Axiomatizing modal fixpoint logics

Yde Venema
http://staff.science.uva.nl/~yde

SYSMICS, 8 september 2016
(largely joint work with Enqvist, Seifan, Santocanale, Schröder, ...)

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

Example

- Add master modality $\langle *\rangle$ to the language ML of modal logic
- $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
$s \Vdash\langle *\rangle p$ iff there is a finite path from s to some p-state

Example

- Add master modality $\langle *\rangle$ to the language ML of modal logic
- $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
$s \Vdash\langle *\rangle p$ iff there is a finite path from s to some p-state
- $\langle *\rangle p \leftrightarrow p \vee \diamond\langle *\rangle p$

Example

- Add master modality $\langle *\rangle$ to the language ML of modal logic
- $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
$s \Vdash\langle *\rangle p$ iff there is a finite path from s to some p-state
- $\langle *\rangle p \leftrightarrow p \vee \diamond\langle *\rangle p$
- Fact $\langle *\rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \vee \diamond x$

Example

- Add master modality $\langle *\rangle$ to the language ML of modal logic
- $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
$s \Vdash\langle *\rangle p$ iff there is a finite path from s to some p-state
- $\langle *\rangle p \leftrightarrow p \vee \diamond\langle *\rangle p$
- Fact $\langle *\rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \vee \diamond x$
- Notation: $\langle *\rangle p \equiv \mu x . p \vee \diamond x$.

Example

- Add master modality $\langle *\rangle$ to the language ML of modal logic
- $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
$s \Vdash\langle *\rangle p$ iff there is a finite path from s to some p-state
- $\langle *\rangle p \leftrightarrow p \vee \diamond\langle *\rangle p$
- Fact $\langle *\rangle p$ is the least fixpoint of the 'equation' $x \leftrightarrow p \vee \diamond x$
- Notation: $\langle *\rangle p \equiv \mu x . p \vee \nabla x$.
- Variant (PDL): $\left\langle\alpha^{*}\right\rangle \varphi:=\mu x . \varphi \vee\langle\alpha\rangle x$

More examples

- $U_{\varphi} \psi \equiv \varphi \vee(\psi \wedge \bigcirc U \varphi \psi)$

More examples

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
$U \varphi \psi:=\mu x . \varphi \vee(\psi \wedge O x)$

More examples

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
$U_{\varphi \psi}:=\mu x . \varphi \vee(\psi \wedge O x)$
- $C \varphi:=\varphi \wedge \bigwedge_{i} K_{i} \varphi \wedge \bigwedge_{i} K_{i} C\left(\bigwedge_{i} K_{i} \varphi\right) \wedge \ldots$

More examples

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
$U_{\varphi \psi}:=\mu x . \varphi \vee(\psi \wedge O x)$
- $C \varphi:=\varphi \wedge \bigwedge_{i} K_{i} \varphi \wedge \bigwedge_{i} K_{i} C\left(\bigwedge_{i} K_{i} \varphi\right) \wedge \ldots$
$C \varphi \equiv \varphi \wedge \wedge_{i} K_{i} C \varphi$

More examples

- $U \varphi \psi \equiv \varphi \vee(\psi \wedge \circ U \varphi \psi)$
$U_{\varphi \psi}:=\mu x . \varphi \vee(\psi \wedge O x)$
- C $\varphi:=\varphi \wedge \bigwedge_{i} K_{i} \varphi \wedge \bigwedge_{i} K_{i} C\left(\bigwedge_{i} K_{i} \varphi\right) \wedge \ldots$
$C \varphi \equiv \varphi \wedge \bigwedge_{i} K_{i} C \varphi$
$C \varphi:=\nu x . \varphi \wedge \bigwedge_{i} K_{i} x$

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots$

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \leadsto$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x$

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \leadsto$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x \leadsto \mu \mathrm{ML}$

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \leadsto$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x \leadsto \mu \mathrm{ML}$
- Motivation 1: increase expressive power
- e.g. enable specification of ongoing behaviour

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \leadsto$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x \leadsto \mu \mathrm{ML}$
- Motivation 1: increase expressive power
- e.g. enable specification of ongoing behaviour
- Motivation 2: generally nice computational properties

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \sim$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x \leadsto \mu \mathrm{ML}$
- Motivation 1: increase expressive power
- e.g. enable specification of ongoing behaviour
- Motivation 2: generally nice computational properties
- Combined: many applications in process theory, epistemic logic, ...

Modal Fixpoint Logics

- Modal fixpoint languages extend basic modal logic with either
- new fixpoint connectives such as $\langle *\rangle, U, C, \ldots \leadsto$ LTL, CTL, PDL
- explicit fixpoint operators $\mu x, \nu x \leadsto \mu \mathrm{ML}$
- Motivation 1: increase expressive power
- e.g. enable specification of ongoing behaviour
- Motivation 2: generally nice computational properties
- Combined: many applications in process theory, epistemic logic, ...
- Interesting mathematical theory:
- interesting mix of algebraic|coalgebraic features
- connections with theory of automata on infinite objects
- game-theoretical semantics
- interesting meta-logic

General Program

Understand modal fixpoint logics by studying the interaction between

- combinatorial
- algebraic and
- coalgebraic
aspects
Here: consider axiomatization problem

Axiomatization of fixpoints

Least fixpoint $\mu p . \varphi$ should be axiomatized by

Axiomatization of fixpoints

Least fixpoint $\mu p . \varphi$ should be axiomatized by

- a least (pre-)fixpoint axiom:

$$
\varphi(\mu p . \varphi) \vdash \mu p . \varphi
$$

- Park's induction rule

$$
\frac{\varphi(\psi) \vdash \varphi}{\mu p . \varphi \vdash \psi}
$$

$\left(\right.$ Here $\alpha \vdash_{K} \beta$ abbreviates $\left.\vdash_{K} \alpha \rightarrow \beta\right)$

