Undecidability of some modal MTL logics (formerly product logics)

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences

September 6, 2016

Contents

1. Introduction

2. (Un)decidability on modal MTL logics

Reducing to PCP The Global modal logic case The Local modal logic case

Contents

1. Introduction

2. (Un)decidability on modal MTL logics

Reducing to PCP The Global modal logic case The Local modal logic case

► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability

Introd	luction
1111100	luction

- ► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance

- ► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]

- ► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
 - Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]

- ► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
 - Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]
 - The previous case with involutive negation or allowing GCI (some globally valid formulas) is undecidable [Baader et.al]

- ► Many normal (classical) modal logics: finite model property + finite axiomatizability ⇒ decidability
- many-valued cases: ? no (usual) FMP or (known) R.E axiomatization...for instance
 - Validity in the expansion of Gödel logic with modal operators does not enjoy FMP with the usual Kripke semantics, but it is decidable [Metcalfe et.al.]
 - Similar concerning validity and >0-sat in FDL (multi-modal variation) over Product logic [Cerami et. al]
 - The previous case with involutive negation or allowing GCI (some globally valid formulas) is undecidable [Baader et.al]

•

MTL Kripke-models

 $\mathbf{A} = \langle A, \odot, \Rightarrow, \min, 1, 0, \rangle$ a complete MTL algebra (conm. integral bounded prelinear residuated lattices = algebras in the variety generated by all left-continuous t-noms). Language: $\&, \land, \rightarrow, \overline{0}$ plus two unary (modal) symbols (\Box, \diamondsuit)

MTL Kripke-models

 $\mathbf{A} = \langle A, \odot, \Rightarrow, \min, 1, 0, \rangle$ a complete MTL algebra (conm. integral bounded prelinear residuated lattices = algebras in the variety generated by all left-continuous t-noms). Language: &, $\wedge, \rightarrow, \overline{0}$ plus two unary (modal) symbols (\Box, \diamond)

Definition

A (crisp) A Kripke model \mathfrak{M} is a tripla $\langle W, R, e \rangle$ where:

- $R \subseteq W \times W$ (*Rus* stands for $\langle u, s \rangle \in R$)
- $e: W \times Var \rightarrow A$ uniquelly extended by:

►
$$e(u, \varphi \& \psi) = e(u, \varphi) \odot e(u, \psi);$$

 $e(u, \varphi \to \psi) = e(u, \varphi) \Rightarrow e(u, \psi);$
 $e(u, \varphi \land \psi) = \min\{e(u, \varphi), e(u, \psi)\}; e(e, \overline{0}) = 0$

•
$$e(u, \Box \varphi) = inf\{e(s, \varphi) : Rus\}$$

• $e(u, \Diamond \varphi) = sup\{e(s, \varphi) : Rus\}$

Modal MTL logics

 ${\it C}$ a class of complete MTL-algebras.

(Global deduction): Γ ⊨_C φ iff
 [∀u ∈ W e(u, [Γ]) ⊆ {1}] implies [∀u ∈ W e(u, φ) = 1] for all
 A Kripke models 𝔐 with A ∈ C.
 Γ ⊨^f_C φ for denoting the same relation over finite (i.e., finite
 W) Kripke models.

Modal MTL logics

 ${\it C}$ a class of complete MTL-algebras.

- (Global deduction): Γ ⊨_C φ iff
 [∀u ∈ W e(u, [Γ]) ⊆ {1}] implies [∀u ∈ W e(u, φ) = 1] for all
 A Kripke models 𝔐 with A ∈ C.
 Γ ⊨^f_C φ for denoting the same relation over finite (i.e., finite
 W) Kripke models.
- (Local deduction): Γ ⊢_{4C} φ iff
 ∀u ∈ W [e(u, [Γ]) ⊆ {1} implies e(u, φ) = 1] for all
 transitive A Kripke models 𝔐 with A ∈ C.
 Γ ⊢^f_{4C} φ for denoting the same relation over finite transitive
 Kripke models

