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Example

I Add master modality 〈∗〉 to the language ML of modal logic

I 〈∗〉p :=
∨

n∈ω 3np
s  〈∗〉p iff there is a finite path from s to some p-state

I 〈∗〉p ↔ p ∨3〈∗〉p
I Fact 〈∗〉p is the least fixpoint of the ‘equation’ x ↔ p ∨3x

I Notation: 〈∗〉p ≡ µx .p ∨3x .

I Variant (PDL): 〈α∗〉ϕ := µx .ϕ ∨ 〈α〉x
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More examples

I Uϕψ ≡ ϕ ∨ (ψ ∧©Uϕψ)

Uϕψ := µx .ϕ ∨ (ψ ∧©x)

I Cϕ := ϕ ∧
∧

i Kiϕ ∧
∧

i KiC (
∧

i Kiϕ) ∧ . . .
Cϕ ≡ ϕ ∧

∧
i KiCϕ

Cϕ := νx .ϕ ∧
∧

i Kix
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Modal Fixpoint Logics

I Modal fixpoint languages extend basic modal logic with either

I new fixpoint connectives such as 〈∗〉, U, C , . . .

; LTL, CTL, PDL
I explicit fixpoint operators µx , νx ; µML

I Motivation 1: increase expressive power

I e.g. enable specification of ongoing behaviour

I Motivation 2: generally nice computational properties

I Combined: many applications in process theory, epistemic logic, . . .

I Interesting mathematical theory:

I interesting mix of algebraic|coalgebraic features
I connections with theory of automata on infinite objects
I game-theoretical semantics
I interesting meta-logic
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General Program

Understand modal fixpoint logics by studying the interaction between
• combinatorial
• algebraic and
• coalgebraic
aspects

Here: consider axiomatization problem



Axiomatization of fixpoints

Least fixpoint µp.ϕ should be axiomatized by

I a least (pre-)fixpoint axiom:

ϕ(µp.ϕ) ` µp.ϕ

I Park’s induction rule

ϕ(ψ) ` ϕ
µp.ϕ ` ψ

(Here α `K β abbreviates `K α → β)



Axiomatization of fixpoints

Least fixpoint µp.ϕ should be axiomatized by

I a least (pre-)fixpoint axiom:

ϕ(µp.ϕ) ` µp.ϕ

I Park’s induction rule

ϕ(ψ) ` ϕ
µp.ϕ ` ψ

(Here α `K β abbreviates `K α → β)



Axiomatization results for modal fixpoint logics

I LTL: Gabbay et alii (1980)

I PDL: Kozen & Parikh (1981)

I µML (aconjunctive fragment): Kozen (1983)

I CTL: Emerson & Halpern (1985)

I µML: Walukiewicz (1993/2000)

I CTL∗: Reynolds (2000)

I LTL/CTL uniformly: Lange & Stirling (2001)

I common knowledge logics: various

I . . .

So what is the problem?
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Axiomatization problem

Questions (2015)

I How to generalise these results to restricted frame classes?

I How to generalise results to similar logics, eg, the monotone
µ-calculus?

I Does completeness transfer to fragments of µML? (Ex: game logic)

I What about proof theory?

Compared to basic modal logic

I there are no sweeping general results
such as Sahlqvist’s theorem

I there is no no comprehensive completeness theory
(duality, canonicity, filtration, . . . )
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Obstacle 1: computational danger zone

Example

I Language: 3R ,3U

I Intended Semantics: N× N
I (m, n)R(m′, n′) iff m′ = m + 1 and n′ = n

I (m, n)U(m′, n′) iff m′ = m and n′ = n + 1

I Logic KG := K +

I functionality: 3Rp ↔ 2Rp and 3Up ↔ 2Up

I confluence: 3R2Up → 2U3Rp

I KG is sound and complete with respect to its Kripke frames

I Add master modality, 〈∗〉p := µx .p ∨3Rx ∨3Ux

I µKG is sound but incomplete with respect to its Kripke frames

I Proof: Use recurrent tiling problem to show that

I the 3R ,3U , 〈∗〉-logic of Fr(KG) is not recursively enumerable
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Obstacle 2: compactness failure