Axiomatization results for modal fixpoint logics

- LTL: Gabbay et alii (1980)
- PDL: Kozen \& Parikh (1981)
- $\mu \mathrm{ML}$ (aconjunctive fragment): Kozen (1983)
- CTL: Emerson \& Halpern (1985)
- μ ML: Walukiewicz $(1993 / 2000)$
- CTL*: Reynolds (2000)
- LTL/CTL uniformly: Lange \& Stirling (2001)
- common knowledge logics: various

Axiomatization results for modal fixpoint logics

- LTL: Gabbay et alii (1980)
- PDL: Kozen \& Parikh (1981)
- $\mu \mathrm{ML}$ (aconjunctive fragment): Kozen (1983)
- CTL: Emerson \& Halpern (1985)
- μ ML: Walukiewicz (1993/2000)
- CTL*: Reynolds (2000)
- LTL/CTL uniformly: Lange \& Stirling (2001)
- common knowledge logics: various

So what is the problem?

Axiomatization problem

Questions (2015)

- How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ-calculus?
- Does completeness transfer to fragments of $\mu \mathrm{ML}$? (Ex: game logic)
- What about proof theory?

Axiomatization problem

Questions (2015)

- How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ-calculus?
- Does completeness transfer to fragments of $\mu \mathrm{ML}$? (Ex: game logic)
- What about proof theory?

Compared to basic modal logic

- there are no sweeping general results such as Sahlqvist's theorem

Axiomatization problem

Questions (2015)

- How to generalise these results to restricted frame classes?
- How to generalise results to similar logics, eg, the monotone μ-calculus?
- Does completeness transfer to fragments of $\mu \mathrm{ML}$? (Ex: game logic)
- What about proof theory?

Compared to basic modal logic

- there are no sweeping general results such as Sahlqvist's theorem
- there is no no comprehensive completeness theory (duality, canonicity, filtration, ...)

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

Obstacle 1: computational danger zone

Example

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic KG:=K+
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U} p \leftrightarrow \square U p$
- confluence: $\diamond_{R} \square u p \rightarrow \square U \diamond_{R} p$

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) U\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic $\mathbf{K} G:=\mathbf{K}+$
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U P} \leftrightarrow \square U P$
\rightarrow confluence: $\diamond_{R} \square U p \rightarrow \square U \diamond_{R} p$
- KG is sound and complete with respect to its Kripke frames

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic $\mathbf{K} G:=\mathbf{K}+$
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U} p \leftrightarrow \square U p$
- confluence: $\diamond_{R} \square u p \rightarrow \square U \diamond_{R} p$
- KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle *\rangle p:=\mu x . p \vee \diamond_{R} x \vee \diamond_{U X}$

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic $\mathbf{K} G:=\mathbf{K}+$
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U P} \leftrightarrow \square U p$
- confluence: $\diamond_{R} \square u p \rightarrow \square U \diamond_{R} p$
- KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle *\rangle p:=\mu x . p \vee \diamond_{R} x \vee \diamond_{U X}$
- $\mu \mathbf{K} G$ is sound but incomplete with respect to its Kripke frames
- Proof:

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic $\mathbf{K} G:=\mathbf{K}+$
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U} p \leftrightarrow \square U p$
- confluence: $\diamond_{R} \square u p \rightarrow \square U \diamond_{R} p$
- $\mathrm{K} G$ is sound and complete with respect to its Kripke frames
- Add master modality, $\langle *\rangle p:=\mu x . p \vee \diamond_{R} x \vee \diamond_{U X}$
- $\mu \mathbf{K} G$ is sound but incomplete with respect to its Kripke frames
- Proof: Use recurrent tiling problem to show that

Obstacle 1: computational danger zone

Example

- Language: $\diamond_{R}, \diamond_{U}$
- Intended Semantics: $\mathbb{N} \times \mathbb{N}$
- $(m, n) R\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m+1$ and $n^{\prime}=n$
- $(m, n) \cup\left(m^{\prime}, n^{\prime}\right)$ iff $m^{\prime}=m$ and $n^{\prime}=n+1$
- Logic $\mathbf{K} G:=\mathbf{K}+$
- functionality: $\diamond_{R} p \leftrightarrow \square_{R} p$ and $\diamond_{U} p \leftrightarrow \square U p$
- confluence: $\diamond_{R} \square u p \rightarrow \square U \diamond_{R} p$
- KG is sound and complete with respect to its Kripke frames
- Add master modality, $\langle *\rangle p:=\mu x . p \vee \diamond_{R} x \vee \diamond_{U X}$
- $\mu \mathbf{K} G$ is sound but incomplete with respect to its Kripke frames
- Proof: Use recurrent tiling problem to show that
- the $\diamond_{R}, \diamond_{U},\langle *\rangle$-logic of $\operatorname{Fr}(\mathrm{KG})$ is not recursively enumerable

Obstacle 2: compactness failure

- Example: $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
- $\{\langle *\rangle p\} \cup\left\{\square^{n} \neg p \mid n \in \omega\right\}$ is finitely satisfiable but not satisfiable

Obstacle 2: compactness failure

- Example: $\langle *\rangle p:=\bigvee_{n \in \omega} \diamond^{n} p$
- $\{\langle *\rangle p\} \cup\left\{\square^{n} \neg p \mid n \in \omega\right\}$ is finitely satisfiable but not satisfiable
- Fixpoint logics have no nice Stone-based duality

Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
- ν-fixpoints may be unfolded infinitely often
- μ-fixpoints may only be unfolded finitely often

Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
- ν-fixpoints may be unfolded infinitely often
- μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph

Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
- ν-fixpoints may be unfolded infinitely often
- μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph
- obstacle 3a: conjunctions cause trace proliferation

Obstacle 3: fixpoint alternation

- tableaux: fixpoint unfolding
- ν-fixpoints may be unfolded infinitely often
- μ-fixpoints may only be unfolded finitely often
- with every branch of tableau associate a trace graph
- obstacle 3a: conjunctions cause trace proliferation
- obstacle 3b: fixpoint alternations cause intricate combinatorics

What to do?