Contents

1. Introduction

2. (Un)decidability on modal MTL logics Reducing to PCP

The Global modal logic case The Local modal logic case

Undecidability results

For $n < \omega$, a MTL-algebra is *n*-contractive iff it validates the equation

$$x^n \to x^{n+1} = 1$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras. For arbitrary $\Gamma \cup \{\varphi\}$ the following are undecidable:

Undecidability results

For $n < \omega$, a MTL-algebra is *n*-contractive iff it validates the equation

$$x^n \to x^{n+1} = 1$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras. For arbitrary $\Gamma \cup \{\varphi\}$ the following are undecidable:

- 1. $\Gamma \Vdash_{\mathcal{C}} \varphi$
- 2. $\Gamma \Vdash^{f}_{C} \varphi$ (global deduction)

Undecidability results

For $n < \omega$, a MTL-algebra is *n*-contractive iff it validates the equation

$$x^n \to x^{n+1} = 1$$

A class of MTL-algebras is non contractive iff, for all n, it contains some non n-contractive algebra.

Theorem

Let C be a non contractive class of complete MTL-algebras. For arbitrary $\Gamma \cup \{\varphi\}$ the following are undecidable:

- 1. $\Gamma \Vdash_{\mathcal{C}} \varphi$
- 2. $\Gamma \Vdash^{f}_{C} \varphi$ (global deduction)
- 3. $\Gamma \vdash_{4C} \varphi$
- 4. $\Gamma \vdash_{4C}^{f} \varphi$ (local deduction in transitive frames)

An instance of the PCP is a list of pairs $\langle v_1, w_1 \rangle \dots \langle v_n, w_n \rangle$ where v_i, w_i are numbers in base $s \ge 2$.

An instance of the PCP is a list of pairs $\langle \mathbf{v_1}, \mathbf{w_1} \rangle \dots \langle \mathbf{v_n}, \mathbf{w_n} \rangle$ where $\mathbf{v_i}, \mathbf{w_i}$ are numbers in base $s \ge 2$. It is undecidable whether there exist i_1, \dots, i_k such that

$$\mathsf{v}_{\mathsf{i}_1}\cdots\mathsf{v}_{\mathsf{i}_k}=\mathsf{w}_{\mathsf{i}_1}\cdots\mathsf{w}_{\mathsf{i}_k}$$

An instance of the PCP is a list of pairs $\langle \mathbf{v_1}, \mathbf{w_1} \rangle \dots \langle \mathbf{v_n}, \mathbf{w_n} \rangle$ where $\mathbf{v_i}, \mathbf{w_i}$ are numbers in base $s \ge 2$. It is undecidable whether there exist i_1, \dots, i_k such that

$$\mathsf{v}_{\mathsf{i}_1}\cdots\mathsf{v}_{\mathsf{i}_k}=\mathsf{w}_{\mathsf{i}_1}\cdots\mathsf{w}_{\mathsf{i}_k}$$

▶ **a**, **b** numbers in base $s \implies ab = a \cdot s^{||b||} + b$, where ||b|| is the length of **b** (in base *s*).

An instance of the PCP is a list of pairs $\langle \mathbf{v_1}, \mathbf{w_1} \rangle \dots \langle \mathbf{v_n}, \mathbf{w_n} \rangle$ where $\mathbf{v_i}, \mathbf{w_i}$ are numbers in base $s \ge 2$. It is undecidable whether there exist i_1, \dots, i_k such that

$$\mathsf{v}_{\mathsf{i}_1}\cdots\mathsf{v}_{\mathsf{i}_k}=\mathsf{w}_{\mathsf{i}_1}\cdots\mathsf{w}_{\mathsf{i}_k}$$

- ▶ **a**, **b** numbers in base $s \implies ab = a \cdot s^{||b||} + b$, where ||b|| is the length of **b** (in base *s*).
- we can exploit the conjunction operation to express concatenation (using powers over some y "non-contractive")

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_g(P) \cup \{\varphi_g\}$ such that

$$P \text{ is SAT } \iff \Gamma_g(P) \not\Vdash_C \varphi_g$$
$$Moreover \ \Gamma_g(P) \Vdash_C \varphi_g \iff \Gamma_g(P) \Vdash_C^f \varphi_g.$$

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_g(P) \cup \{\varphi_g\}$ such that

$$P \text{ is SAT} \iff \Gamma_g(P) \not\Vdash_C \varphi_g$$

Moreover $\Gamma_g(P) \Vdash_C \varphi_g \iff \Gamma_g(P) \Vdash_C^f \varphi_g$.