I Example: 〈∗〉p :=
∨

n∈ω 3np

I {〈∗〉p} ∪ {2n¬p | n ∈ ω} is finitely satisfiable but not satisfiable

I Fixpoint logics have no nice Stone-based duality
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Obstacle 3: fixpoint alternation

I tableaux: fixpoint unfolding

I ν-fixpoints may be unfolded infinitely often

I µ-fixpoints may only be unfolded finitely often

I with every branch of tableau associate a trace graph

I obstacle 3a: conjunctions cause trace proliferation

I obstacle 3b: fixpoint alternations cause intricate combinatorics
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I restrict language to fixpoints of simple formulas (avoid alternation)

I allow alternation, but develop suitable combinatorical framework
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Flat Modal Fixpoint Logics: Syntax

I Fix a basic modal formula γ(x , ~p), positive in x

I Add a fixpoint connective ]γ to the language of ML
(arity of ]γ depends on γ but notation hides this)

I Example: Upq := µx .p ∨ (q ∧©x),
now: Upq := ]γ(p, q) with γ = p ∨ (q ∧©x)

I Intended reading: ]γ(~ϕ) ≡ µx .γ(x , ~ϕ) for any ~ϕ = (ϕ1, . . . , ϕn).

I Obtain language MLγ :

ϕ ::= p | ¬p | ⊥ | > | ϕ1∨ϕ2 | ϕ1∧ϕ2 | 3iϕ | 2iϕ | ]γ(~ϕ)

I Examples: CTL, LTL, (PDL), . . .
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Flat Modal Fixpoint Logics: Kripke Semantics

I Kripke frame S = 〈S ,R〉 with R ⊆ S × S .

I Complex algebra: S+ := 〈℘(S),∅,S ,∼S ,∪,∩, 〈R〉〉,
〈R〉 : ℘(S)→ ℘(S) given by
〈R〉(X ) := {s ∈ S | Rst for some t ∈ X}

I Every modal formula ϕ(p1, . . . , pn) corresponds to a term function

ϕS : ℘(S)n → ℘(S).

I γ positive in x , hence γS order preserving in x .

I By Knaster-Tarski we may define ]S : ℘(S)n → ℘(S) by

]S(~B) := LFP.γS(−, ~B).

I Kripke ]-algebra S] := 〈℘(S),∅,S ,∼S ,∪,∩, 〈R〉, ]S〉.
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I γ positive in x , hence γS order preserving in x .
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Candidate Axiomatization

Kγ := K extended with

I prefixpoint axiom:
γ(](~ϕ), ~ϕ) ` ](~ϕ)

I Park’s induction rule:

from γ(ψ, ~ϕ) ` ψ infer ]γ(~ϕ) ` ψ.



Flat Modal Fixpoint Logics: Algebraic completeness proof

I Modal ]-algebra: A = 〈A,⊥,>,¬,∧,∨,3, ]〉 with ] : An → A
satisfying

](~b) = LFP.γA~b ,

where γA~b : A→ A is given by γA~b (a) := γA(a,~b).

I Axiomatically: modal ]-algebras satisfy

I γ(](~y), ~y) ≤ ](~y)

I if γ(x , ~y) ≤ x then ](~y) ≤ x .

I Completeness for flat fixpoint logics: Equ(MA])
?
= Equ(KA])

I Two key concepts:

I constructiveness

I O-adjointness
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Constructiveness

I An MA]-algebra A is constructive if

](~b) =
∨
n∈ω

γn~b (⊥).

Note: we do not require A to be complete!

Theorem (Santocanale & Venema)
Let A be a countable, residuated, modal ]-algebra.
If A is constructive, then A can be embedded in a Kripke ]-algebra.

Proof
Via a step-by-step construction/generalized Lindenbaum Lemma.
Alternatively, use Rasiowa-Sikorski Lemma.
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O-adjoints

Let f : (P,≤)→ (Q,≤) be an order-preserving map.

I f is a (left) adjoint or residuated if it has a residual g : Q → P with

fp ≤ q ⇐⇒ p ≤ gq.