What to do?

- consider simple frame conditions only (if at all)

What to do?

- consider simple frame conditions only (if at all)
- restrict language to fixpoints of simple formulas (avoid alternation)

What to do?

- consider simple frame conditions only (if at all)
- restrict language to fixpoints of simple formulas (avoid alternation)
- allow alternation, but develop suitable combinatorical framework

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x

Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- Add a fixpoint connective \sharp_{γ} to the language of ML (arity of \sharp_{γ} depends on γ but notation hides this)

Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- Add a fixpoint connective $\#_{\gamma}$ to the language of ML
(arity of \sharp_{γ} depends on γ but notation hides this)
- Example: Upq:= $=\mu x . p \vee(q \wedge \bigcirc x)$, now: $U p q:=\sharp_{\gamma}(p, q)$ with $\gamma=p \vee(q \wedge O x)$
- Intended reading: $\sharp \gamma(\vec{\varphi}) \equiv \mu x \cdot \gamma(x, \vec{\varphi})$ for any $\vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.

Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- Add a fixpoint connective \sharp_{γ} to the language of ML (arity of \sharp_{γ} depends on γ but notation hides this)
- Example: Upq:= $\mu x . p \vee(q \wedge \bigcirc x)$,
now: $U p q:=\sharp_{\gamma}(p, q)$ with $\gamma=p \vee(q \wedge \bigcirc x)$
- Intended reading: $\sharp_{\gamma}(\vec{\varphi}) \equiv \mu x \cdot \gamma(x, \vec{\varphi})$ for any $\vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.
- Obtain language ML_{γ} :
$\varphi::=p|\neg p| \perp|\top| \varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \diamond_{i} \varphi\left|\square_{i} \varphi\right| \sharp_{\gamma}(\vec{\varphi})$

Flat Modal Fixpoint Logics: Syntax

- Fix a basic modal formula $\gamma(x, \vec{p})$, positive in x
- Add a fixpoint connective \sharp_{γ} to the language of ML (arity of \sharp_{γ} depends on γ but notation hides this)
- Example: Upq:= $\mu x . p \vee(q \wedge \bigcirc x)$, now: $U p q:=\sharp_{\gamma}(p, q)$ with $\gamma=p \vee(q \wedge \bigcirc x)$
- Intended reading: $\sharp_{\gamma}(\vec{\varphi}) \equiv \mu x \cdot \gamma(x, \vec{\varphi})$ for any $\vec{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.
- Obtain language ML_{γ} :
$\varphi::=p|\neg p| \perp|\top| \varphi_{1} \vee \varphi_{2}\left|\varphi_{1} \wedge \varphi_{2}\right| \diamond_{i} \varphi\left|\square_{i} \varphi\right| \sharp_{\gamma}(\vec{\varphi})$
- Examples: CTL, LTL, (PDL), ...

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S=\langle S, R\rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^{+}:=\left\langle\wp(S), \varnothing, S, \sim_{s}, \cup, \cap,\langle R\rangle\right\rangle$, $\langle R\rangle: \wp(S) \rightarrow \wp(S)$ given by $\langle R\rangle(X):=\{s \in S \mid$ Rst for some $t \in X\}$

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S=\langle S, R\rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^{+}:=\left\langle\wp(S), \varnothing, S, \sim_{S}, \cup, \cap,\langle R\rangle\right\rangle$, $\langle R\rangle: \wp(S) \rightarrow \wp(S)$ given by $\langle R\rangle(X):=\{s \in S \mid$ Rst for some $t \in X\}$
- Every modal formula $\varphi\left(p_{1}, \ldots, p_{n}\right)$ corresponds to a term function

$$
\varphi^{S}: \wp(S)^{n} \rightarrow \wp(S) .
$$

- γ positive in x, hence γ^{S} order preserving in x.

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S=\langle S, R\rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^{+}:=\left\langle\wp(S), \varnothing, S, \sim_{S}, \cup, \cap,\langle R\rangle\right\rangle$, $\langle R\rangle: \wp(S) \rightarrow \wp(S)$ given by $\langle R\rangle(X):=\{s \in S \mid$ Rst for some $t \in X\}$
- Every modal formula $\varphi\left(p_{1}, \ldots, p_{n}\right)$ corresponds to a term function

$$
\varphi^{S}: \wp(S)^{n} \rightarrow \wp(S) .
$$

- γ positive in x, hence γ^{S} order preserving in x.
- By Knaster-Tarski we may define $\sharp^{S}: \wp(S)^{n} \rightarrow \wp(S)$ by

$$
\sharp^{S}(\vec{B}):=L F P \cdot \gamma^{S}(-, \vec{B}) .
$$

Flat Modal Fixpoint Logics: Kripke Semantics

- Kripke frame $S=\langle S, R\rangle$ with $R \subseteq S \times S$.
- Complex algebra: $S^{+}:=\left\langle\wp(S), \varnothing, S, \sim_{S}, \cup, \cap,\langle R\rangle\right\rangle$, $\langle R\rangle: \wp(S) \rightarrow \wp(S)$ given by $\langle R\rangle(X):=\{s \in S \mid$ Rst for some $t \in X\}$
- Every modal formula $\varphi\left(p_{1}, \ldots, p_{n}\right)$ corresponds to a term function

$$
\varphi^{S}: \wp(S)^{n} \rightarrow \wp(S) .
$$

- γ positive in x, hence γ^{S} order preserving in x.
- By Knaster-Tarski we may define $\sharp^{S}: \wp(S)^{n} \rightarrow \wp(S)$ by

$$
\sharp^{S}(\vec{B}):=L F P \cdot \gamma^{S}(-, \vec{B}) .
$$

- Kripke \sharp-algebra $S^{\sharp}:=\left\langle\wp(S), \varnothing, S, \sim_{S}, \cup, \cap,\langle R\rangle, \sharp^{S}\right\rangle$.

