Undecidability of some modal MTL logics (formerly product logics)

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences

September 6, 2016

Contents

1. Introduction
2. (Un)decidability on modal MTL logics

Reducing to PCP
The Global modal logic case
The Local modal logic case

Contents

1. Introduction

2. (Un)decidability on modal MTL logics
 Reducing to PCP
 The Global modal logic case
 The Local modal logic case

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
- Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
- Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]
- The previous case with involutive negation or allowing GCI (some globally valid formulas) is undecidable [Baader et.al]

Introduction

- Many normal (classical) modal logics: finite model property + finite axiomatizability \Rightarrow decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
- Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
- Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]
- The previous case with involutive negation or allowing GCI (some globally valid formulas) is undecidable [Baader et.al]
- ...

MTL Kripke-models

$\mathbf{A}=\langle A, \odot, \Rightarrow, \min , 1,0$,$\rangle a complete MTL algebra (conm. integral$ bounded prelinear residuated lattices $=$ algebras in the variety generated by all left-continuous t-noms).
Language: \& $, \wedge, \rightarrow, \overline{0}$ plus two unary (modal) symbols (\square, \diamond)

MTL Kripke-models

$\mathbf{A}=\langle A, \odot, \Rightarrow$, min $, 1,0$,$\rangle a complete MTL algebra (conm. integral$ bounded prelinear residuated lattices $=$ algebras in the variety generated by all left-continuous t-noms).
Language: $\&, \wedge, \rightarrow, \overline{0}$ plus two unary (modal) symbols (\square, \diamond)

Definition

A (crisp) A Kripke model \mathfrak{M} is a tripla $\langle W, R, e\rangle$ where:

- $R \subseteq W \times W$ (Rus stands for $\langle u, s\rangle \in R$)
- e: $W \times \operatorname{Var} \rightarrow A$ uniquelly extended by:
- $e(u, \varphi \& \psi)=e(u, \varphi) \odot e(u, \psi)$;
$e(u, \varphi \rightarrow \psi)=e(u, \varphi) \Rightarrow e(u, \psi)$;
$e(u, \varphi \wedge \psi)=\min \{e(u, \varphi), e(u, \psi)\} ; e(e, \overline{0})=0$
- $e(u, \square \varphi)=\inf \{e(s, \varphi): \operatorname{Rus}\}$
- $e(u, \diamond \varphi)=\sup \{e(s, \varphi): R u s\}$

Modal MTL logics

C a class of complete MTL-algebras.

- (Global deduction): $\Gamma \Vdash \varphi$ iff $[\forall u \in W e(u,[\Gamma]) \subseteq\{1\}]$ implies $[\forall u \in W e(u, \varphi)=1]$ for all A Kripke models \mathfrak{M} with $\mathbf{A} \in C$. $\Gamma \Vdash^{f} \varphi$ for denoting the same relation over finite (i.e., finite W) Kripke models.

Modal MTL logics

C a class of complete MTL-algebras.

- (Global deduction): $\Gamma \Vdash_{c} \varphi$ iff $[\forall u \in W e(u,[\Gamma]) \subseteq\{1\}]$ implies $[\forall u \in W e(u, \varphi)=1]$ for all A Kripke models \mathfrak{M} with $\mathbf{A} \in C$. $\Gamma \Vdash^{f}{ }_{C} \varphi$ for denoting the same relation over finite (i.e., finite W) Kripke models.
- (Local deduction): $\Gamma \vdash_{4 C} \varphi$ iff $\forall u \in W[e(u,[\Gamma]) \subseteq\{1\}$ implies $e(u, \varphi)=1]$ for all transitive \mathbf{A} Kripke models \mathfrak{M} with $\mathbf{A} \in C$.
$\Gamma \vdash_{4 C}^{f} \varphi$ for denoting the same relation over finite transitive Kripke models

