Axiomatizing modal fixpoint logics

Yde Venema http://staff.science.uva.nl/~yde

SYSMICS, 8 september 2016

(largely joint work with Enqvist, Seifan, Santocanale, Schröder, ...)

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

 Add master modality (*) to the language ML of modal logic
 (*)p := V_{n∈ω} ◊ⁿp s ⊩ (*)p iff there is a finite path from s to some p-state

- Add master modality (*) to the language ML of modal logic
 (*)p := V_{n∈ω} ◊ⁿp s ⊨ (*)p iff there is a finite path from s to some p-state
- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$

- \blacktriangleright Add master modality $\langle * \rangle$ to the language ML of modal logic
- ► $\langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$ $s \Vdash \langle * \rangle p$ iff there is a finite path from s to some p-state
- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- ▶ Fact $\langle * \rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \lor \Diamond x$

- \blacktriangleright Add master modality $\langle * \rangle$ to the language ML of modal logic
- ► $\langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$ s $\Vdash \langle * \rangle p$ iff there is a finite path from s to some p-state
- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- ▶ Fact $\langle * \rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \lor \Diamond x$
- ▶ Notation: $\langle * \rangle p \equiv \mu x.p \lor \Diamond x.$

- \blacktriangleright Add master modality $\langle * \rangle$ to the language ML of modal logic
- ► $\langle * \rangle p := \bigvee_{n \in \omega} \Diamond^n p$ s $\Vdash \langle * \rangle p$ iff there is a finite path from s to some p-state
- $\blacktriangleright \langle * \rangle p \leftrightarrow p \lor \Diamond \langle * \rangle p$
- ▶ Fact $\langle * \rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \lor \Diamond x$
- ▶ Notation: $\langle * \rangle p \equiv \mu x.p \lor \Diamond x.$
- ► Variant (PDL): $\langle \alpha^* \rangle \varphi := \mu x. \varphi \lor \langle \alpha \rangle x$

$$U\varphi\psi \equiv \varphi \lor (\psi \land \bigcirc U\varphi\psi) \\ U\varphi\psi \coloneqq \mu x.\varphi \lor (\psi \land \bigcirc x)$$

$$U\varphi\psi \equiv \varphi \lor (\psi \land \bigcirc U\varphi\psi) \\ U\varphi\psi := \mu x.\varphi \lor (\psi \land \bigcirc x)$$

$$\blacktriangleright C\varphi := \varphi \land \bigwedge_i K_i \varphi \land \bigwedge_i K_i C(\bigwedge_i K_i \varphi) \land \dots$$

•
$$U\varphi\psi \equiv \varphi \lor (\psi \land \bigcirc U\varphi\psi)$$

 $U\varphi\psi := \mu x.\varphi \lor (\psi \land \bigcirc x)$
• $C\varphi := \varphi \land \bigwedge_i K_i \varphi \land \bigwedge_i K_i C(\bigwedge_i K_i \varphi) \land \dots$
 $C\varphi \equiv \varphi \land \bigwedge_i K_i C\varphi$

•
$$U\varphi\psi \equiv \varphi \lor (\psi \land \bigcirc U\varphi\psi)$$

 $U\varphi\psi := \mu x.\varphi \lor (\psi \land \bigcirc x)$
• $C\varphi := \varphi \land \bigwedge_i K_i \varphi \land \bigwedge_i K_i C(\bigwedge_i K_i \varphi) \land \dots$
 $C\varphi \equiv \varphi \land \bigwedge_i K_i C\varphi$
 $C\varphi := \nu x.\varphi \land \bigwedge_i K_i x$

▶ Modal fixpoint languages extend basic modal logic with either

• new fixpoint connectives such as $\langle * \rangle$, U, C, ...

- ▶ new fixpoint connectives such as $\langle * \rangle$, *U*, *C*, ... \sim LTL, CTL, PDL
- explicit fixpoint operators μx , νx

- ▶ new fixpoint connectives such as (*), *U*, *C*, ... → LTL, CTL, PDL
- explicit fixpoint operators μx , $\nu x \sim \mu ML$

- ▶ new fixpoint connectives such as (*), *U*, *C*, ... → LTL, CTL, PDL
- explicit fixpoint operators μx , $\nu x \sim \mu ML$
- ► Motivation 1: increase expressive power
 - ▶ e.g. enable specification of ongoing behaviour

- ▶ new fixpoint connectives such as (*), *U*, *C*, ... → LTL, CTL, PDL
- explicit fixpoint operators μx , $\nu x \sim \mu ML$
- ► Motivation 1: increase expressive power
 - ▶ e.g. enable specification of ongoing behaviour
- ► Motivation 2: generally nice computational properties

- ▶ new fixpoint connectives such as (*), *U*, *C*, ... → LTL, CTL, PDL
- explicit fixpoint operators μx , $\nu x \sim \mu ML$
- ► Motivation 1: increase expressive power
 - ▶ e.g. enable specification of ongoing behaviour
- ► Motivation 2: generally nice computational properties
- ► Combined: many applications in process theory, epistemic logic, ...