Candidate Axiomatization

$\mathbf{K}_{\gamma}:=\mathbf{K}$ extended with

- prefixpoint axiom:

$$
\gamma(\sharp(\vec{\varphi}), \vec{\varphi}) \vdash \sharp(\vec{\varphi})
$$

- Park's induction rule:

$$
\text { from } \gamma(\psi, \vec{\varphi}) \vdash \psi \text { infer } \sharp_{\gamma}(\vec{\varphi}) \vdash \psi \text {. }
$$

Flat Modal Fixpoint Logics: Algebraic completeness proof

Flat Modal Fixpoint Logics: Algebraic completeness proof

- Modal \sharp-algebra: $A=\langle A, \perp, \top, \neg, \wedge, \vee, \diamond, \sharp\rangle$ with $\sharp: A^{n} \rightarrow A$ satisfying

$$
\sharp(\vec{b})=L F P . \gamma_{\vec{b}}^{A},
$$

where $\gamma_{\vec{b}}^{A}: A \rightarrow A$ is given by $\gamma_{\vec{b}}^{A}(a):=\gamma^{A}(a, \vec{b})$.

Flat Modal Fixpoint Logics: Algebraic completeness proof

- Modal \sharp-algebra: $A=\langle A, \perp, \top, \neg, \wedge, \vee, \diamond, \sharp\rangle$ with $\sharp: A^{n} \rightarrow A$ satisfying

$$
\sharp(\vec{b})=L F P \cdot \gamma_{\vec{b}}^{A},
$$

where $\gamma_{\vec{b}}^{A}: A \rightarrow A$ is given by $\gamma_{\vec{b}}^{A}(a):=\gamma^{A}(a, \vec{b})$.

- Axiomatically: modal \#-algebras satisfy
- $\gamma(\sharp(\vec{y}), \vec{y}) \leq \sharp(\vec{y})$
- if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.
- Completeness for flat fixpoint logics: Equ $\left(\mathrm{MA}_{\sharp}\right) \stackrel{?}{=} \mathrm{Equ}\left(\mathrm{KA}_{\sharp}\right)$

Flat Modal Fixpoint Logics: Algebraic completeness proof

- Modal \sharp-algebra: $A=\langle A, \perp, \top, \neg, \wedge, \vee, \diamond, \sharp\rangle$ with $\sharp: A^{n} \rightarrow A$ satisfying

$$
\sharp(\vec{b})=L F P \cdot \gamma_{\vec{b}}^{A},
$$

where $\gamma_{\vec{b}}^{A}: A \rightarrow A$ is given by $\gamma_{\vec{b}}^{A}(a):=\gamma^{A}(a, \vec{b})$.

- Axiomatically: modal $\#$-algebras satisfy
- $\gamma(\sharp(\vec{y}), \vec{y}) \leq \sharp(\vec{y})$
- if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.
- Completeness for flat fixpoint logics: $\mathrm{Equ}\left(\mathrm{MA}_{\sharp}\right) \stackrel{?}{=} \mathrm{Equ}\left(\mathrm{KA}_{\sharp}\right)$
- Two key concepts:

Flat Modal Fixpoint Logics: Algebraic completeness proof

- Modal \sharp-algebra: $A=\langle A, \perp, \top, \neg, \wedge, \vee, \diamond, \sharp\rangle$ with $\sharp: A^{n} \rightarrow A$ satisfying

$$
\sharp(\vec{b})=L F P \cdot \gamma_{\vec{b}}^{A},
$$

where $\gamma_{\vec{b}}^{A}: A \rightarrow A$ is given by $\gamma_{\vec{b}}^{A}(a):=\gamma^{A}(a, \vec{b})$.

- Axiomatically: modal $\#$-algebras satisfy
- $\gamma(\sharp(\vec{y}), \vec{y}) \leq \sharp(\vec{y})$
- if $\gamma(x, \vec{y}) \leq x$ then $\sharp(\vec{y}) \leq x$.
- Completeness for flat fixpoint logics: Equ($\left.\mathrm{MA}_{\sharp}\right) \stackrel{?}{=} \mathrm{Equ}\left(\mathrm{KA}_{\sharp}\right)$
- Two key concepts:
- constructiveness
- \mathcal{O}-adjointness

Constructiveness

- An $\mathrm{MA}_{\sharp-\text {-algebra }} \mathbb{A}$ is constructive if

$$
\sharp(\vec{b})=\bigvee_{n \in \omega} \gamma_{\vec{b}}^{n}(\perp) .
$$

Constructiveness

- An $\mathrm{MA}_{\sharp-\text {-algebra }} \mathbb{A}$ is constructive if

$$
\sharp(\vec{b})=\bigvee_{n \in \omega} \gamma_{\vec{b}}^{n}(\perp) .
$$

Note: we do not require \mathbb{A} to be complete!

Constructiveness

- An $\mathrm{MA}_{\sharp-\text {-algebra }} \mathbb{A}$ is constructive if

$$
\sharp(\vec{b})=\bigvee_{n \in \omega} \gamma_{\vec{b}}^{n}(\perp) .
$$

Note: we do not require \mathbb{A} to be complete!
Theorem (Santocanale \& Venema)
Let A be a countable, residuated, modal \sharp-algebra.
If A is constructive, then A can be embedded in a Kripke \sharp-algebra.