 Proving ⇒ will not be hard (constructing a model using the solution of P).

The global modal logic case

Given a PCP instance P there is a finite set of formulas $\Gamma_g(P) \cup \{\varphi_g\}$ such that

$$P \text{ is SAT} \iff \Gamma_g(P) \not\Vdash_C \varphi_g$$

Moreover $\Gamma_g(P) \Vdash_C \varphi_g \iff \Gamma_g(P) \Vdash_C^f \varphi_g$.

- Proving ⇒ will not be hard (constructing a model using the solution of P).
- Idea for ⇐=: if Γ_g(P) ⊮ φ_g then it happens in u_k of a particular structure shaped like

Variables used: $\mathcal{V} = \{x, y, z, v, w\}$. y, z, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.

Variables used: $\mathcal{V} = \{x, y, z, v, w\}$. y, z, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.

Formulas of $\Gamma_g(P)$:

•
$$(\neg \Box \overline{0}) \rightarrow (\Box p \leftrightarrow \Diamond p)$$
 for each $p \in \mathcal{V}$:

Variables used: $\mathcal{V} = \{x, y, z, v, w\}$. y, z, are control variables; x stores information on the index of the added word; v, w store information on the concatenation.

Formulas of $\Gamma_g(P)$:

•
$$(\neg \Box \overline{0}) \rightarrow (\Box p \leftrightarrow \Diamond p)$$
 for each $p \in \mathcal{V}$:

Lemma

If $\Gamma_g(P) \not\models_C \psi$ (for arbitrary ψ in \mathcal{V}) then there is a C Kripke model \mathfrak{M} with $W = \{u_i : i \in \omega\}$ or $W = \{u_i : i \leq k\}$ and $R = \{\langle u_i, u_{i+1} \rangle\}$ such that

• \mathfrak{M} is a model for $\Gamma_g(P)$ and

•
$$e(u_1, \psi) < 1$$

•
$$\bigvee_{1 \le i \le n} (x \leftrightarrow z^i)$$
:

►
$$\bigvee_{1 \le i \le n} (x \leftrightarrow z^i)$$
: at each world u , $x = \alpha_z^i$ for some $1 \le i \le n$.

V_{1≤i≤n}(x ↔ zⁱ): at each world u, x = αⁱ_z for some 1 ≤ i ≤ n. idea: if e(u, x) = αⁱ_z, the number added in the concatenation (to v and w) is the one indexed by i.

V_{1≤i≤n}(x ↔ zⁱ): at each world u, x = αⁱ_z for some 1 ≤ i ≤ n. idea: if e(u, x) = αⁱ_z, the number added in the concatenation (to v and w) is the one indexed by i.

•
$$(x \leftrightarrow z^i) \rightarrow (v \leftrightarrow (\Box v)^{s^{\|\mathbf{v}_i\|}} \& y^{\mathbf{v}_i})$$
 for each $1 \le i \le n$:

- V_{1≤i≤n}(x ↔ zⁱ): at each world u, x = αⁱ_z for some 1 ≤ i ≤ n. idea: if e(u,x) = αⁱ_z, the number added in the concatenation (to v and w) is the one indexed by i.
- ► $(x \leftrightarrow z^i) \rightarrow (v \leftrightarrow (\Box v)^{s^{\|\mathbf{v}_i\|}} \& y^{\mathbf{v}_i})$ for each $1 \le i \le n$: (information on the concatenation of $\mathbf{v}s$)