- ▶ new fixpoint connectives such as $\langle * \rangle$, *U*, *C*, ... \rightarrow LTL, CTL, PDL
- explicit fixpoint operators μx , $\nu x \rightsquigarrow \mu ML$
- ► Motivation 1: increase expressive power
 - e.g. enable specification of ongoing behaviour
- ► Motivation 2: generally nice computational properties
- ► Combined: many applications in process theory, epistemic logic, ...
- ► Interesting mathematical theory:
 - ▶ interesting mix of algebraic |coalgebraic features
 - connections with theory of automata on infinite objects
 - game-theoretical semantics
 - ▶ interesting meta-logic

General Program

Understand modal fixpoint logics by studying the interaction between

- combinatorial
- algebraic and
- coalgebraic
- aspects

Here: consider axiomatization problem

Axiomatization of fixpoints

Least fixpoint $\mu p.\varphi$ should be axiomatized by

Axiomatization of fixpoints

Least fixpoint $\mu p.\varphi$ should be axiomatized by

► a least (pre-)fixpoint axiom:

 $\varphi(\mu p.\varphi) \vdash \mu p.\varphi$

► Park's induction rule

$$\frac{\varphi(\psi) \vdash \varphi}{\mu p. \varphi \vdash \psi}$$

(Here $\alpha \vdash_K \beta$ abbreviates $\vdash_K \alpha \rightarrow \beta$)

Axiomatization results for modal fixpoint logics

- ▶ LTL: Gabbay et alii (1980)
- ▶ PDL: Kozen & Parikh (1981)
- μ ML (aconjunctive fragment): Kozen (1983)
- ► CTL: Emerson & Halpern (1985)
- ▶ µML: Walukiewicz (1993/2000)
- ► CTL*: Reynolds (2000)
- ► LTL/CTL uniformly: Lange & Stirling (2001)
- ► common knowledge logics: various
- ▶ ...

Axiomatization results for modal fixpoint logics

- ▶ LTL: Gabbay et alii (1980)
- ▶ PDL: Kozen & Parikh (1981)
- μ ML (aconjunctive fragment): Kozen (1983)
- ► CTL: Emerson & Halpern (1985)
- ▶ µML: Walukiewicz (1993/2000)
- ► CTL*: Reynolds (2000)
- ▶ LTL/CTL uniformly: Lange & Stirling (2001)
- ► common knowledge logics: various
- ▶ ...

So what is the problem?

Axiomatization problem

Questions (2015)

- ▶ How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ -calculus?
- \blacktriangleright Does completeness transfer to fragments of $\mu ML?$ (Ex: game logic)
- ► What about proof theory?

Axiomatization problem

Questions (2015)

- ▶ How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ-calculus?
- Does completeness transfer to fragments of μ ML? (Ex: game logic)
- ► What about proof theory?

Compared to basic modal logic

there are no sweeping general results such as Sahlqvist's theorem

Axiomatization problem

Questions (2015)

- ▶ How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ-calculus?
- Does completeness transfer to fragments of μ ML? (Ex: game logic)
- ► What about proof theory?

Compared to basic modal logic

- there are no sweeping general results such as Sahlqvist's theorem
- ► there is no no comprehensive completeness theory (duality, canonicity, filtration, ...)

Overview

Introduction

- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

- ► Language: \Diamond_R, \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1

- ► Language: \Diamond_R, \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$

Example

- ► Language: \Diamond_R , \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}G$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$

▶ KG is sound and complete with respect to its Kripke frames

- ► Language: \Diamond_R , \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}G$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
- ▶ KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle * \rangle p := \mu x.p \lor \Diamond_R x \lor \Diamond_U x$

- ► Language: \Diamond_R , \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}G$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
- ▶ KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle * \rangle p := \mu x. p \lor \Diamond_R x \lor \Diamond_U x$
- *µ*K*G* is sound but incomplete with respect to its Kripke frames
 Proof:

Obstacle 1: computational danger zone

Example

- ► Language: \Diamond_R, \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}G$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
- ▶ KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle * \rangle p := \mu x.p \lor \Diamond_R x \lor \Diamond_U x$
- μKG is sound but incomplete with respect to its Kripke frames
 - ▶ **Proof:** Use recurrent tiling problem to show that

Obstacle 1: computational danger zone

Example

- ► Language: \Diamond_R, \Diamond_U
- \blacktriangleright Intended Semantics: $\mathbb{N}\times\mathbb{N}$
 - (m, n)R(m', n') iff m' = m + 1 and n' = n
 - (m, n)U(m', n') iff m' = m and n' = n + 1
- ▶ Logic $\mathbf{K}G := \mathbf{K} + \mathbf{K}G$
 - ▶ functionality: $\Diamond_R p \leftrightarrow \Box_R p$ and $\Diamond_U p \leftrightarrow \Box_U p$
 - ▶ confluence: $\Diamond_R \Box_U p \rightarrow \Box_U \Diamond_R p$
- ▶ KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle * \rangle p := \mu x.p \lor \diamondsuit_R x \lor \diamondsuit_U x$
- μKG is sound but incomplete with respect to its Kripke frames
 - ▶ **Proof:** Use recurrent tiling problem to show that
 - the $\diamond_R, \diamond_U, \langle * \rangle$ -logic of $Fr(\mathbf{K}G)$ is not recursively enumerable