Constructiveness

- An $\mathrm{MA}_{\sharp-\text {-algebra }} \mathbb{A}$ is constructive if

$$
\sharp(\vec{b})=\bigvee_{n \in \omega} \gamma_{\vec{b}}^{n}(\perp) .
$$

Note: we do not require \mathbb{A} to be complete!
Theorem (Santocanale \& Venema)
Let A be a countable, residuated, modal \sharp-algebra.
If A is constructive, then A can be embedded in a Kripke \sharp-algebra.

Proof

Via a step-by-step construction/generalized Lindenbaum Lemma.
Alternatively, use Rasiowa-Sikorski Lemma.

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$
f p \leq q \Longleftrightarrow p \leq g q .
$$

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$
f p \leq q \Longleftrightarrow p \leq g q .
$$

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_{f}: Q \rightarrow \wp_{\omega}(P)$ with

$$
f p \leq q \Longleftrightarrow p \leq y \text { for some } y \in G_{f} q
$$

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$
f p \leq q \Longleftrightarrow p \leq g q .
$$

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_{f}: Q \rightarrow \wp_{\omega}(P)$ with

$$
f p \leq q \Longleftrightarrow p \leq y \text { for some } y \in G_{f} q
$$

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving \mathcal{O}-adjoint

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$
f p \leq q \Longleftrightarrow p \leq g q .
$$

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_{f}: Q \rightarrow \wp_{\omega}(P)$ with

$$
f p \leq q \Longleftrightarrow p \leq y \text { for some } y \in G_{f} q
$$

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving \mathcal{O}-adjoint
- \mathcal{O}-adjoints are Scott continuous

\mathcal{O}-adjoints

Let $f:(P, \leq) \rightarrow(Q, \leq)$ be an order-preserving map.

- f is a (left) adjoint or residuated if it has a residual $g: Q \rightarrow P$ with

$$
f p \leq q \Longleftrightarrow p \leq g q .
$$

- f is a (left) \mathcal{O}-adjoint if it has an \mathcal{O}-residual $G_{f}: Q \rightarrow \wp_{\omega}(P)$ with

$$
f p \leq q \Longleftrightarrow p \leq y \text { for some } y \in G_{f} q
$$

Proposition (Santocanale 2005)

- f is a left adjoint iff f is a join-preserving \mathcal{O}-adjoint
- \mathcal{O}-adjoints are Scott continuous
- \wedge is continuous but not an \mathcal{O}-adjoint.

Finitary \mathcal{O}-adjoints

Let $f: A^{n} \rightarrow A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

Finitary \mathcal{O}-adjoints

Let $f: A^{n} \rightarrow A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^{n}: A \rightarrow \wp(A)$

$$
\begin{aligned}
G^{0}(a) & :=\{a\} \\
G^{n+1}(a) & :=G\left[G^{n}(a)\right]
\end{aligned}
$$

Finitary \mathcal{O}-adjoints

Let $f: A^{n} \rightarrow A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^{n}: A \rightarrow \wp(A)$

$$
\begin{aligned}
G^{0}(a) & :=\{a\} \\
G^{n+1}(a) & :=G\left[G^{n}(a)\right]
\end{aligned}
$$

- Call f finitary if $G^{\omega}(a):=\bigcup_{n \in \omega} G^{n}(a)$ is finite.

Finitary \mathcal{O}-adjoints

Let $f: A^{n} \rightarrow A$ be an \mathcal{O}-adjoint with \mathcal{O}-residual G.

- Inductively define $G^{n}: A \rightarrow \wp(A)$

$$
\begin{aligned}
G^{0}(a) & :=\{a\} \\
G^{n+1}(a) & :=G\left[G^{n}(a)\right]
\end{aligned}
$$

- Call f finitary if $G^{\omega}(a):=\bigcup_{n \in \omega} G^{n}(a)$ is finite.

Theorem (Santocanale 2005)
If $f: A \rightarrow A$ is a finitary \mathcal{O}-adjoint, then LFP.f, if existing, is constructive.

Adjoints on free algebras

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, ...

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, ...
- Call a modal formula γ untied in x if it belongs to

$$
\gamma::=x|\top| \gamma \vee \gamma|\psi \wedge \gamma| \nabla\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}
$$

where ψ does not contain x

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, ...
- Call a modal formula γ untied in x if it belongs to

$$
\gamma::=x|\top| \gamma \vee \gamma|\psi \wedge \gamma| \nabla\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}
$$

where ψ does not contain x

- Examples: $\diamond x, \square x, \diamond x \wedge \diamond \diamond x \wedge \square p, \diamond x \wedge \diamond \square x \wedge \square(\diamond x \vee \diamond \square x), \ldots$

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, ...
- Call a modal formula γ untied in x if it belongs to

$$
\gamma::=x|\top| \gamma \vee \gamma|\psi \wedge \gamma| \nabla\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}
$$

where ψ does not contain x

- Examples: $\diamond x, \square x, \diamond x \wedge \diamond \diamond x \wedge \square p, \diamond x \wedge \diamond \square x \wedge \square(\diamond x \vee \diamond \square x), \ldots$
- Counterexamples: $\diamond(x \wedge \diamond x), \diamond x \wedge \square \diamond x$

Adjoints on free algebras

- Free modal (\sharp-)algebras have many \mathcal{O}-adjoints!
- cf. free distributive lattice are Heyting algebras,
- Whitman's rule for free lattices, ...
- Call a modal formula γ untied in x if it belongs to

$$
\gamma::=x|\top| \gamma \vee \gamma|\psi \wedge \gamma| \nabla\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}
$$

where ψ does not contain x

- Examples: $\diamond x, \square x, \diamond x \wedge \diamond \diamond x \wedge \square p, \diamond x \wedge \diamond \square x \wedge \square(\diamond x \vee \diamond \square x), \ldots$
- Counterexamples: $\diamond(x \wedge \diamond x), \diamond x \wedge \square \diamond x$

Theorem (Santocanale \& YV 2010)
Untied formulas are finitary \mathcal{O}-adjoints.