- V_{1≤i≤n}(x ↔ zⁱ): at each world u, x = αⁱ_z for some 1 ≤ i ≤ n. idea: if e(u,x) = αⁱ_z, the number added in the concatenation (to v and w) is the one indexed by i.
- ► $(x \leftrightarrow z^i) \rightarrow (v \leftrightarrow (\Box v)^{s^{\|v_i\|}} \& y^{v_i})$ for each $1 \le i \le n$: (information on the concatenation of vs)
- $(x \leftrightarrow z^i) \rightarrow (w \leftrightarrow (\Box w)^{s^{||w_i||}} \& y^{\mathbf{w}_i})$ for each $1 \le i \le n$: (as above for $\mathbf{w}s$)

- V_{1≤i≤n}(x ↔ zⁱ): at each world u, x = αⁱ_z for some 1 ≤ i ≤ n. idea: if e(u,x) = αⁱ_z, the number added in the concatenation (to v and w) is the one indexed by i.
- ► $(x \leftrightarrow z^i) \rightarrow (v \leftrightarrow (\Box v)^{s^{\|v_i\|}} \& y^{v_i})$ for each $1 \le i \le n$: (information on the concatenation of vs)
- $(x \leftrightarrow z^i) \rightarrow (w \leftrightarrow (\Box w)^{s^{||w_i||}} \& y^{w_i})$ for each $1 \le i \le n$: (as above for ws)

Let
$$\varphi_g = (v \leftrightarrow w) \rightarrow ((v \rightarrow v \& y) \lor (w \rightarrow w \& y) \lor (z^{n-1} \rightarrow z^n)).$$

Lemma

Let
$$\mathfrak{M}$$
 with $W = \{u_i : 1 \leq i \leq \kappa\}$ and
 $R = \{\langle u_{i+1}, u_i \rangle : 1 \leq i < \kappa\}$ be a model of $\Gamma_g(P)$ such that
 $e(u_{\kappa}, \varphi_g) < 1$. Then

1. $\kappa < \omega$ (i.e, the model is finite)

Let
$$\mathfrak{M}$$
 with $W = \{u_i : 1 \le i \le \kappa\}$ and
 $R = \{\langle u_{i+1}, u_i \rangle : 1 \le i < \kappa\}$ be a model of $\Gamma_g(P)$ such that
 $e(u_{\kappa}, \varphi_g) < 1$. Then
1. $\kappa < \omega$ (i.e, the model is finite)
 $e(u_{\kappa}, v) = \inf_{i \le \nu} \alpha_y^i$ for some $\nu \le \omega$ (same for w and
some λ).

Let
$$\mathfrak{M}$$
 with $W = \{u_i : 1 \le i \le \kappa\}$ and
 $R = \{\langle u_{i+1}, u_i \rangle : 1 \le i < \kappa\}$ be a model of $\Gamma_g(P)$ such that
 $e(u_{\kappa}, \varphi_g) < 1$. Then
1. $\kappa < \omega$ (i.e, the model is finite)
 $e(u_{\kappa}, v) = \inf_{i \le \nu} \alpha_y^i$ for some $\nu \le \omega$ (same for w and
some λ). since $e(u_k, v \to v \& y) < 1$ (and sim. for w)
then $\nu, \lambda < \omega$ and the model is of finite depth.

Let
$$\mathfrak{M}$$
 with $W = \{u_i : 1 \le i \le \kappa\}$ and
 $R = \{\langle u_{i+1}, u_i \rangle : 1 \le i < \kappa\}$ be a model of $\Gamma_g(P)$ such that
 $e(u_{\kappa}, \varphi_g) < 1$. Then
1. $\kappa < \omega$ (i.e, the model is finite)
 $e(u_{\kappa}, v) = \inf_{i \le \nu} \alpha_y^i$ for some $\nu \le \omega$ (same for w and
some λ). since $e(u_k, v \to v \& y) < 1$ (and sim. for w)
then $\nu, \lambda < \omega$ and the model is of finite depth.
2. $\alpha_z^n < ... < \alpha_z$ (determining indexes from 1 to n)