Obstacle 2: compactness failure

Example: ⟨*⟩p := ∨_{n∈ω} ◊ⁿp
 {⟨*⟩p} ∪ {□ⁿ¬p | n ∈ ω} is finitely satisfiable but not satisfiable

Obstacle 2: compactness failure

- Example: ⟨*⟩p := ∨_{n∈ω} ◊ⁿp
 {⟨*⟩p} ∪ {□ⁿ¬p | n ∈ ω} is finitely satisfiable but not satisfiable
- ► Fixpoint logics have no nice Stone-based duality

- $\blacktriangleright \ \nu\text{-fixpoints}$ may be unfolded infinitely often
- $\blacktriangleright \ \mu\text{-fixpoints}$ may only be unfolded finitely often

- $\blacktriangleright \ \nu\text{-fixpoints}$ may be unfolded infinitely often
- $\blacktriangleright \ \mu\text{-fixpoints}$ may only be unfolded finitely often
- ▶ with every branch of tableau associate a trace graph

- $\blacktriangleright \ \nu\text{-fixpoints}$ may be unfolded infinitely often
- $\blacktriangleright \ \mu\text{-fixpoints}$ may only be unfolded finitely often
- ▶ with every branch of tableau associate a trace graph
- ▶ obstacle 3a: conjunctions cause trace proliferation

- $\blacktriangleright \ \nu\text{-fixpoints}$ may be unfolded infinitely often
- $\blacktriangleright \ \mu\text{-fixpoints}$ may only be unfolded finitely often
- ▶ with every branch of tableau associate a trace graph
- ▶ obstacle 3a: conjunctions cause trace proliferation
- ▶ obstacle 3b: fixpoint alternations cause intricate combinatorics

► consider simple frame conditions only (if at all)

- ► consider simple frame conditions only (if at all)
- ▶ restrict language to fixpoints of simple formulas (avoid alternation)

- ► consider simple frame conditions only (if at all)
- ▶ restrict language to fixpoints of simple formulas (avoid alternation)
- ► allow alternation, but develop suitable combinatorical framework

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- ► Add a fixpoint connective #_γ to the language of ML (arity of #_γ depends on γ but notation hides this)

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- ► Add a fixpoint connective #_γ to the language of ML (arity of #_γ depends on γ but notation hides this)
- ► Example: $Upq := \mu x \cdot p \lor (q \land \bigcirc x)$, now: $Upq := \sharp_{\gamma}(p,q)$ with $\gamma = p \lor (q \land \bigcirc x)$
- ▶ Intended reading: $\sharp_{\gamma}(\vec{\varphi}) \equiv \mu x. \gamma(x, \vec{\varphi})$ for any $\vec{\varphi} = (\varphi_1, \dots, \varphi_n)$.

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- ► Add a fixpoint connective #_γ to the language of ML (arity of #_γ depends on γ but notation hides this)
- ► Example: $Upq := \mu x \cdot p \lor (q \land \bigcirc x)$, now: $Upq := \sharp_{\gamma}(p, q)$ with $\gamma = p \lor (q \land \bigcirc x)$
- ▶ Intended reading: $\sharp_{\gamma}(\vec{\varphi}) \equiv \mu x. \gamma(x, \vec{\varphi})$ for any $\vec{\varphi} = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_γ:

 $\varphi ::= p \mid \neg p \mid \bot \mid \top \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \sharp_{\gamma}(\vec{\varphi})$

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- ► Add a fixpoint connective \$\\$\\$\\$\\$\\$\\$ to the language of ML (arity of \$\\$\\$\\$\\$\\$\\$\\$ depends on \$\\$\\$ but notation hides this)
- ► Example: $Upq := \mu x \cdot p \lor (q \land \bigcirc x)$, now: $Upq := \sharp_{\gamma}(p, q)$ with $\gamma = p \lor (q \land \bigcirc x)$
- ▶ Intended reading: $\sharp_{\gamma}(\vec{\varphi}) \equiv \mu x. \gamma(x, \vec{\varphi})$ for any $\vec{\varphi} = (\varphi_1, \dots, \varphi_n)$.
- ► Obtain language ML_γ:

 $\varphi ::= p \mid \neg p \mid \bot \mid \top \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \Diamond_i \varphi \mid \Box_i \varphi \mid \sharp_{\gamma}(\vec{\varphi})$

► Examples: CTL, LTL, (PDL), ...

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- ► Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{s \in S \mid Rst \text{ for some } t \in X\}$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- ► Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{s \in S \mid Rst \text{ for some } t \in X\}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{\mathsf{S}}: \wp(\mathsf{S})^n \to \wp(\mathsf{S}).$$

• γ positive in x, hence γ^{S} order preserving in x.

