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What is constructive canonicity?

Preservation of validity of inequalities under (constructive)
canonical extensions:

A |= ϕ ≤ ψ ⇒ Aδ |= ϕ ≤ ψ.

(Constructive) canonical extension of lattice A

Complete lattice Aδ containing A as a dense and compact
sublattice

In the presence of the Axiom of Choice, Aδ is perfect:

J∞(Aδ) is completely join-dense in Aδ, and

M∞(Aδ) is completely meet-dense in Aδ.

In the constructive setting: not enough join/meet-irreducibles
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Our results

[Conradie Craig 2014]: canonicity for mu-calculus

distributive-based, with fixed points, specific signature

non-constructive metatheory

[Conradie Palmigiano 2016]: constructive canonicity

general lattice-based, no fixed points, arbitrary signature

constructive metatheory

[CCPZ16]: constructive canonicity for lattice-based fixed point
logics

general lattice-based, with fixed points, arbitrary signature

constructive metatheory

smooth and modular extension, supported by the unified
correspondence approach
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A general strategy of canonicity via ALBA

A |= α ≤ β

⇔
Aδ |=A α ≤ β

⇔

Aδ |=A ALBA(α ≤ β) Aδ |= ALBA(α ≤ β)

⇐
⇒

⇐⇒

Aδ |= α ≤ β

We apply this strategy to lattice-based logics with fixed points
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Two interpretations of fixed point operators

Motivation: completeness

Problem: canonical extension changes the values of fixed point
formulas

In the lattice expansion A:

µx.t(x, a1, . . . , an−1) :=
∧
{ a ∈ A | t(a, a1, . . . , an−1) ≤ a }

if this meet exists, otherwise µx.t(x, a1, . . . , an−1) is undefined.

In the canonical extension Aδ of lattice expansion A:

µ∗x.t(x, a1, . . . , an−1) :=
∧
{ a ∈ A | t(a, a1, . . . , an−1) ≤ a }

Consequence: two definitions of canonicity
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Two definitions of canonicity

ϕ ≤ ψ is canonical:

A |= ϕ ≤ ψ ⇒ Aδ |= ϕ ≤ ψ.

ϕ ≤ ψ is tame canonical:

A |= ϕ ≤ ψ ⇒ Aδ |= ϕ∗ ≤ ψ∗.
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Two Syntactic Characterizations

From the two notions of canonicity, two syntactic characterizations
arise of formulas guaranteed to be canonical for each type:

+ϕ

+ ∨ f µ
− ∧ g ν

p
Critical

γ

+ ∧ g
− ∨ f

Canonicity

≤ −ψ

+ ∨ f µ
− ∧ g ν

γ′ p
Critical

+ ∧ g
− ∨ f
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Two Syntactic Characterizations

From the two notions of canonicity, two syntactic characterizations
arise of formulas guaranteed to be canonical for each type:
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Tame canonicity
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