A general result

A general result

Theorem (Santocanale \& YV 2010)
Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

A general result

Theorem (Santocanale \& YV 2010)
Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

A general result

Theorem (Santocanale \& YV 2010)
Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

- Santocanale \& YV have fully general result for extended axiom system.

A general result

Theorem (Santocanale \& YV 2010)
Let γ be untied wrt x. Then \mathbf{K}_{γ} is sound and complete wrt its Kripke semantics.

Notes

- Santocanale \& YV have fully general result for extended axiom system.
- Schröder \& YV have similar results for wider coalgebraic setting.

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

The modal μ-calculus

- [+] natural extension of basic modal logic with fixpoint operators
- [+] expressive: LTL, CTL, PDL, CTL*, $\ldots \subseteq \mu \mathrm{ML}$
- [+] good computational properties
- [+] nice meta-logical theory

The modal μ-calculus

- [+] natural extension of basic modal logic with fixpoint operators
- [+] expressive: LTL, CTL, PDL, CTL*, $\ldots \subseteq \mu \mathrm{ML}$
- [+] good computational properties
- [+] nice meta-logical theory
- [-] hard to understand (nested) fixpoint operators

The modal μ-calculus

- [+] natural extension of basic modal logic with fixpoint operators
- [+] expressive: LTL, CTL, PDL, CTL*, $\ldots \subseteq \mu \mathrm{ML}$
- [+] good computational properties
- [+] nice meta-logical theory
- [-] hard to understand (nested) fixpoint operators
- [-] theory of $\mu \mathrm{ML}$ isolated from theory of ML

The modal μ-calculus

- [+] natural extension of basic modal logic with fixpoint operators
- [+] expressive: LTL, CTL, PDL, CTL*, $\ldots \subseteq \mu \mathrm{ML}$
- [+] good computational properties
- [+] nice meta-logical theory
- [-] hard to understand (nested) fixpoint operators
- [-] theory of $\mu \mathrm{ML}$ isolated from theory of ML
- this applies in particular to the completeness result

The modal μ-calculus

- [+] natural extension of basic modal logic with fixpoint operators
- [+] expressive: LTL, CTL, PDL, CTL*, $\ldots \subseteq \mu \mathrm{ML}$
- [+] good computational properties
- [+] nice meta-logical theory
- [-] hard to understand (nested) fixpoint operators
- [-] theory of $\mu \mathrm{ML}$ isolated from theory of ML
- this applies in particular to the completeness result

Most results on $\mu \mathrm{ML}$ use automata ...

Logic \& Automata

Logic \& Automata

Automata in Logic

- long \& rich history (Büchi, Rabin, ...)
- mathematically interesting theory
- many practical applications
- automata for $\mu \mathrm{ML}$:
- Janin \& Walukiewicz (1995): μ-automata (nondeterministic)
- Wilke (2002): modal automata (alternating)

Modal automata

Fix a set X of proposition letters; PX is a set of colours

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(A)$ is the transition map
- $A c c \subseteq A^{\omega}$ is the acceptance condition

Modal automata

Fix a set X of proposition letters; PX is a set of colours

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(A)$ is the transition map
- $A c c \subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$

Modal automata

Fix a set X of proposition letters; PX is a set of colours

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(A)$ is the transition map
- Acc $\subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$
- Parity automata: Acc is given by map $\Omega: A \rightarrow \omega$
- Given $\rho \in A^{\omega}, \operatorname{lnf}(\rho):=\left\{a \in A \mid a\right.$ occurs infinitely often in $\left.\pi_{b}\right\}$
- $\operatorname{Acc}_{\Omega}:=\left\{\rho \in A^{\omega} \mid \max \{\Omega(a) \mid a \in \operatorname{lnf}(\rho)\}\right.$ is even $\}$

Modal automata

Fix a set X of proposition letters; PX is a set of colours

- A modal automaton is a triple $\mathbb{A}=(A, \Theta, A c c)$, where
- A is a finite set of states
- $\Theta: A \times \mathrm{PX} \rightarrow 1 \mathrm{ML}(A)$ is the transition map
- Acc $\subseteq A^{\omega}$ is the acceptance condition
- An initialized automaton is a pair (\mathbb{A}, a) with $a \in A$
- Parity automata: Acc is given by map $\Omega: A \rightarrow \omega$
- Given $\rho \in A^{\omega}, \operatorname{lnf}(\rho):=\left\{a \in A \mid a\right.$ occurs infinitely often in $\left.\pi_{b}\right\}$
- $\operatorname{Acc}_{\Omega}:=\left\{\rho \in A^{\omega} \mid \max \{\Omega(a) \mid a \in \operatorname{Inf}(\rho)\}\right.$ is even $\}$
- Our approach: automata are formulas

One-step logic 1ML

- Let A be a set of variables with $A \cap X=\varnothing$
- One-step formulas: $\diamond(a \wedge b), \square a \wedge \diamond b, \top, \diamond \perp, \ldots$
- A one-step model is a pair (U, m) with $m: U \rightarrow \mathrm{PA}$ a marking
- write $U, m, u \Vdash^{0} a$ if $a \in m(u)$

One-step logic 1ML

- Let A be a set of variables with $A \cap X=\varnothing$
- One-step formulas: $\diamond(a \wedge b), \square a \wedge \diamond b, \top, \diamond \perp, \ldots$
- A one-step model is a pair (U, m) with $m: U \rightarrow \mathrm{PA}$ a marking
- write $U, m, u \Vdash^{0} a$ if $a \in m(u)$
- One-step modal language $1 \mathrm{ML}(\mathrm{X}, A)$ over A

$$
\begin{array}{ll}
\alpha & ::= \\
\pi & ::=\quad a \in A|\perp \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha \\
\top|\top| \pi \vee \pi \mid \pi \wedge \pi
\end{array}
$$