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- ► Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{s \in S \mid Rst \text{ for some } t \in X\}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S}: \wp(S)^{n} \to \wp(S).$$

- γ positive in x, hence γ^{S} order preserving in x.
- ▶ By Knaster-Tarski we may define $\sharp^{S} : \wp(S)^{n} \to \wp(S)$ by

$$\sharp^{\mathcal{S}}(\vec{B}) := LFP.\gamma^{\mathcal{S}}(-,\vec{B}).$$

- Kripke frame $S = \langle S, R \rangle$ with $R \subseteq S \times S$.
- ► Complex algebra: $S^+ := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle \rangle$, $\langle R \rangle : \wp(S) \to \wp(S)$ given by $\langle R \rangle(X) := \{s \in S \mid Rst \text{ for some } t \in X\}$
- Every modal formula $\varphi(p_1, \ldots, p_n)$ corresponds to a term function

$$\varphi^{S}: \wp(S)^{n} \to \wp(S).$$

- γ positive in x, hence γ^{S} order preserving in x.
- ▶ By Knaster-Tarski we may define $\sharp^{S} : \wp(S)^{n} \to \wp(S)$ by

$$\sharp^{S}(\vec{B}) := LFP.\gamma^{S}(-,\vec{B})$$

► Kripke \sharp -algebra $S^{\sharp} := \langle \wp(S), \varnothing, S, \sim_S, \cup, \cap, \langle R \rangle, \sharp^S \rangle$.

Candidate Axiomatization

- $\mathbf{K}_{\gamma} := \mathbf{K}$ extended with
 - ▶ prefixpoint axiom:

 $\gamma(\sharp(\vec{\varphi}),\vec{\varphi}) \vdash \sharp(\vec{\varphi})$

► Park's induction rule:

from $\gamma(\psi, \vec{\varphi}) \vdash \psi$ infer $\sharp_{\gamma}(\vec{\varphi}) \vdash \psi$.

► Modal #-algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamond, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying $\sharp(\vec{b}) = LFP.\gamma_{\vec{b}}^A,$ where $\gamma_{\vec{b}}^A : A \to A$ is given by $\gamma_{\vec{b}}^A(a) := \gamma^A(a, \vec{b}).$

► Modal \sharp -algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamondsuit, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying

 $\sharp(\vec{b}) = LFP.\gamma^{\mathcal{A}}_{\vec{b}},$

where $\gamma_{\vec{b}}^{A}: A \to A$ is given by $\gamma_{\vec{b}}^{A}(a) := \gamma^{A}(a, \vec{b}).$

- ► Axiomatically: modal #-algebras satisfy
 - $\blacktriangleright \ \gamma(\sharp(\vec{y}),\vec{y}) \leq \sharp(\vec{y})$
 - if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.

• Completeness for flat fixpoint logics: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$

► Modal \sharp -algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamondsuit, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying

 $\sharp(\vec{b}) = LFP.\gamma^{\mathcal{A}}_{\vec{b}},$

where $\gamma_{\vec{b}}^{A}: A \to A$ is given by $\gamma_{\vec{b}}^{A}(a) := \gamma^{A}(a, \vec{b}).$

- ► Axiomatically: modal #-algebras satisfy
 - $\blacktriangleright \ \gamma(\sharp(\vec{y}),\vec{y}) \leq \sharp(\vec{y})$
 - if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.
- Completeness for flat fixpoint logics: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- Two key concepts:

► Modal \sharp -algebra: $A = \langle A, \bot, \top, \neg, \land, \lor, \diamondsuit, \sharp \rangle$ with $\sharp : A^n \to A$ satisfying

 $\sharp(\vec{b}) = LFP.\gamma^{\mathcal{A}}_{\vec{b}},$

where $\gamma_{\vec{b}}^{A}: A \to A$ is given by $\gamma_{\vec{b}}^{A}(a) := \gamma^{A}(a, \vec{b}).$

- ► Axiomatically: modal #-algebras satisfy
 - $\blacktriangleright \ \gamma(\sharp(\vec{y}),\vec{y}) \leq \sharp(\vec{y})$
 - ▶ if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.
- Completeness for flat fixpoint logics: $Equ(MA_{\sharp}) \stackrel{?}{=} Equ(KA_{\sharp})$
- ► Two key concepts:
 - constructiveness
 - ► *O*-adjointness

▶ An MA_{\sharp} -algebra A is constructive if

$$\sharp(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_{\vec{b}}(\bot).$$

▶ An MA_{\sharp} -algebra A is constructive if

$$\sharp(\vec{b}) = \bigvee_{n \in \omega} \gamma^n_{\vec{b}}(\bot).$$

Note: we do not require $\mathbb A$ to be complete!

▶ An MA_{\sharp} -algebra A is constructive if

$$\sharp(\vec{b}) = \bigvee_{n \in \omega} \gamma_{\vec{b}}^n(\bot).$$

Note: we do not require \mathbb{A} to be complete!

Theorem (Santocanale & Venema) Let A be a countable, residuated, modal #-algebra. If A is constructive, then A can be embedded in a Kripke #-algebra.

▶ An MA_{\sharp} -algebra A is constructive if

$$\sharp(\vec{b}) = \bigvee_{n \in \omega} \gamma_{\vec{b}}^n(\bot).$$

Note: we do not require $\mathbb A$ to be complete!

Theorem (Santocanale & Venema)

Let A be a countable, residuated, modal \ddagger -algebra.