Contents

1. Introduction

2. (Un)decidability on modal MTL logics Reducing to PCP

The Global modal logic case The Local modal logic case

Undecidability results

For $n<\omega$, a MTL-algebra is n-contractive iff it validates the equation

$$
x^{n} \rightarrow x^{n+1}=1
$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras. For arbitrary $\Gamma \cup\{\varphi\}$ the following are undecidable:

Undecidability results

For $n<\omega$, a MTL-algebra is n-contractive iff it validates the equation

$$
x^{n} \rightarrow x^{n+1}=1
$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras.
For arbitrary $\Gamma \cup\{\varphi\}$ the following are undecidable:

1. $\Gamma \Vdash^{\circ} \varphi$
2. $\Gamma \Vdash_{C}^{f} \varphi$ (global deduction)

Undecidability results

For $n<\omega$, a MTL-algebra is n-contractive iff it validates the equation

$$
x^{n} \rightarrow x^{n+1}=1
$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras.
For arbitrary $\Gamma \cup\{\varphi\}$ the following are undecidable:

1. $\Gamma \Vdash^{\circ} \varphi$
2. $\Gamma \Vdash^{f}{ }_{C} \varphi$ (global deduction)
3. $\Gamma \vdash_{4 C} \varphi$
4. $\Gamma \vdash_{4 C}^{f} \varphi$ (local deduction in transitive frames)

Post Correspondence Problem

An instance of the PCP is a list of pairs $\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right\rangle \ldots\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{n}}\right\rangle$ where $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}$ are numbers in base $s \geq 2$.

Post Correspondence Problem

An instance of the PCP is a list of pairs $\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right\rangle \ldots\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{n}}\right\rangle$ where $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}$ are numbers in base $s \geq 2$.
It is undecidable whether there exist i_{1}, \ldots, i_{k} such that

$$
\mathbf{v}_{\mathbf{i}_{1}} \cdots \mathbf{v}_{\mathbf{i}_{\mathbf{k}}}=\mathbf{w}_{\mathbf{i}_{1}} \cdots \mathbf{w}_{\mathbf{i}_{\mathbf{k}}}
$$

Post Correspondence Problem

An instance of the PCP is a list of pairs $\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right\rangle \ldots\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{n}}\right\rangle$ where $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}$ are numbers in base $s \geq 2$.
It is undecidable whether there exist i_{1}, \ldots, i_{k} such that

$$
\mathbf{v}_{\mathbf{i}_{1}} \cdots \mathbf{v}_{\mathbf{i}_{\mathbf{k}}}=\mathbf{w}_{\mathbf{i}_{1}} \cdots \mathbf{w}_{\mathbf{i}_{k}}
$$

- \mathbf{a}, \mathbf{b} numbers in base $s \Longrightarrow \mathbf{a b}=\mathbf{a} \cdot s^{\|\mathbf{b}\|}+\mathbf{b}$, where $\|\mathbf{b}\|$ is the length of \mathbf{b} (in base s).

Post Correspondence Problem

An instance of the PCP is a list of pairs $\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{w}_{\mathbf{1}}\right\rangle \ldots\left\langle\mathbf{v}_{\mathbf{n}}, \mathbf{w}_{\mathbf{n}}\right\rangle$ where $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}$ are numbers in base $s \geq 2$.
It is undecidable whether there exist i_{1}, \ldots, i_{k} such that

$$
\mathbf{v}_{\mathbf{i}_{1}} \cdots \mathbf{v}_{\mathbf{i}_{\mathbf{k}}}=\mathbf{w}_{\mathbf{i}_{1}} \cdots \mathbf{w}_{\mathbf{i}_{\mathbf{k}}}
$$

- \mathbf{a}, \mathbf{b} numbers in base $s \Longrightarrow \mathbf{a b}=\mathbf{a} \cdot s^{\|\mathbf{b}\|}+\mathbf{b}$, where $\|\mathbf{b}\|$ is the length of \mathbf{b} (in base s).
- we can exploit the conjunction operation to express concatenation (using powers over some y "non-contractive")

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_{g}(P) \cup\left\{\varphi_{g}\right\}$ such that

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{g}(P) \Vdash \subset \varphi_{g}
$$

Moreover $\Gamma_{g}(P) \Vdash_{c} \varphi_{g} \Longleftrightarrow \Gamma_{g}(P) \Vdash^{f}{ }_{C} \varphi_{g}$.

