig is really local if and only if the following sequents hold

0 = 1 ` ⊥
x + y = 1 `x ,y x = 1 ∨ y = 1

in the internal logic of E .
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Integral rigs in Shv(D)

Let D a bounded distributive lattice and Shv(D) the category of sheaves
over D with the coherent topology.

In Shv(D), an integral rig is a functor

F : Dop −→ iRig

such that the composition with the forgetful functor

iRig −→ Set

is a sheaf respect to the coherent topology.

Proposition
A functor F : Dop → Set is an integral rig in Shv(D) if and only if:

i) F is a sheaf respect to the coherent topology.
ii) For every d ∈ D, F (d) is an integral rig in Set.
iii) If c ≤ d in D, then F (d)→ F (c) is a morphism of integral rigs.
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Really local integral rigs in Shv(D)

Lemma

An integral rig F in Shv(D) is really local if and only if, the equalizer of
the arrows 0 and 1 is the initial object; and the morphism induced by the
coproduct r : F + F → [x + y = 1] is an epimorphism.

A more explicit characterization follows:

Lemma

A sheaf F in Shv(D) is really local if an only if:
i) For every d ∈ D and s, t ∈ F (d) such that s + t = 1, there exists

u, v ≤ d with u ∨ v = d , such that s · v = 1v and t · u = 1u.
ii) F (d) = 1 if and only if d = 0.
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Reticulation of an integral rig

Let A and integral rig in Set and x , y ∈ A. Define:

x � y if and only if ∃m∈N, xm ≤ y

Since multiplication is monotone with respect to ≤, � is indeed a preorder.
Let ∼ the equivalence relation on A determined by �.

Lemma (Reticulation)

If A is an integral rig the relation ∼ is a rig congruence and the quotient
ηA : A→ A/∼ is universal from A to the inclusion dLat→ iRig. Moreover,
the map ηA : A→ A/∼ is local.

Denote the resulting left adjoint by L : iRig→ dLat and the associated
unit by ηA = η : A→ LA. This unit and its codomain LA may be referred
to as the reticulation of the rig A.
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The really local sheaf associated to an integral rig

Let A an integral rig. For any subset S ⊆ A let us write A→ A[S−1] for
any solution to the universal problem of inverting all the elements of S .

Let F → A a multiplicative submonoid and x , y ∈ A. Define:

x |F y if and only if ∃w∈F , wx ≤ y

Observe that |F is a pre-order.

Lemma (Localizations)

If A is integral and F → A is a multiplicative submonoid then the
equivalence relation ≡F determined by the pre-order |F is a congruence and
the quotient A→ A/≡F has the universal property of A→ A[F−1].
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The really local sheaf associated to an integral rig

Lemma (Pullback-Pushout Lemma)

Let A an integral rig and a, b ∈ A. The following diagram is a Pushout and
also a Pullback in iRig.

A[(a + b)−1] //

��

A[a−1]

��
A[b−1] // A[(ab)−1]

Let η : A→ LA the reticulation of A. The assignment ηx 7→ A[x−1] defines
a presheaf A : LAop −→ Set such that A(η1) ∼= A.

Proposition

The presheaf A is really local in Shv(LA).
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Principal subobjects

Regard:

Λ : Dop → Set, with Λ(d) = (↓d), Λ(c ≤ d)(x) = x ∧ c ∈ Λ(c).

Lemma

If X is an integral rig in Shv(D) then the following are equivalent.

1 The rig X is really local and 1 : 1→ X is principal.
2 The rig X is really local and for every d ∈ D and x ∈ X (d) there

exists a largest c ≤ d such that x · c = 1 ∈ X (c).
3 There is a local morphism of rigs X → Λ.

Moreover, in case the above holds, the map X → Λ is unique.
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The category of representations

Some previous considerations:

Every morphism of lattices f : D → C , determines:

A functor f∗ : Shv(C )→ Shv(D) wich results to be the direct image
of a geometric morphism between the topos Shv(C ) and Shv(D).
A morphism f : ΛD → f∗ΛC in Shv(D), such that, for every d ∈ D,

fd : (↓d)→ (f∗ΛC )d = (↓ f (d))

is defined as fd(x) = f (x), for every x ∈ (↓d).
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The category of representations

Definition (The category I)

A really local representation (of an integral rig) is a pair (D,P) consisting
of a bounded distributive lattice D and an integral rig P in Shv(D)
satisfying the equivalent conditions of Lemma.

A morphism
(D,P)→ (C ,Q) is a pair (f , g), where f : D → C is a lattice morphism
and g : P → f∗(Q) is a morphism of rigs in Shv(D) such that the diagram

P
g //

φP

��

f∗(Q)

f∗(φQ)
��

ΛD f
// f∗(ΛC )

commutes.
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Representation theorem

Lemma

For every integral rig A, the pair (LA,A) is a really local representation.