If A is constructive, then A can be embedded in a Kripke \sharp -algebra.

Proof

Via a step-by-step construction/generalized Lindenbaum Lemma. Alternatively, use Rasiowa-Sikorski Lemma.

$\mathcal{O}\text{-adjoints}$

Let $f : (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

\mathcal{O} -adjoints

Let $f: (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

▶ f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$

\mathcal{O} -adjoints

Let $f: (P, \leq) \to (Q, \leq)$ be an order-preserving map.

▶ f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$

▶ f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with

$$fp \leq q \iff p \leq y \text{ for some } y \in G_f q.$$

$\mathcal{O}\text{-adjoints}$

Let $f: (P, \leq) \rightarrow (Q, \leq)$ be an order-preserving map.

▶ f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$

▶ f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with

$$fp \leq q \iff p \leq y \text{ for some } y \in G_f q.$$

Proposition (Santocanale 2005)

▶ *f* is a left adjoint iff *f* is a join-preserving *O*-adjoint

$\mathcal{O}\text{-adjoints}$

Let $f:(P,\leq)
ightarrow (Q,\leq)$ be an order-preserving map.

▶ f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$

▶ f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with

$$fp \leq q \iff p \leq y \text{ for some } y \in G_f q.$$

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving O-adjoint
- O-adjoints are Scott continuous

$\mathcal{O}\text{-adjoints}$

Let $f:(P,\leq)
ightarrow (Q,\leq)$ be an order-preserving map.

▶ f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$fp \leq q \iff p \leq gq.$$

▶ f is a (left) \mathcal{O} -adjoint if it has an \mathcal{O} -residual $G_f : Q \to \wp_{\omega}(P)$ with

$$fp \leq q \iff p \leq y \text{ for some } y \in G_f q.$$

Proposition (Santocanale 2005)

- ▶ *f* is a left adjoint iff *f* is a join-preserving *O*-adjoint
- *O*-adjoints are Scott continuous
- \land is continuous but not an O-adjoint.

Let $f : A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

Let $f : A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

▶ Inductively define $G^n : A \to \wp(A)$

$$G^{0}(a) := \{a\}$$

 $G^{n+1}(a) := G[G^{n}(a)]$

Let $f : A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

▶ Inductively define $G^n : A \to \wp(A)$

$$egin{array}{rll} G^0(a) &:= & \{a\} \ G^{n+1}(a) &:= & G[G^n(a)] \end{array}$$

▶ Call f finitary if $G^{\omega}(a) := \bigcup_{n \in \omega} G^n(a)$ is finite.

Let $f : A^n \to A$ be an \mathcal{O} -adjoint with \mathcal{O} -residual G.

▶ Inductively define $G^n : A \to \wp(A)$

$$egin{array}{rll} G^0(a) &:= & \{a\}\ G^{n+1}(a) &:= & G[G^n(a)] \end{array}$$

▶ Call f finitary if
$$G^{\omega}(a) := \bigcup_{n \in \omega} G^n(a)$$
 is finite.

Theorem (Santocanale 2005) If $f : A \rightarrow A$ is a finitary \mathcal{O} -adjoint, then *LFP*.*f*, if existing, is constructive.

► Free modal (♯-)algebras have many *O*-adjoints!

► Free modal (#-)algebras have many *O*-adjoints!

▶ cf. free distributive lattice are Heyting algebras,

► Free modal (#-)algebras have many *O*-adjoints!

- ▶ cf. free distributive lattice are Heyting algebras,
- ▶ Whitman's rule for free lattices,

► Free modal ([‡]-)algebras have many *O*-adjoints!

- ▶ cf. free distributive lattice are Heyting algebras,
- ▶ Whitman's rule for free lattices,

▶ Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla \{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

► Free modal ([‡]-)algebras have many *O*-adjoints!

- ▶ cf. free distributive lattice are Heyting algebras,
- ▶ Whitman's rule for free lattices,
- ▶ Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla \{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

► Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x), \ldots$

► Free modal ([‡]-)algebras have many *O*-adjoints!

- ▶ cf. free distributive lattice are Heyting algebras,
- ▶ Whitman's rule for free lattices,
- ▶ Call a modal formula γ untied in x if it belongs to

$$\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla \{\gamma_1, \ldots, \gamma_n\}$$

where ψ does not contain x

- ► Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x), \ldots$
- ▶ Counterexamples: $\Diamond(x \land \Diamond x), \Diamond x \land \Box \Diamond x$

► Free modal ([‡]-)algebras have many *O*-adjoints!

- ▶ cf. free distributive lattice are Heyting algebras,
- ▶ Whitman's rule for free lattices,

▶ Call a modal formula γ untied in x if it belongs to

 $\gamma ::= x \mid \top \mid \gamma \lor \gamma \mid \psi \land \gamma \mid \nabla \{\gamma_1, \ldots, \gamma_n\}$

where ψ does not contain x

- ► Examples: $\Diamond x$, $\Box x$, $\Diamond x \land \Diamond \Diamond x \land \Box p$, $\Diamond x \land \Diamond \Box x \land \Box (\Diamond x \lor \Diamond \Box x)$, ...
- ▶ Counterexamples: $\Diamond(x \land \Diamond x), \ \Diamond x \land \Box \Diamond x$

Theorem (Santocanale & YV 2010) Untied formulas are finitary *O*-adjoints.