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_{g}(P) \cup\left\{\varphi_{g}\right\}$ such that

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{g}(P) \nvdash \subset \varphi_{g}
$$

Moreover $\Gamma_{g}(P) \Vdash_{C} \varphi_{g} \Longleftrightarrow \Gamma_{g}(P) \Vdash^{f}{ }_{C} \varphi_{g}$.

- Proving \Longrightarrow will not be hard (constructing a model using the solution of P).

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_{g}(P) \cup\left\{\varphi_{g}\right\}$ such that

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{g}(P) \nvdash \subset \varphi_{g}
$$

Moreover $\Gamma_{g}(P) \Vdash_{c} \varphi_{g} \Longleftrightarrow \Gamma_{g}(P) \Vdash^{f}{ }_{C} \varphi_{g}$.

- Proving \Longrightarrow will not be hard (constructing a model using the solution of P).
- Idea for \Longleftarrow : if $\Gamma_{g}(P) \Vdash \varphi_{g}$ then it happens in u_{k} of a particular structure shaped like

The global case: formulas

Variables used: $\mathcal{V}=\{x, y, z, v, w\} . y, z$, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.

The global case: formulas

Variables used: $\mathcal{V}=\{x, y, z, v, w\} . y, z$, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.
Formulas of $\Gamma_{g}(P)$:

- $(\neg \square \overline{0}) \rightarrow(\square p \leftrightarrow \diamond p)$ for each $p \in \mathcal{V}:$

The global case: formulas

Variables used: $\mathcal{V}=\{x, y, z, v, w\} . y, z$, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.
Formulas of $\Gamma_{g}(P)$:

- $(\neg \square \overline{0}) \rightarrow(\square p \leftrightarrow \diamond p)$ for each $p \in \mathcal{V}$:

Lemma

If $\Gamma_{g}(P) \Vdash \subset \psi$ (for arbitrary ψ in \mathcal{V}) then there is a C Kripke model \mathfrak{M} with $W=\left\{u_{i}: i \in \omega\right\}$ or $W=\left\{u_{i}: i \leq k\right\}$ and $R=\left\{\left\langle u_{i}, u_{i+1}\right\rangle\right\}$ such that

- \mathfrak{M} is a model for $\Gamma_{g}(P)$ and
- $e\left(u_{1}, \psi\right)<1$

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right):$

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$.

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$. idea: if $e(u, x)=\alpha_{z}^{i}$, the number added in the concatenation (to v and w) is the one indexed by i.

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$. idea: if $e(u, x)=\alpha_{z}^{i}$, the number added in the concatenation (to v and w) is the one indexed by i.
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(v \leftrightarrow(\square v)^{\Delta\left\|v_{i}\right\|} \& y^{\mathbf{v}_{i}}\right)$ for each $1 \leq i \leq n$:

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$. idea: if $e(u, x)=\alpha_{z}^{i}$, the number added in the concatenation (to v and w) is the one indexed by i.
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(v \leftrightarrow(\square v)^{\| \| v_{i} \|} \& y^{v_{i}}\right)$ for each $1 \leq i \leq n$: (information on the concatenation of $v s$)

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$. idea: if $e(u, x)=\alpha_{z}^{i}$, the number added in the concatenation (to v and w) is the one indexed by i.
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(v \leftrightarrow(\square v)^{\| \| v_{i} \|} \& y^{v_{i}}\right)$ for each $1 \leq i \leq n$: (information on the concatenation of $v s$)
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(w \leftrightarrow(\square w)^{s^{\left\|\mathbf{w}_{i}\right\|}} \& y^{\mathbf{w}_{i}}\right)$ for each $1 \leq i \leq n$: (as above for $\mathbf{w s}$)