Let
$$\mathfrak{M}$$
 with $W = \{u_i : 1 \le i \le \kappa\}$ and
 $R = \{\langle u_{i+1}, u_i \rangle : 1 \le i < \kappa\}$ be a model of $\Gamma_g(P)$ such that
 $e(u_{\kappa}, \varphi_g) < 1$. Then
1. $\kappa < \omega$ (i.e, the model is finite)
 $e(u_{\kappa}, v) = \inf_{i \le \nu} \alpha_y^i$ for some $\nu \le \omega$ (same for w and
some λ). since $e(u_k, v \to v \& y) < 1$ (and sim. for w)
then $\nu, \lambda < \omega$ and the model is of finite depth.
2. $\alpha_z^n < ... < \alpha_z$ (determining indexes from 1 to n)
follows from $e(u_{\kappa}, z^n) < e(u_{\kappa}, z^{n-1})$

3. for all
$$1 \le j \le \kappa$$
, $e(u_j, v) = \alpha_y^{v_{i_1} \cdots v_{i_j}}$ and $e(u_j, w) = \alpha_y^{w_{i_1} \cdots w_{i_j}}$
for $e(u_j, x) = \alpha_z^{i_j}$ for $1 \le j \le k$.

3. for all
$$1 \le j \le \kappa$$
, $e(u_j, v) = \alpha_y^{v_{i_1} \cdots v_{i_j}}$ and $e(u_j, w) = \alpha_y^{w_{i_1} \cdots w_{i_j}}$
for $e(u_j, x) = \alpha_z^{i_j}$ for $1 \le j \le k$.
provable by induction in j .

v.

14/- --- 14/-

• If $\Gamma_g(P) \not\models_C^{(f)} \varphi_g$ in u_k of a model \mathfrak{M} as the one from before we can naturally get a solution for P.

- If Γ_g(P) ⊭^(f)_C φ_g in u_k of a model M as the one from before we can naturally get a solution for P.
- ▶ If i_1, \ldots, i_k is a solution for P, then $\Gamma_g(P) \not\Vdash_C^{(f)} \varphi_g$ in u_k of the model $\mathfrak{M} = \langle \{u_1, \ldots, u_k\}, \{\langle u_k, u_{k-1} \rangle, \ldots, \langle u_2, u_1 \rangle\}, e \rangle$ with

- If Γ_g(P) ⊮^(f)_C φ_g in u_k of a model M as the one from before we can naturally get a solution for P.
- ▶ If i_1, \ldots, i_k is a solution for P, then $\Gamma_g(P) \not\Vdash_C^{(f)} \varphi_g$ in u_k of the model $\mathfrak{M} = \langle \{u_1, \ldots, u_k\}, \{\langle u_k, u_{k-1} \rangle, \ldots, \langle u_2, u_1 \rangle\}, e \rangle$ with
 - $e(u, y) = \alpha_y \in A(\in C)$ such that α_y (and so, **A**) is non *r*-contractive for *r* depending on *n* and $v_i \cdots v_{i_k}$,

- If Γ_g(P) ⊮^(f)_C φ_g in u_k of a model M as the one from before we can naturally get a solution for P.
- ▶ If i_1, \ldots, i_k is a solution for P, then $\Gamma_g(P) \not\Vdash_C^{(f)} \varphi_g$ in u_k of the model $\mathfrak{M} = \langle \{u_1, \ldots, u_k\}, \{\langle u_k, u_{k-1} \rangle, \ldots, \langle u_2, u_1 \rangle\}, e \rangle$ with
 - $e(u, y) = \alpha_y \in A(\in C)$ such that α_y (and so, **A**) is non *r*-contractive for *r* depending on *n* and $v_i \cdots v_{i_k}$,

•
$$e(u_j, v) = \alpha_y^{\mathbf{v}_{i_1} \cdots \mathbf{v}_{i_j}}$$
 (analogously for w),