One-step logic 1ML

- Let A be a set of variables with $A \cap X=\varnothing$
- One-step formulas: $\diamond(a \wedge b), \square a \wedge \diamond b, \top, \diamond \perp, \ldots$
- A one-step model is a pair (U, m) with $m: U \rightarrow \mathrm{PA}$ a marking
- write $U, m, u \Vdash^{0} a$ if $a \in m(u)$
- One-step modal language $1 \mathrm{ML}(\mathrm{X}, A)$ over A

$$
\begin{array}{ll}
\alpha & ::=\diamond \pi|\square \pi| \perp|\top| \alpha \vee \alpha \mid \alpha \wedge \alpha \\
\pi & ::=\quad a \in A|\perp| \top|\pi \vee \pi| \pi \wedge \pi
\end{array}
$$

- One-step semantics interprets $1 \mathrm{ML}(A)$ over one-step models, e.g.
- $(U, m) \Vdash^{1} \square a$ iff $\forall u \in U . u \Vdash^{0} a$
- $(U, m) \Vdash^{1} \diamond(a \wedge b)$ iff $\exists u \in U . u \Vdash^{0} a \wedge b$

Acceptance game

- Represent Kripke model as pair $\mathbb{S}=(S, \sigma)$ with $\sigma: S \rightarrow \mathrm{PX} \times \mathrm{PS}$ Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m \Vdash^{1} \Theta(a)\right\}$
$m: S \hookrightarrow \mathrm{P} A$	\forall	$\{(b, t) \mid b \in m(t)\}$

Acceptance game

- Represent Kripke model as pair $\mathbb{S}=(S, \sigma)$ with $\sigma: S \rightarrow \mathrm{PX} \times \mathrm{PS}$ Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m \Vdash^{-1} \Theta(a)\right\}$
$m: S \rightarrow \mathrm{P} A$	\forall	$\{(b, t) \mid b \in m(t)\}$

Winning conditions:

- finite matches are lost by the player who gets stuck,
- infinite matches are won as specified by the acceptance condition:
- match $\pi=\left(a_{0}, s_{0}\right) m_{0}\left(a_{1}, s_{1}\right) m_{1} \ldots$ induces list $\pi_{A}:=a_{0} a_{1} a_{2} \ldots$
- \exists wins if $\pi_{A} \in A c c$

Acceptance game

- Represent Kripke model as pair $\mathbb{S}=(S, \sigma)$ with $\sigma: S \rightarrow \mathrm{PX} \times \mathrm{PS}$ Acceptance game $\mathcal{A}(\mathbb{A}, \mathbb{S})$ of $\mathbb{A}=\langle A, \Theta, A c c\rangle$ on $\mathbb{S}=\langle S, \sigma\rangle$:

Position	Player	Admissible moves
$(a, s) \in A \times S$	\exists	$\left\{m: \sigma_{R}(s) \rightarrow \mathrm{PA} \mid \sigma(s), m \Vdash^{-1} \Theta(a)\right\}$
$m: S \xrightarrow{\rightarrow} \mathrm{P} A$	\forall	$\{(b, t) \mid b \in m(t)\}$

Winning conditions:

- finite matches are lost by the player who gets stuck,
- infinite matches are won as specified by the acceptance condition:
- match $\pi=\left(a_{0}, s_{0}\right) m_{0}\left(a_{1}, s_{1}\right) m_{1} \ldots$ induces list $\pi_{A}:=a_{0} a_{1} a_{2} \ldots$
- \exists wins if $\pi_{A} \in A c c$

Definition (\mathbb{A}, a) accepts (\mathbb{S}, s) if $(a, s) \in \operatorname{Win}_{\exists}(\mathcal{A}(\mathbb{A}, \mathbb{S}))$.

Themes

Basis

- There are well-known translations: formulas \leftrightarrow automata

Themes

Basis

- There are well-known translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via corresponding automata

Themes

Basis

- There are well-known translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Themes

Basis

- There are well-known translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- Which properties of modal parity automata are determined - already at one-step level

Themes

Basis

- There are well-known translations: formulas \leftrightarrow automata

Goal:

- Understand modal fixpoint logics via corresponding automata

Perspective:

- automata are generalized formulas with interesting inner structure
- automata separate the dynamics (Θ) from the combinatorics (Ω)

Leading question:

- Which properties of modal parity automata are determined
- already at one-step level
- by the interaction of combinatorics and dynamics

Automata \& ...

Theorem

There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$

Automata \& ...

Theorem

There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) interact nicely with Booleans, modalities, fixpoints, and substitution

Automata \& ...

Theorem

There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) interact nicely with Booleans, modalities, fixpoints, and substitution (3) satisfy $\varphi \equiv_{K} \xi\left(\mathbb{B}_{\varphi}\right)$

Automata \& ...

Theorem

There are maps $\mathbb{B}_{-}: \mu \mathrm{ML} \rightarrow \operatorname{Aut}\left(\mathrm{ML}_{1}\right)$ and $\xi: \operatorname{Aut}\left(\mathrm{ML}_{1}\right) \rightarrow \mu \mathrm{ML}$ that
(1) preserve meaning: $\varphi \equiv \mathbb{B}_{\varphi}$ and $\mathbb{A} \equiv \xi(\mathbb{A})$
(2) interact nicely with Booleans, modalities, fixpoints, and substitution (3) satisfy $\varphi \equiv_{K} \xi\left(\mathbb{B}_{\varphi}\right)$

As a corollary, we may apply proof-theoretic concepts to automata

Completeness at one-step level

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\models^{1} \alpha \leq \alpha^{\prime}$ if for all (U, m) :

$$
(U, m) \Vdash^{1} \alpha \text { implies }(U, m) \Vdash^{1} \alpha^{\prime} \text {. }
$$

Completeness at one-step level

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\models^{1} \alpha \leq \alpha^{\prime}$ if for all (U, m) :

$$
(U, m) \Vdash^{1} \alpha \text { implies }(U, m) \Vdash^{1} \alpha^{\prime} \text {. }
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.