The global case: formulas

- $\bigvee_{1 \leq i \leq n}\left(x \leftrightarrow z^{i}\right)$: at each world $u, x=\alpha_{z}^{i}$ for some $1 \leq i \leq n$. idea: if $e(u, x)=\alpha_{z}^{i}$, the number added in the concatenation (to v and w) is the one indexed by i.
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(v \leftrightarrow(\square v)^{\| \| v_{i} \|} \& y^{v_{i}}\right)$ for each $1 \leq i \leq n$: (information on the concatenation of $v s$)
- $\left(x \leftrightarrow z^{i}\right) \rightarrow\left(w \leftrightarrow(\square w)^{s\left\|\mathbf{w}_{i}\right\|} \& y^{\mathbf{w}_{i}}\right)$ for each $1 \leq i \leq n$: (as above for $\mathbf{w s}$)

$$
\text { Let } \varphi_{g}=(v \leftrightarrow w) \rightarrow\left((v \rightarrow v \& y) \vee(w \rightarrow w \& y) \vee\left(z^{n-1} \rightarrow z^{n}\right)\right)
$$

The global case: main result

Lemma

Let \mathfrak{M} with $W=\left\{u_{i}: 1 \leq i \leq \kappa\right\}$ and
$R=\left\{\left\langle u_{i+1}, u_{i}\right\rangle: 1 \leq i<\kappa\right\}$ be a model of $\Gamma_{g}(P)$ such that $e\left(u_{\kappa}, \varphi_{g}\right)<1$. Then

1. $\kappa<\omega$ (i.e, the model is finite)

The global case: main result

Lemma

Let \mathfrak{M} with $W=\left\{u_{i}: 1 \leq i \leq \kappa\right\}$ and $R=\left\{\left\langle u_{i+1}, u_{i}\right\rangle: 1 \leq i<\kappa\right\}$ be a model of $\Gamma_{g}(P)$ such that $e\left(u_{\kappa}, \varphi_{g}\right)<1$. Then

1. $\kappa<\omega$ (i.e, the model is finite)
$e\left(u_{\kappa}, v\right)=\inf _{i \leq \nu} \alpha_{y}^{i}$ for some $\nu \leq \omega$ (same for w and some λ).

The global case: main result

Lemma

Let \mathfrak{M} with $W=\left\{u_{i}: 1 \leq i \leq \kappa\right\}$ and $R=\left\{\left\langle u_{i+1}, u_{i}\right\rangle: 1 \leq i<\kappa\right\}$ be a model of $\Gamma_{g}(P)$ such that $e\left(u_{\kappa}, \varphi_{g}\right)<1$. Then

1. $\kappa<\omega$ (i.e, the model is finite)
$e\left(u_{\kappa}, v\right)=\inf _{i \leq \nu} \alpha_{y}^{i}$ for some $\nu \leq \omega$ (same for w and some λ). since $e\left(u_{k}, v \rightarrow v \& y\right)<1$ (and sim. for w) then $\nu, \lambda<\omega$ and the model is of finite depth.

The global case: main result

Lemma

Let \mathfrak{M} with $W=\left\{u_{i}: 1 \leq i \leq \kappa\right\}$ and $R=\left\{\left\langle u_{i+1}, u_{i}\right\rangle: 1 \leq i<\kappa\right\}$ be a model of $\Gamma_{g}(P)$ such that $e\left(u_{\kappa}, \varphi_{g}\right)<1$. Then

1. $\kappa<\omega$ (i.e, the model is finite)
$e\left(u_{\kappa}, v\right)=\inf _{i \leq \nu} \alpha_{y}^{i}$ for some $\nu \leq \omega$ (same for w and some λ). since $e\left(u_{k}, v \rightarrow v \& y\right)<1$ (and sim. for w) then $\nu, \lambda<\omega$ and the model is of finite depth.
2. $\alpha_{z}^{n}<\ldots<\alpha_{z}$ (determining indexes from 1 to n)