I f is a (left) O-adjoint if it has an O-residual Gf : Q → ℘ω(P) with

fp ≤ q ⇐⇒ p ≤ y for some y ∈ Gf q.

Proposition (Santocanale 2005)

I f is a left adjoint iff f is a join-preserving O-adjoint

I O-adjoints are Scott continuous

I ∧ is continuous but not an O-adjoint.
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Finitary O-adjoints

Let f : An → A be an O-adjoint with O-residual G .

I Inductively define G n : A→ ℘(A)

G 0(a) := {a}
G n+1(a) := G [G n(a)]

I Call f finitary if Gω(a) :=
⋃

n∈ω G
n(a) is finite.

Theorem (Santocanale 2005)
If f : A→ A is a finitary O-adjoint, then LFP.f , if existing, is
constructive.
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Adjoints on free algebras

I Free modal (]-)algebras have many O-adjoints!

I cf. free distributive lattice are Heyting algebras,

I Whitman’s rule for free lattices, . . .

I Call a modal formula γ untied in x if it belongs to

γ ::= x | > | γ ∨ γ | ψ ∧ γ | ∇{γ1, . . . , γn}

where ψ does not contain x

I Examples: 3x , 2x , 3x ∧33x ∧2p, 3x ∧32x ∧2(3x ∨32x), . . .

I Counterexamples: 3(x ∧3x), 3x ∧ 23x

Theorem (Santocanale & YV 2010)
Untied formulas are finitary O-adjoints.
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A general result

Theorem (Santocanale & YV 2010)
Let γ be untied wrt x . Then Kγ is sound and complete wrt its Kripke
semantics.

Notes

I Santocanale & YV have fully general result for extended axiom
system.

I Schröder & YV have similar results for wider coalgebraic setting.
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The modal µ-calculus

I [+] natural extension of basic modal logic with fixpoint operators

I [+] expressive: LTL, CTL, PDL, CTL*, . . .⊆ µML

I [+] good computational properties

I [+] nice meta-logical theory

I [ – ] hard to understand (nested) fixpoint operators

I [ – ] theory of µML isolated from theory of ML

I this applies in particular to the completeness result

Most results on µML use automata . . .
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Automata in Logic

I long & rich history (Büchi, Rabin, . . . )

I mathematically interesting theory

I many practical applications

I automata for µML:

I Janin & Walukiewicz (1995): µ-automata (nondeterministic)

I Wilke (2002): modal automata (alternating)
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Modal automata

Fix a set X of proposition letters; PX is a set of colours

I A modal automaton is a triple A = (A,Θ,Acc), where

I A is a finite set of states

I Θ : A× PX→ 1ML(A) is the transition map

I Acc ⊆ Aω is the acceptance condition

I An initialized automaton is a pair (A, a) with a ∈ A

I Parity automata: Acc is given by map Ω : A→ ω
I Given ρ ∈ Aω, Inf (ρ) := {a ∈ A | a occurs infinitely often in πb}
I AccΩ := {ρ ∈ Aω | max{Ω(a) | a ∈ Inf (ρ)} is even }

I Our approach: automata are formulas
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One-step logic 1ML

I Let A be a set of variables with A ∩ X = ∅
I One-step formulas: 3(a ∧ b), 2a ∧3b, >, 3⊥,. . .
I A one-step model is a pair (U,m) with m : U → PA a marking

I write U,m, u 0 a if a ∈ m(u)

I One-step modal language 1ML(X,A) over A

α ::= 3π | 2π | ⊥ | > | α ∨ α | α ∧ α
π ::= a ∈ A | ⊥ | > | π ∨ π | π ∧ π

I One-step semantics interprets 1ML(A) over one-step models, e.g.