A general result

Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

 Santocanale & YV have fully general result for extended axiom system.

Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

- Santocanale & YV have fully general result for extended axiom system.
- ► Schröder & YV have similar results for wider coalgebraic setting.

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

- \blacktriangleright [+] natural extension of basic modal logic with fixpoint operators
- ▶ [+] expressive: LTL, CTL, PDL, CTL*, ... $\subseteq \mu$ ML
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory

- \blacktriangleright [+] natural extension of basic modal logic with fixpoint operators
- ▶ [+] expressive: LTL, CTL, PDL, CTL*, ... $\subseteq \mu$ ML
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory
- ▶ [-] hard to understand (nested) fixpoint operators

- \blacktriangleright [+] natural extension of basic modal logic with fixpoint operators
- ▶ [+] expressive: LTL, CTL, PDL, CTL*, ... $\subseteq \mu$ ML
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory
- ▶ [-] hard to understand (nested) fixpoint operators
- \blacktriangleright [–] theory of $\mu \rm{ML}$ isolated from theory of \rm{ML}

- \blacktriangleright [+] natural extension of basic modal logic with fixpoint operators
- ▶ [+] expressive: LTL, CTL, PDL, CTL*, ... $\subseteq \mu$ ML
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory
- ▶ [-] hard to understand (nested) fixpoint operators
- \blacktriangleright [–] theory of $\mu \rm{ML}$ isolated from theory of \rm{ML}
 - $\blacktriangleright\,$ this applies in particular to the completeness result

- \blacktriangleright [+] natural extension of basic modal logic with fixpoint operators
- ▶ [+] expressive: LTL, CTL, PDL, CTL*, ... $\subseteq \mu$ ML
- ▶ [+] good computational properties
- \blacktriangleright [+] nice meta-logical theory
- ▶ [-] hard to understand (nested) fixpoint operators
- \blacktriangleright [-] theory of $\mu \rm ML$ isolated from theory of $\rm ML$
 - $\blacktriangleright\,$ this applies in particular to the completeness result

Most results on μ ML use automata ...

Logic & Automata

Logic & Automata

Automata in Logic

- ▶ long & rich history (Büchi, Rabin, ...)
- mathematically interesting theory
- many practical applications
- \blacktriangleright automata for $\mu {\rm ML}:$
 - ▶ Janin & Walukiewicz (1995): μ-automata (nondeterministic)
 - ▶ Wilke (2002): modal automata (alternating)

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \times \mathsf{PX} \to 1\mathsf{ML}(A)$ is the transition map
 - ▶ $Acc \subseteq A^{\omega}$ is the acceptance condition

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \times \mathsf{PX} \to 1\mathsf{ML}(A)$ is the transition map
 - $Acc \subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \times \mathsf{PX} \to 1\mathsf{ML}(A)$ is the transition map
 - ▶ $Acc \subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$
- ▶ Parity automata: Acc is given by map $\Omega: A \rightarrow \omega$
 - Given $\rho \in A^{\omega}$, $Inf(\rho) := \{a \in A \mid a \text{ occurs infinitely often in } \pi_b\}$
 - $Acc_{\Omega} := \{ \rho \in A^{\omega} \mid \max\{\Omega(a) \mid a \in Inf(\rho) \} \text{ is even } \}$

- A modal automaton is a triple $\mathbb{A} = (A, \Theta, Acc)$, where
 - ► A is a finite set of states
 - ▶ $\Theta: A \times \mathsf{PX} \to 1\mathsf{ML}(A)$ is the transition map
 - ▶ $Acc \subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$
- ▶ Parity automata: Acc is given by map $\Omega: A \rightarrow \omega$
 - Given $\rho \in A^{\omega}$, $Inf(\rho) := \{a \in A \mid a \text{ occurs infinitely often in } \pi_b\}$
 - $Acc_{\Omega} := \{ \rho \in A^{\omega} \mid \max\{\Omega(a) \mid a \in Inf(\rho) \} \text{ is even } \}$
- ► Our approach: automata are formulas

One-step logic 1ML

- Let A be a set of variables with $A \cap X = \emptyset$
- ▶ One-step formulas: $\Diamond(a \land b)$, $\Box a \land \Diamond b$, \top , $\Diamond \bot$,...
- ▶ A one-step model is a pair (U, m) with $m : U \rightarrow PA$ a marking
 - ▶ write $U, m, u \Vdash^0 a$ if $a \in m(u)$

One-step logic 1ML

- Let A be a set of variables with $A \cap X = \emptyset$
- ▶ One-step formulas: $\Diamond (a \land b)$, $\Box a \land \Diamond b$, \top , $\Diamond \bot$,...
- ▶ A one-step model is a pair (U, m) with $m : U \to PA$ a marking ▶ write $U, m, u \Vdash^0 a$ if $a \in m(u)$
- One-step modal language 1ML(X, A) over A