The global case: main result

Lemma

Let \mathfrak{M} with $W=\left\{u_{i}: 1 \leq i \leq \kappa\right\}$ and $R=\left\{\left\langle u_{i+1}, u_{i}\right\rangle: 1 \leq i<\kappa\right\}$ be a model of $\Gamma_{g}(P)$ such that $e\left(u_{\kappa}, \varphi_{g}\right)<1$. Then

1. $\kappa<\omega$ (i.e, the model is finite)
$e\left(u_{\kappa}, v\right)=\inf _{i \leq \nu} \alpha_{y}^{i}$ for some $\nu \leq \omega$ (same for w and some λ). since $e\left(u_{k}, v \rightarrow v \& y\right)<1$ (and sim. for w) then $\nu, \lambda<\omega$ and the model is of finite depth.
2. $\alpha_{z}^{n}<\ldots<\alpha_{z}$ (determining indexes from 1 to n) follows from $e\left(u_{\kappa}, z^{n}\right)<e\left(u_{\kappa}, z^{n-1}\right)$

The global case: main result

3. for all $1 \leq j \leq \kappa, e\left(u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i_{j}}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.

The global case: main result

3. for all $1 \leq j \leq \kappa$, e($\left.u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i_{j}}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.
provable by induction in j.

The global case: main result

3. for all $1 \leq j \leq \kappa$, e($\left.u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i_{j}}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.
provable by induction in j.
4. let $a=\max \left\{v_{i_{1}} \cdots v_{i_{\kappa}}, w_{i_{1}} \cdots w_{i_{\kappa}}\right\}$. For any $1 \leq b<c \leq a$ it holds $\alpha_{y}^{c}<\alpha_{y}^{b}$.

The global case: main result

3. for all $1 \leq j \leq \kappa$, e($\left.u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i_{j}}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.
provable by induction in j.
4. let $a=\max \left\{v_{i_{1}} \cdots v_{i_{\kappa}}, w_{i_{1}} \cdots w_{i_{\kappa}}\right\}$. For any $1 \leq b<c \leq a$ it holds $\alpha_{y}^{c}<\alpha_{y}^{b}$.
it follows from $\alpha_{y}^{v_{1} \cdots v_{i_{k}}+1}<\alpha_{y}^{v_{i_{1}} \cdots v_{i_{\kappa}}}$, which holds from previous point and $e\left(u_{\kappa}, v \& y\right)<e\left(u_{\kappa}, v\right)$ (same for $w)$.

The global case: main result

3. for all $1 \leq j \leq \kappa$, e($\left.u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i_{j}}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.
provable by induction in j.
4. let $a=\max \left\{v_{i_{1}} \cdots v_{i_{\kappa}}, w_{i_{1}} \cdots w_{i_{\kappa}}\right\}$. For any $1 \leq b<c \leq a$ it holds $\alpha_{y}^{c}<\alpha_{y}^{b}$.
it follows from $\alpha_{y}^{v_{1} \cdots v_{i_{k}}+1}<\alpha_{y}^{v_{i_{1}} \cdots v_{i_{k}}}$, which holds from previous point and $e\left(u_{\kappa}, v \& y\right)<e\left(u_{\kappa}, v\right)$ (same for $w)$.
5. $e\left(u_{\kappa}, v\right)=e\left(u_{\kappa}, w\right)\left(\right.$ so $\left.v_{i_{1}} \cdots v_{i_{\kappa}}=w_{i_{1}} \cdots w_{i_{\kappa}}\right)$