- If Γ_g(P) ⊮^(f)_C φ_g in u_k of a model M as the one from before we can naturally get a solution for P.
- ▶ If i_1, \ldots, i_k is a solution for P, then $\Gamma_g(P) \not\Vdash_C^{(f)} \varphi_g$ in u_k of the model $\mathfrak{M} = \langle \{u_1, \ldots, u_k\}, \{\langle u_k, u_{k-1} \rangle, \ldots, \langle u_2, u_1 \rangle\}, e \rangle$ with
 - ► $e(u, y) = \alpha_y \in A(\in C)$ such that α_y (and so, **A**) is non *r*-contractive for *r* depending on *n* and $v_{i_1} \cdots v_{i_k}$,
 - $e(u_j, v) = \alpha_y^{\mathbf{v}_{i_1} \cdots \mathbf{v}_{i_j}}$ (analogously for w),
 - $e(u_i, z) = \alpha_y^m$ with m depending on $v_{i_1} \cdots v_{i_k}$ and $w_{i_1} \cdots w_{i_k}$, $(\alpha_y^m = \min_{1 \le j \le k} \alpha_y^{v_{i_1} \cdots v_{i_k}} \leftrightarrow \alpha_y^{v_{i_1} \cdots v_{i_{k-1}} \cdot v_j})$

- If Γ_g(P) ⊮^(f)_C φ_g in u_k of a model M as the one from before we can naturally get a solution for P.
- ▶ If i_1, \ldots, i_k is a solution for P, then $\Gamma_g(P) \not\Vdash_C^{(f)} \varphi_g$ in u_k of the model $\mathfrak{M} = \langle \{u_1, \ldots, u_k\}, \{\langle u_k, u_{k-1} \rangle, \ldots, \langle u_2, u_1 \rangle\}, e \rangle$ with
 - $e(u, y) = \alpha_y \in A(\in C)$ such that α_y (and so, **A**) is non *r*-contractive for *r* depending on *n* and $v_{i_1} \cdots v_{i_k}$,

•
$$e(u_j, v) = \alpha_y^{\mathbf{v}_{i_1} \cdots \mathbf{v}_{i_j}}$$
 (analogously for w),

- $e(u_i, z) = \alpha_y^m$ with m depending on $v_{i_1} \cdots v_{i_k}$ and $w_{i_1} \cdots w_{i_k}$, $(\alpha_y^m = \min_{1 \le j \le k} \alpha_y^{v_{i_1} \cdots v_{i_k}} \leftrightarrow \alpha_y^{v_{i_1} \cdots v_{i_{k-1}} \cdot v_j})$
- ► $e(u_j, x) = \alpha_z^{i_j}$ (observe $e(u_j, x \leftrightarrow z^r)$ for $1 \le r \le n$ is either 1 (if $r = i_j$) or is $\le \alpha_z$).

The local modal logic case

In a similar fashion as before we can define a finite set $\Gamma_L(P) \cup \{\varphi_L\}$ (in the same \mathcal{V}) such that

 $P \text{ is SAT} \iff \Gamma_L(P) \not\vdash_{4C} \varphi$

and that $\Gamma_L(P) \vdash_{4C} \varphi_L \iff \Gamma_L(P) \vdash_{4C}^f \varphi_L.$

The local modal logic case

In a similar fashion as before we can define a finite set $\Gamma_L(P) \cup \{\varphi_L\}$ (in the same \mathcal{V}) such that

 $P \text{ is SAT} \iff \Gamma_L(P) \not\vdash_{4C} \varphi$

and that $\Gamma_L(P) \vdash_{4C} \varphi_L \iff \Gamma_L(P) \vdash_{4C}^f \varphi_L$. We now work towards structures with the form

 $\Gamma_L(P)$ set of formulas: very similar to $\Gamma_g(P)$ but

▶ $\Box(\neg \Box \overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables:

 $\Gamma_L(P)$ set of formulas: very similar to $\Gamma_g(P)$ but

• $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.