I (U,m) 1 2a iff ∀u ∈ U.u 0 a

I (U,m) 1 3(a ∧ b) iff ∃u ∈ U.u 0 a ∧ b
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Acceptance game

I Represent Kripke model as pair S = (S , σ) with σ : S → PX× PS

Acceptance game A(A,S) of A = 〈A,Θ,Acc〉 on S = 〈S , σ〉:

Position Player Admissible moves

(a, s) ∈ A× S ∃ {m : σR(s)→ PA | σ(s),m 1 Θ(a)}
m : S →̆ PA ∀ {(b, t) | b ∈ m(t)}

Winning conditions:

I finite matches are lost by the player who gets stuck,

I infinite matches are won as specified by the acceptance condition:
I match π = (a0, s0)m0(a1, s1)m1 . . . induces list πA := a0a1a2 . . .
I ∃ wins if πA ∈ Acc

Definition (A, a) accepts (S, s) if (a, s) ∈Win∃(A(A,S)).
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Themes

Basis

I There are well-known translations: formulas ↔ automata

Goal:

I Understand modal fixpoint logics via corresponding automata

Perspective:

I automata are generalized formulas with interesting inner structure

I automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

I Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics
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Automata & . . .

Theorem
There are maps B− : µML→ Aut(ML1) and ξ : Aut(ML1)→ µML that
(1) preserve meaning: ϕ ≡ Bϕ and A ≡ ξ(A)

(2) interact nicely with Booleans, modalities, fixpoints, and substitution
(3) satisfy ϕ ≡K ξ(Bϕ)

As a corollary, we may apply proof-theoretic concepts to automata
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Completeness at one-step level

I Given α, α′ ∈ 1ML define |=1 α ≤ α′ if for all (U,m):

(U,m) 1 α implies (U,m) 1 α′.

I A one-step derivation system is a set H of one-step axioms and
one-step rules operating on inequalities π ≤ π′, α ≤ α′.

I Example: the core of basic modal logic K consists of

I monotonicity rule for 3: a ≤ b / 3a ≤ 3b

I normality (3⊥ ≤ ⊥) and additivity (3(a ∨ b) ≤ 3a ∨3b) axioms

I A derivation system H is one-step sound and complete if

`H α ≤ α′ iff |=1 α ≤ α′.

I For more on this, check the literature on coalgebra (Ĉırstea, Pattinson, Schröder,. . . )
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General result

Theorem Assume that

I L is a one-step language with an adequate disjunctive base

I H is a one-step sound and complete axiomatization for L
Then Hµ is a sound and complete axiomatization for µL.

Proof
‘De- and re-constructing’ Walukiewicz’ proof – automata in leading role

Examples:

I linear time µ-calculus, k-successor µ-calculus,
standard modal µ-calculus, graded µ-calculus,
monotone modal µ-calculus, game µ-calculus, . . .
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Frame conditions

Conjecture Let L be an extension of KΓ or Kµ
with an axiom set Φ such that each ϕ ∈ Φ

I is canonical

I corresponds to a universal first-order frame condition.

Then L is sound and complete for the class of frames satisfying Φ.



Overview

I Introduction

I Obstacles

I A general result

I A general framework

I Frame conditions

I Conclusions



But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20–24 : TACL School
2017 June 26–30 : TACL Conference

www.cs.cas.cz/tacl2017

www.cs.cas.cz/tacl2017


But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20–24 : TACL School
2017 June 26–30 : TACL Conference

www.cs.cas.cz/tacl2017

www.cs.cas.cz/tacl2017


But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20–24 : TACL School
2017 June 26–30 : TACL Conference

www.cs.cas.cz/tacl2017

www.cs.cas.cz/tacl2017


Conclusions

I general completeness result for flat fixpoint logics

I framework for proving completeness for µ-calculi

I perspective for bringing automata into proof theory



Conclusions

I general completeness result for flat fixpoint logics

I framework for proving completeness for µ-calculi

I perspective for bringing automata into proof theory



Conclusions

I general completeness result for flat fixpoint logics

I framework for proving completeness for µ-calculi

I perspective for bringing automata into proof theory



Conclusions

I general completeness result for flat fixpoint logics

I framework for proving completeness for µ-calculi

I perspective for bringing automata into proof theory



Future work

I prove conjecture!

I completeness for fragments of µML (game logic!)

I many µML-fragments have interesting automata-theoretic
counterparts!

I interpolation for fixpoint logics (PDL!)

I fixpoint logics on non-boolean basis

I non-boolean automata?

I proof theory for modal automata

I further explore notion of O-adjointness

I . . .
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