Completeness at one-step level

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\models^{1} \alpha \leq \alpha^{\prime}$ if for all (U, m) :

$$
(U, m) \Vdash^{1} \alpha \text { implies }(U, m) \Vdash^{1} \alpha^{\prime} \text {. }
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.
- Example: the core of basic modal logic K consists of
- monotonicity rule for $\diamond: a \leq b / \diamond a \leq \diamond b$
- normality $(\diamond \perp \leq \perp)$ and additivity $(\diamond(a \vee b) \leq \diamond a \vee \diamond b)$ axioms

Completeness at one-step level

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\models^{1} \alpha \leq \alpha^{\prime}$ if for all (U, m) :

$$
(U, m) \Vdash^{1} \alpha \text { implies }(U, m) \Vdash^{1} \alpha^{\prime} .
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.
- Example: the core of basic modal logic K consists of
- monotonicity rule for $\diamond: a \leq b / \diamond a \leq \diamond b$
- normality $(\diamond \perp \leq \perp)$ and additivity $(\diamond(a \vee b) \leq \diamond a \vee \diamond b)$ axioms
- A derivation system \mathbf{H} is one-step sound and complete if

$$
\vdash_{\mathbf{H}} \alpha \leq \alpha^{\prime} \text { iff } \models^{1} \alpha \leq \alpha^{\prime} .
$$

Completeness at one-step level

- Given $\alpha, \alpha^{\prime} \in 1 \mathrm{ML}$ define $\models^{1} \alpha \leq \alpha^{\prime}$ if for all (U, m) :

$$
(U, m) \Vdash^{1} \alpha \text { implies }(U, m) \Vdash^{1} \alpha^{\prime} \text {. }
$$

- A one-step derivation system is a set \mathbf{H} of one-step axioms and one-step rules operating on inequalities $\pi \leq \pi^{\prime}, \alpha \leq \alpha^{\prime}$.
- Example: the core of basic modal logic K consists of
- monotonicity rule for $\diamond: a \leq b / \diamond a \leq \diamond b$
- normality $(\diamond \perp \leq \perp)$ and additivity $(\diamond(a \vee b) \leq \diamond a \vee \diamond b)$ axioms
- A derivation system \mathbf{H} is one-step sound and complete if

$$
\vdash_{\mathbf{H}} \alpha \leq \alpha^{\prime} \text { iff } \models^{1} \alpha \leq \alpha^{\prime} .
$$

- For more on this, check the literature on coalgebra (Cîrstea, Pattinson, Schröder,...)

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus,

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus, k-successor μ-calculus,

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus,

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus,

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus, monotone modal μ-calculus,

General result

Theorem Assume that

- \mathcal{L} is a one-step language with an adequate disjunctive base
- \mathbf{H} is a one-step sound and complete axiomatization for \mathcal{L}

Then $\mathbf{H} \mu$ is a sound and complete axiomatization for $\mu \mathcal{L}$.

Proof

'De- and re-constructing' Walukiewicz' proof - automata in leading role
Examples:

- linear time μ-calculus, k-successor μ-calculus, standard modal μ-calculus, graded μ-calculus, monotone modal μ-calculus, game μ-calculus, ...

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

Frame conditions

Conjecture Let \mathbf{L} be an extension of \mathbf{K}_{Γ} or $\mathbf{K} \mu$ with an axiom set Φ such that each $\varphi \in \Phi$

- is canonical
- corresponds to a universal first-order frame condition.

Then \mathbf{L} is sound and complete for the class of frames satisfying Φ.

Overview

- Introduction
- Obstacles
- A general result
- A general framework
- Frame conditions
- Conclusions

But first:

But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

But first:

TOPOLOGY, ALGEBRA AND CATEGORIES IN LOGIC 2017

2017 June 20-24 : TACL School
2017 June 26-30 : TACL Conference

www.cs.cas.cz/tacl2017

Conclusions

Conclusions

- general completeness result for flat fixpoint logics

Conclusions

- general completeness result for flat fixpoint logics
- framework for proving completeness for μ-calculi

Conclusions

- general completeness result for flat fixpoint logics
- framework for proving completeness for μ-calculi
- perspective for bringing automata into proof theory

Future work

- prove conjecture!
- completeness for fragments of $\mu \mathrm{ML}$ (game logic!)
- many $\mu \mathrm{ML}$-fragments have interesting automata-theoretic counterparts!
- interpolation for fixpoint logics (PDL!)
- fixpoint logics on non-boolean basis
- non-boolean automata?
- proof theory for modal automata
- further explore notion of \mathcal{O}-adjointness
- ..

References

- L. Santocanale \& YV. Completeness for flat modal fixpoint logic APAL 2010
- L. Schröder \& YV. Completeness for flat coalgebraic fixpoint logic submitted (short version appeared in CONCUR 2010)
- S. Enqvist, F. Seifan \& YV. Completeness for coalgebraic fixpoint logic CSL 2016.
- S. Enqvist, F. Seifan \& YV. Completeness for the modal μ-calculus: separating the combinatorics from the dynamics, ILLC Prepublications PP-2016-33.
- YV. Lecture notes on the modal μ-calculus. Manuscript, ILLC, 2012.
http://staff.science.uva.nl/~yde

THANK YOU!