- ▶ $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- $\Diamond \Box \overline{0}, \ \Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added:

- ▶ $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- ▶ $\Diamond \Box \overline{0}$, $\Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be v, w)

- ▶ $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- ▶ $\Diamond \Box \overline{0}$, $\Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be v, w)

- ▶ $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- ▶ $\Diamond \Box \overline{0}$, $\Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be v, w)
- Formulas determining values of x, v, w are the ones from Γ_g(P) closed by a □.
- $\blacktriangleright \Box(\Box(v\&w) \to (\Box v\&\Box w)):$

- ▶ $\Box(\neg\Box\overline{0} \rightarrow (\Box p \leftrightarrow \Diamond p))$ is only added for y, z variables: in all the successors y and z are constant.
- ▶ $\Diamond \Box \overline{0}$, $\Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be v, w)
- Formulas determining values of x, v, w are the ones from Γ_g(P) closed by a □.
- ▶ $\Box(\Box(v\&w) \rightarrow (\Box v\&\Box w))$: helps ensure the witness of $\Box v$ and $\Box w$ coincides.

 $\Gamma_L(P)$ set of formulas: very similar to $\Gamma_g(P)$ but

- □(¬□0→ (□p↔ ◊p)) is only added for y, z variables: in all the successors y and z are constant.
- ▷ ◇□0, □(□0&x) ↔ ◇(□0&x) are added: there is some world with no successors, and in all them x is constant (so it will be v, w)
- Formulas determining values of x, v, w are the ones from Γ_g(P) closed by a □.
- ▶ $\Box(\Box(v\&w) \rightarrow (\Box v\&\Box w))$: helps ensure the witness of $\Box v$ and $\Box w$ coincides.

Let $\varphi_L = \Box((v \leftrightarrow w) \rightarrow ((v \rightarrow v \& y) \lor (w \rightarrow w \& y) \lor (v \& w \rightarrow v \& w \& y) \lor (z^{n-1} \rightarrow z^n)))$

 $\Gamma_L(P)$ set of formulas: very similar to $\Gamma_g(P)$ but

- □(¬□0→ (□p↔ ◊p)) is only added for y, z variables: in all the successors y and z are constant.
- ▶ $\Diamond \Box \overline{0}$, $\Box (\Box \overline{0} \& x) \leftrightarrow \Diamond (\Box \overline{0} \& x)$ are added: there is some world with no successors, and in all them x is constant (so it will be v, w)
- Formulas determining values of x, v, w are the ones from Γ_g(P) closed by a □.
- ▶ $\Box(\Box(v\&w) \rightarrow (\Box v\&\Box w))$: helps ensure the witness of $\Box v$ and $\Box w$ coincides.

Let $\varphi_L = \Box((v \leftrightarrow w) \rightarrow ((v \rightarrow v \& y) \lor (w \rightarrow w \& y) \lor (v \& w \rightarrow v \& w \& y) \lor (z^{n-1} \rightarrow z^n)))$ the new part is linked to the uniqueness in the witness of $\Box v, \Box w$.

 e(u_j, y) = α_y ∈ A and e(u_j, z) = α_z ∈ A for each 1 ≤ j ≤ k are poved as before,

- e(u_j, y) = α_y ∈ A and e(u_j, z) = α_z ∈ A for each 1 ≤ j ≤ k are poved as before,
- If Γ_L(P) ⊭_{4C} φ_L, to check the desired completeness wrt the depicted structures we show
 - 1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,

- e(u_j, y) = α_y ∈ A and e(u_j, z) = α_z ∈ A for each 1 ≤ j ≤ k are poved as before,
- If Γ_L(P) ⊭_{4C} φ_L, to check the desired completeness wrt the depicted structures we show
 - 1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,
 - The worlds witnessing □v and □w coincide (using the new formula distributing □ over &)

- e(u_j, y) = α_y ∈ A and e(u_j, z) = α_z ∈ A for each 1 ≤ j ≤ k are poved as before,
- If Γ_L(P) ⊭_{4C} φ_L, to check the desired completeness wrt the depicted structures we show
 - 1. The model is finite: finite depth as before, finite width based on the finite possible values for v and w,
 - The worlds witnessing □v and □w coincide (using the new formula distributing □ over &)

The construction of a model ${\mathfrak M}$ from a solution of P and viceversa are similar to the ones from the global case.

Thank you!