One-step logic 1ML

- Let A be a set of variables with $A \cap X = \emptyset$
- ▶ One-step formulas: $\Diamond (a \land b)$, $\Box a \land \Diamond b$, \top , $\Diamond \bot$,...
- A one-step model is a pair (U, m) with m : U → PA a marking
 write U, m, u ⊩⁰ a if a ∈ m(u)
- One-step modal language 1ML(X, A) over A

- One-step semantics interprets 1ML(A) over one-step models, e.g.
 - ► $(U, m) \Vdash^1 \Box a$ iff $\forall u \in U.u \Vdash^0 a$
 - ▶ $(U,m) \Vdash^1 \diamondsuit (a \land b)$ iff $\exists u \in U.u \Vdash^0 a \land b$

Acceptance game

▶ Represent Kripke model as pair $\mathbb{S} = (S, \sigma)$ with $\sigma : S \to \mathsf{PX} \times \mathsf{PS}$

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle A, \Theta, Acc \rangle$ on $\mathbb{S} = \langle S, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Ξ	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \Vdash^1 \Theta(a)\}$
$m: S \stackrel{\sim}{\rightarrow} PA$	\forall	$\{(b,t)\mid b\in \textit{m}(t)\}$

Acceptance game

▶ Represent Kripke model as pair $S = (S, \sigma)$ with $\sigma : S \to \mathsf{PX} \times \mathsf{PS}$

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle \mathcal{A}, \Theta, Acc \rangle$ on $\mathbb{S} = \langle \mathcal{S}, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Ξ	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \Vdash^1 \Theta(a)\}$
$m: S \stackrel{\backsim}{ o} P A$	\forall	$\{(b,t)\mid b\in \textit{m}(t)\}$

Winning conditions:

- ▶ finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by the acceptance condition:
 - match $\pi = (a_0, s_0)m_0(a_1, s_1)m_1...$ induces list $\pi_A := a_0a_1a_2...$
 - ▶ \exists wins if $\pi_A \in Acc$

Acceptance game

▶ Represent Kripke model as pair $S = (S, \sigma)$ with $\sigma : S \to \mathsf{PX} \times \mathsf{PS}$

Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A} = \langle \mathcal{A}, \Theta, Acc \rangle$ on $\mathbb{S} = \langle \mathcal{S}, \sigma \rangle$:

Position	Player	Admissible moves
$(a,s) \in A \times S$	Ξ	$\{m: \sigma_R(s) \to PA \mid \sigma(s), m \Vdash^1 \Theta(a)\}$
$m: S \stackrel{\backsim}{ o} P A$	\forall	$\{(b,t)\mid b\in \textit{m}(t)\}$

Winning conditions:

- ▶ finite matches are lost by the player who gets stuck,
- ▶ infinite matches are won as specified by the acceptance condition:
 - match $\pi = (a_0, s_0)m_0(a_1, s_1)m_1 \dots$ induces list $\pi_A := a_0a_1a_2 \dots$
 - \exists wins if $\pi_A \in Acc$

Definition (\mathbb{A}, a) accepts (\mathbb{S}, s) if $(a, s) \in Win_{\exists}(\mathcal{A}(\mathbb{A}, \mathbb{S}))$.

Basis

 \blacktriangleright There are well-known translations: formulas \leftrightarrow automata

Basis

 \blacktriangleright There are well-known translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via corresponding automata

Basis

 \blacktriangleright There are well-known translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- \blacktriangleright automata separate the dynamics (Θ) from the combinatorics (Ω)

Basis

 \blacktriangleright There are well-known translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

Which properties of modal parity automata are determined
 already at one-step level

Basis

 \blacktriangleright There are well-known translations: formulas \leftrightarrow automata

Goal:

▶ Understand modal fixpoint logics via corresponding automata

Perspective:

- ▶ automata are generalized formulas with interesting inner structure
- \blacktriangleright automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- ▶ Which properties of modal parity automata are determined
 - already at one-step level
 - by the interaction of combinatorics and dynamics

Theorem

There are maps $\mathbb{B}_{-}: \mu ML \to Aut(ML_1)$ and $\xi: Aut(ML_1) \to \mu ML$ that (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$

Theorem

There are maps $\mathbb{B}_-: \mu \mathsf{ML} \to \mathsf{Aut}(\mathsf{ML}_1)$ and $\xi: \mathsf{Aut}(\mathsf{ML}_1) \to \mu \mathsf{ML}$ that

- (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
- (2) interact nicely with Booleans, modalities, fixpoints, and substitution

Theorem

There are maps $\mathbb{B}_-: \mu \mathsf{ML} \to \mathsf{Aut}(\mathsf{ML}_1)$ and $\xi: \mathsf{Aut}(\mathsf{ML}_1) \to \mu \mathsf{ML}$ that

- (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
- (2) interact nicely with Booleans, modalities, fixpoints, and substitution
- (3) satisfy $\varphi \equiv_{\kappa} \xi(\mathbb{B}_{\varphi})$

Theorem

There are maps $\mathbb{B}_-: \mu \mathsf{ML} \to \mathsf{Aut}(\mathsf{ML}_1)$ and $\xi: \mathsf{Aut}(\mathsf{ML}_1) \to \mu \mathsf{ML}$ that

- (1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
- (2) interact nicely with Booleans, modalities, fixpoints, and substitution (3) satisfy $\varphi \equiv_{\kappa} \xi(\mathbb{B}_{\varphi})$

As a corollary, we may apply proof-theoretic concepts to automata

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (U, m):

 $(U, m) \Vdash^1 \alpha$ implies $(U, m) \Vdash^1 \alpha'$.