The global case: main result

3. for all $1 \leq j \leq \kappa, e\left(u_{j}, v\right)=\alpha_{y}^{v_{i_{1}} \cdots v_{i j}}$ and $e\left(u_{j}, w\right)=\alpha_{y}^{w_{i_{1}} \cdots w_{i_{j}}}$ for $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ for $1 \leq j \leq k$.
provable by induction in j.
4. let $a=\max \left\{v_{i_{1}} \cdots v_{i_{\kappa}}, w_{i_{1}} \cdots w_{i_{\kappa}}\right\}$. For any $1 \leq b<c \leq a$ it holds $\alpha_{y}^{c}<\alpha_{y}^{b}$.
it follows from $\alpha_{y}^{v_{1} \cdots v_{i_{k}}+1}<\alpha_{y}^{v_{i_{1}} \cdots v_{i_{k}}}$, which holds from previous point and $e\left(u_{\kappa}, v \& y\right)<e\left(u_{\kappa}, v\right)$ (same for $w)$.
5. $e\left(u_{\kappa}, v\right)=e\left(u_{\kappa}, w\right)\left(\right.$ so $\left.v_{i_{1}} \cdots v_{i_{\kappa}}=w_{i_{1}} \cdots w_{i_{\kappa}}\right)$ otherwise, $e\left(u_{\kappa}, v \leftrightarrow w\right) \leq \alpha_{y}$ and we know $e\left(u_{\kappa}, v \rightarrow\right.$ $v \& y) \geq \alpha_{y}\left(\right.$ contradicting $\left.e\left(u_{\kappa}, \varphi_{g}\right)<1\right)$.

From P to a model and back

- If $\Gamma_{g}(P) \nVdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .

From P to a model and back

- If $\Gamma_{g}(P) \nvdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .
- If i_{1}, \ldots, i_{k} is a solution for P, then $\Gamma_{g}(P) \not \psi_{C}^{(f)} \varphi_{g}$ in u_{k} of the model $\mathfrak{M}=\left\langle\left\{u_{1}, \ldots, u_{k}\right\},\left\{\left\langle u_{k}, u_{k-1}\right\rangle, \ldots,\left\langle u_{2}, u_{1}\right\rangle\right\}, e\right\rangle$ with

From P to a model and back

- If $\Gamma_{g}(P) \nVdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .
- If i_{1}, \ldots, i_{k} is a solution for P, then $\Gamma_{g}(P) \not \psi_{C}^{(f)} \varphi_{g}$ in u_{k} of the model $\mathfrak{M}=\left\langle\left\{u_{1}, \ldots, u_{k}\right\},\left\{\left\langle u_{k}, u_{k-1}\right\rangle, \ldots,\left\langle u_{2}, u_{1}\right\rangle\right\}, e\right\rangle$ with
- $e(u, y)=\alpha_{y} \in A(\in C)$ such that α_{y} (and so, \mathbf{A}) is non r-contractive for r depending on n and $v_{i_{1}} \cdots v_{i_{k}}$,

From P to a model and back

- If $\Gamma_{g}(P) \nVdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .
- If i_{1}, \ldots, i_{k} is a solution for P, then $\Gamma_{g}(P) \Vdash_{C}^{(f)} \varphi_{g}$ in u_{k} of the model $\mathfrak{M}=\left\langle\left\{u_{1}, \ldots, u_{k}\right\},\left\{\left\langle u_{k}, u_{k-1}\right\rangle, \ldots,\left\langle u_{2}, u_{1}\right\rangle\right\}, e\right\rangle$ with
- $e(u, y)=\alpha_{y} \in A(\in C)$ such that α_{y} (and so, \mathbf{A}) is non r-contractive for r depending on n and $v_{i_{1}} \cdots v_{i_{k}}$,
- $e\left(u_{j}, v\right)=\alpha_{y}^{\nu_{i} \cdots v_{i_{j}}}$ (analogously for w),