Let A and B integral rigs in Set and f : A→ B a morphism of integral
rigs. Consider the morphism of lattices Lf : LA→ LB induced by the
functor L : iRig→ dLat.

Such morphism, determines a canonic functor

Lf ∗ : Shv(LB)→ Shv(LA)

which results to be the direct image of a geometric morphism.
There exists a unique f : A→ Lf ∗(B) in Shv(LA) such that the lower
diagram commutes

A
f //

��

B

��
A[a−1]

f a // B[f (a)−1]
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Representation theorem

Lemma

For every morphism of integral rigs f : A→ B , the pair (Lf , f ) is a
morphism in I.

As a consequence of previous results:

R : iRig −→ I

R(A) = (LA,A) for an integral rig A.
R(f ) = (Lf , f ) for a morphism of integral rigs f : A→ B .
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Representation theorem

On the other hand:

Γ : I −→ iRig

Γ(C ,Q) = Q(1) for a really local representation (C ,Q).
Γ(f , g) = g1 for a morphism (f , g) : (C ,P)→ (D,Q) of really local
representations.

Theorem (Really Local Representation)

The functor Γ : I −→ iRig has a full and faithful left adjoint.
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Translation in terms of local homeos

Let D a bounded distributive lattice. The spectrum of D (Spec(D)) is the
topological space consisting of the following data:

Points (σ(D)): Lattice morphisms p : D → 2.
Open basic sets:

σ(a) = {p ∈ σ(D) | p(a) = >}

for every a ∈ D.

Spec(D) is a coherent (spectral) space.

Theorem (Classical)
For every bounded distributive lattice D , LH/Spec(D) ∼= Shv(D).
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σ(a) = {p ∈ σ(D) | p(a) = >}

for every a ∈ D.

Spec(D) is a coherent (spectral) space.

Theorem (Classical)
For every bounded distributive lattice D , LH/Spec(D) ∼= Shv(D).
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The spectrum of an integral rig

Let η : A→ LA the reticulation of A. Observe that there is a bijection
dLat(LA, 2)→ iRig(A, 2).

Definition

Let A an integral rig. The spectrum of A, is the topological space whose
set of points is given by iRig(A, 2) and possesses a basis of open sets
determined by the sets σ(x) = {p ∈ iRig(A, 2) | p(x) = >}. Such space
will be called Spec(A).

For every integral rig A, Shv(LA) ∼= LH/Spec(A).
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Fibers of the associated sheaf

Observe that, the fiber of the representing sheaf A ∈ Shv(LA) of A over a
point p : A→ 2 is

(A)p = lim−→
px=>

A(ηx) = lim−→
px=>

A[x−1]

Lemma

For any multiplicative submonoid F → A there exists an isomorphism
between A[F−1] and lim−→x∈Fop A[x−1].

Remark (Fibers of A)

Regarding A ∈ Shv(LA) as a local homeo over Spec(A), implies that the
fiber over a point p : A→ 2 in Spec(A) coincides with the localization of A
at the multiplicative submonoid p−1(>)→ A.
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Some Corollaries

Corollary
Every integral rig may be represented as the algebra of global sections of a
local homeo (over the spectral space Spec(A)) whose fibers are really local
integral rigs.

Corollary
Every integral rig is a subdirect product of really local integral rigs.
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The representation of MV-algebras

Definition
An MV-rig is an integral residuated rig (A, ·, 1,+, 0,() such that the
following (Wajsberg) condition:

(x ( y) ( y = (y ( x) ( x

holds.

Let mvRig the algebraic category of MV-rigs over Set and MV the
category of MV-algebras.

mvRig are MV equivalent.
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The representation of MV-algebras

Every MV-algebra M has an associated topological space, whose set of
points is given by ZM and whose topology is determined by the basic open
sets of the form Wa = {P ∈ ZM | a ∈ P}, for every a ∈ M. Such space is
noted by SpecM .

Let M an MV-algebra and R its lying MV-rig. Then:

Lemma

For every p : R → 2 in iRig, the subset

Ip = ¬(p−1(>)) = {¬x | p(x) = >} → A

is a prime ideal of M.

The spaces Spec(R) y SpecM are homeomorphic.
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The Dubuc-Poveda Representation

Let EM → SpecM the Dubuc-Poveda representation for a MV-algebra M.

Let ϕ : SpecM → Spec(R) the isomorphism mentioned above:

ϕ∗ : LH/SpecM → LH/Spec(R) is an equivalence.
Then, for every p : R → 2,

(ϕ∗EM)p = (EM)ϕ(p) = M/(Ip) ∼= R[Q−1] = R̂Q , with Q = p−1(>)

where R̂Q is the fiber of the representation for integral rigs.
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