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (U, m):

 $(U, m) \Vdash^1 \alpha$ implies $(U, m) \Vdash^1 \alpha'$.

A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (U, m):

 $(U, m) \Vdash^1 \alpha$ implies $(U, m) \Vdash^1 \alpha'$.

- A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.
- ► Example: the core of basic modal logic K consists of
 - monotonicity rule for \diamond : $a \leq b / \diamond a \leq \diamond b$
 - ▶ normality ($\diamond \bot \leq \bot$) and additivity ($\diamond (a \lor b) \leq \diamond a \lor \diamond b$) axioms

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (U, m):

 $(U, m) \Vdash^1 \alpha$ implies $(U, m) \Vdash^1 \alpha'$.

- A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.
- ► Example: the core of basic modal logic K consists of
 - monotonicity rule for \diamond : $a \leq b / \diamond a \leq \diamond b$
 - ▶ normality ($\diamond \bot \leq \bot$) and additivity ($\diamond (a \lor b) \leq \diamond a \lor \diamond b$) axioms
- ► A derivation system **H** is one-step sound and complete if

 $\vdash_{\mathbf{H}} \alpha \leq \alpha' \text{ iff } \models^1 \alpha \leq \alpha'.$

• Given $\alpha, \alpha' \in 1$ ML define $\models^1 \alpha \leq \alpha'$ if for all (U, m):

 $(U, m) \Vdash^1 \alpha$ implies $(U, m) \Vdash^1 \alpha'$.

- A one-step derivation system is a set H of one-step axioms and one-step rules operating on inequalities π ≤ π', α ≤ α'.
- ► Example: the core of basic modal logic K consists of
 - monotonicity rule for \diamond : $a \leq b / \diamond a \leq \diamond b$
 - ▶ normality ($\diamond \bot \leq \bot$) and additivity ($\diamond (a \lor b) \leq \diamond a \lor \diamond b$) axioms
- ► A derivation system **H** is one-step sound and complete if

$$\vdash_{\mathbf{H}} \alpha \leq \alpha' \text{ iff } \models^1 \alpha \leq \alpha'.$$

▶ For more on this, check the literature on coalgebra (Cîrstea, Pattinson, Schröder,...)

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu\mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

▶ linear time μ -calculus,

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

▶ linear time μ -calculus, k-successor μ -calculus,

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

► linear time µ-calculus, k-successor µ-calculus, standard modal µ-calculus,

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

► linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus,

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

 linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus, monotone modal μ-calculus,

Theorem Assume that

- $\blacktriangleright~\mathcal{L}$ is a one-step language with an adequate disjunctive base
- $\blacktriangleright~$ H is a one-step sound and complete axiomatization for ${\cal L}$

Then $\mathbf{H}\mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

Examples:

 linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus, monotone modal μ-calculus, game μ-calculus, ...

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- ► Frame conditions
- Conclusions

Conjecture Let **L** be an extension of \mathbf{K}_{Γ} or \mathbf{K}_{μ} with an axiom set Φ such that each $\varphi \in \Phi$

- ▶ is canonical
- ► corresponds to a universal first-order frame condition.

Then $\boldsymbol{\mathsf{L}}$ is sound and complete for the class of frames satisfying $\boldsymbol{\Phi}.$

Overview

- Introduction
- Obstacles
- ► A general result
- ► A general framework
- Frame conditions
- Conclusions

But first:

But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20–24 : TACL School 2017 June 26–30 : TACL Conference

www.cs.cas.cz/tacl2017

▶ general completeness result for flat fixpoint logics

- ▶ general completeness result for flat fixpoint logics
- framework for proving completeness for μ -calculi

- ▶ general completeness result for flat fixpoint logics
- framework for proving completeness for μ -calculi
- ▶ perspective for bringing automata into proof theory

Future work

prove conjecture!

- completeness for fragments of μ ML (game logic!)
 - ► many µML-fragments have interesting automata-theoretic counterparts!
- interpolation for fixpoint logics (PDL!)
- fixpoint logics on non-boolean basis
 - non-boolean automata?
- proof theory for modal automata
- ▶ further explore notion of *O*-adjointness

▶ ...

References

- ▶ L. Santocanale & YV. Completeness for flat modal fixpoint logic APAL 2010
- ► L. Schröder & YV. Completeness for flat coalgebraic fixpoint logic submitted (short version appeared in CONCUR 2010)
- S. Enqvist, F. Seifan & YV. Completeness for coalgebraic fixpoint logic CSL 2016.
- S. Enqvist, F. Seifan & YV. Completeness for the modal μ-calculus: separating the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.
- ▶ YV. Lecture notes on the modal μ -calculus. Manuscript, ILLC, 2012.

http://staff.science.uva.nl/~yde

THANK YOU!