From P to a model and back

- If $\Gamma_{g}(P) \nVdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .
- If i_{1}, \ldots, i_{k} is a solution for P, then $\Gamma_{g}(P) \Vdash_{C}^{(f)} \varphi_{g}$ in u_{k} of the model $\mathfrak{M}=\left\langle\left\{u_{1}, \ldots, u_{k}\right\},\left\{\left\langle u_{k}, u_{k-1}\right\rangle, \ldots,\left\langle u_{2}, u_{1}\right\rangle\right\}, e\right\rangle$ with
- $e(u, y)=\alpha_{y} \in A(\in C)$ such that α_{y} (and so, \mathbf{A}) is non r-contractive for r depending on n and $v_{i_{1}} \cdots v_{i_{k}}$,
- $e\left(u_{j}, v\right)=\alpha_{y}^{v_{1} \cdots v_{i_{j}}}$ (analogously for w),
- $e\left(u_{i}, z\right)=\alpha_{y}^{m}$ with m depending on $v_{i_{1}} \cdots v_{i_{k}}$ and $w_{i_{1}} \cdots w_{i_{k}}$, $\left(\alpha_{y}^{m}=\min _{1 \leq j \leq k} \alpha_{y}^{v_{i} \cdots v_{i k}} \leftrightarrow \alpha_{y}^{v_{i} \cdots v_{i k-1} \cdot v_{j}}\right)$

From P to a model and back

- If $\Gamma_{g}(P) \nvdash_{C}^{(f)} \varphi_{g}$ in u_{k} of a model \mathfrak{M} as the one from before we can naturally get a solution for P .
- If i_{1}, \ldots, i_{k} is a solution for P, then $\Gamma_{g}(P) \Vdash_{C}^{(f)} \varphi_{g}$ in u_{k} of the model $\mathfrak{M}=\left\langle\left\{u_{1}, \ldots, u_{k}\right\},\left\{\left\langle u_{k}, u_{k-1}\right\rangle, \ldots,\left\langle u_{2}, u_{1}\right\rangle\right\}, e\right\rangle$ with
- $e(u, y)=\alpha_{y} \in A(\in C)$ such that α_{y} (and so, \mathbf{A}) is non r-contractive for r depending on n and $v_{i_{1}} \cdots v_{i_{k}}$,
- $e\left(u_{j}, v\right)=\alpha_{y}^{v_{1} \cdots v_{i_{j}}}$ (analogously for w),
- $e\left(u_{i}, z\right)=\alpha_{y}^{m}$ with m depending on $v_{i_{1}} \cdots v_{i_{k}}$ and $w_{i_{1}} \cdots w_{i_{k}}$, $\left(\alpha_{y}^{m}=\min _{1 \leq j \leq k} \alpha_{y}^{v_{1} \cdots v_{i k}} \leftrightarrow \alpha_{y}^{v_{i} \cdots v_{i k-1} \cdot v_{j}}\right)$
- $e\left(u_{j}, x\right)=\alpha_{z}^{i_{j}}$ (observe $e\left(u_{j}, x \leftrightarrow z^{r}\right)$ for $1 \leq r \leq n$ is either 1 (if $r=i_{j}$) or is $\leq \alpha_{z}$).

The local modal logic case

In a similar fashion as before we can define a finite set $\Gamma_{L}(P) \cup\left\{\varphi_{L}\right\}$ (in the same \mathcal{V}) such that

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{L}(P) \nvdash 4 C \varphi
$$

and that $\Gamma_{L}(P) \vdash_{4 C} \varphi_{L} \Longleftrightarrow \Gamma_{L}(P) \vdash_{4 C}^{f} \varphi_{L}$.

The local modal logic case

In a similar fashion as before we can define a finite set $\Gamma_{L}(P) \cup\left\{\varphi_{L}\right\}$ (in the same \mathcal{V}) such that

$$
P \text { is SAT } \Longleftrightarrow \Gamma_{L}(P) \nvdash 4 C \varphi
$$

and that $\Gamma_{L}(P) \vdash_{4 C} \varphi_{L} \Longleftrightarrow \Gamma_{L}(P) \vdash_{4 C}^{f} \varphi_{L}$. We now work towards structures with the form

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables:

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- $\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added:

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
$-\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
$-\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$
- Formulas determining values of x, v, w are the ones from $\Gamma_{g}(P)$ closed by a \square.

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
$-\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$
- Formulas determining values of x, v, w are the ones from $\Gamma_{g}(P)$ closed by a \square.
- $\square(\square(v \& w) \rightarrow(\square v \& \square w)):$

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
$-\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$
- Formulas determining values of x, v, w are the ones from $\Gamma_{g}(P)$ closed by a \square.
- $\square(\square(v \& w) \rightarrow(\square v \& \square w))$: helps ensure the witness of $\square v$ and $\square w$ coincides.

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- $\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$
- Formulas determining values of x, v, w are the ones from $\Gamma_{g}(P)$ closed by a \square.
- $\square(\square(v \& w) \rightarrow(\square v \& \square w))$: helps ensure the witness of $\square v$ and $\square w$ coincides.
Let $\varphi_{L}=\square((v \leftrightarrow w) \rightarrow((v \rightarrow v \& y) \vee(w \rightarrow w \& y) \vee(v \& w \rightarrow$ $\left.\left.v \& w \& y) \vee\left(z^{n-1} \rightarrow z^{n}\right)\right)\right)$

The local modal logic case: some differences

$\Gamma_{L}(P)$ set of formulas: very similar to $\Gamma_{g}(P)$ but

- $\square(\neg \square \overline{0} \rightarrow(\square p \leftrightarrow \diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- $\diamond \square \overline{0}, \square(\square \overline{0} \& x) \leftrightarrow \diamond(\square \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be $v, w)$
- Formulas determining values of x, v, w are the ones from $\Gamma_{g}(P)$ closed by a \square.
- $\square(\square(v \& w) \rightarrow(\square v \& \square w))$: helps ensure the witness of $\square v$ and $\square w$ coincides.

Let $\varphi_{L}=\square((v \leftrightarrow w) \rightarrow((v \rightarrow v \& y) \vee(w \rightarrow w \& y) \vee(v \& w \rightarrow$ $\left.v \& w \& y) \vee\left(z^{n-1} \rightarrow z^{n}\right)\right)$) the new part is linked to the uniqueness in the witness of $\square v, \square w$.

The local modal logic case: procedure differences

- $e\left(u_{j}, y\right)=\alpha_{y} \in A$ and $e\left(u_{j}, z\right)=\alpha_{z} \in A$ for each $1 \leq j \leq k$ are poved as before,

The local modal logic case: procedure differences

- $e\left(u_{j}, y\right)=\alpha_{y} \in A$ and $e\left(u_{j}, z\right)=\alpha_{z} \in A$ for each $1 \leq j \leq k$ are poved as before,
- If $\Gamma_{L}(P) \nVdash_{4 C} \varphi_{L}$, to check the desired completeness wrt the depicted structures we show

1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,

The local modal logic case: procedure differences

- $e\left(u_{j}, y\right)=\alpha_{y} \in A$ and $e\left(u_{j}, z\right)=\alpha_{z} \in A$ for each $1 \leq j \leq k$ are poved as before,
- If $\Gamma_{L}(P) \nVdash_{4 C} \varphi_{L}$, to check the desired completeness wrt the depicted structures we show

1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,
2. The worlds witnessing $\square v$ and $\square w$ coincide (using the new formula distributing \square over \&)

The local modal logic case: procedure differences

- $e\left(u_{j}, y\right)=\alpha_{y} \in A$ and $e\left(u_{j}, z\right)=\alpha_{z} \in A$ for each $1 \leq j \leq k$ are poved as before,
- If $\Gamma_{L}(P) \nVdash_{4 C} \varphi_{L}$, to check the desired completeness wrt the depicted structures we show

1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,
2. The worlds witnessing $\square v$ and $\square w$ coincide (using the new formula distributing \square over \&)

The construction of a model \mathfrak{M} from a solution of P and viceversa are similar to the ones from the global case.

Thank you!

