A uniform way to build strongly perfect MTL-algebras via Boolean algebras and prelinear semihoops

Sara Ugolini
University of Pisa, Department of Computer Science sara.ugolini@di.unipi.it
(with Stefano Aguzzoli and Tommaso Flaminio)

SYSMICS 2016

Introduction

A MTL-algebra is a structure $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, \perp, \top)$ where:

- $(A, \wedge, \vee, \perp, \top)$ is a bounded distributive lattice,
- (A, \odot, \top) is a commutative monoid,
- $x \odot y \leq z \Leftrightarrow z \leq x \rightarrow y$ holds for every $x, y, z \in A$,
- $(x \rightarrow y) \vee(y \rightarrow x)=\top$ holds for every $x, y \in A$.

Introduction

A MTL-algebra is a structure $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, \perp, \top)$ where:

- $(A, \wedge, \vee, \perp, \top)$ is a bounded distributive lattice,
- (A, \odot, \top) is a commutative monoid,
- $x \odot y \leq z \Leftrightarrow z \leq x \rightarrow y$ holds for every $x, y, z \in A$,
- $(x \rightarrow y) \vee(y \rightarrow x)=\top$ holds for every $x, y \in A$.

In every MTL-algebra we can define further operations and abbreviations:

$$
\neg x=x \rightarrow \perp, \quad x \oplus y=\neg(\neg x \odot \neg y), \quad x^{2}=x \odot x, \quad 2 x=x \oplus x .
$$

MTL-algebras form the variety MTLL

Introduction

A MTL-algebra is a structure $\mathbf{A}=(A, \odot, \rightarrow, \wedge, \vee, \perp, \top)$ where:

- $(A, \wedge, \vee, \perp, \top)$ is a bounded distributive lattice,
- (A, \odot, \top) is a commutative monoid,
- $x \odot y \leq z \Leftrightarrow z \leq x \rightarrow y$ holds for every $x, y, z \in A$,
- $(x \rightarrow y) \vee(y \rightarrow x)=\top$ holds for every $x, y \in A$.

In every MTL-algebra we can define further operations and abbreviations:

$$
\neg x=x \rightarrow \perp, \quad x \oplus y=\neg(\neg x \odot \neg y), \quad x^{2}=x \odot x, \quad 2 x=x \oplus x .
$$

MTL-algebras form the variety MTLL.
BL-algebras are MTL algebras that satisfy divisibility:

$$
x *(x \rightarrow y)=y *(y \rightarrow x) .
$$

Introduction

A strongly perfect MTL-algebra (SBP ${ }_{0}$-algebra) is any MTL-algebra satisfying:
(DL) $(2 x)^{2}=2\left(x^{2}\right)$.
(N) $\neg(x)^{2} \rightarrow(\neg \neg x \rightarrow x)=1$,

The class of SBP_{0} forms a variety denoted by $\mathbb{S B}_{\mathbb{P}_{0}}$.
We will denote $\mathbb{B P}_{0}=\mathbb{M T L}+(D L)$ (i.e. the variety generated by perfect MTL-algebras).

Introduction

Given an MTL-algebra \mathbf{A}, the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of its maximal filters.
The co-radical of $\mathbf{A}, \operatorname{coRad}(\mathbf{A})=\{x \in A \mid \neg x \in \operatorname{Rad}(\mathbf{A})\}$.

Introduction

Given an MTL-algebra \mathbf{A}, the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of its maximal filters.

The co-radical of $\mathbf{A}, \operatorname{coRad}(\mathbf{A})=\{x \in A \mid \neg x \in \operatorname{Rad}(\mathbf{A})\}$. In perfect MTL algebras $\mathbf{A}=\operatorname{Rad}(\mathbf{A}) \cup \operatorname{coRad}(\mathbf{A})$.

Introduction

Given an MTL-algebra \mathbf{A}, the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of its maximal filters.

The co-radical of $\mathbf{A}, \operatorname{coRad}(\mathbf{A})=\{x \in A \mid \neg x \in \operatorname{Rad}(\mathbf{A})\}$.
In perfect MTL algebras $\mathbf{A}=\operatorname{Rad}(\mathbf{A}) \cup \operatorname{coRad}(\mathbf{A})$.
In strongly perfect MTL-algebras $\operatorname{coRad}(\mathbf{A})=\{\neg x \mid x \in \operatorname{Rad}(\mathbf{A})\}$.

Introduction

Given an MTL-algebra \mathbf{A}, the radical $\operatorname{Rad}(\mathbf{A})$ is the intersection of its maximal filters.

The co-radical of $\mathbf{A}, \operatorname{coRad}(\mathbf{A})=\{x \in A \mid \neg x \in \operatorname{Rad}(\mathbf{A})\}$.
In perfect MTL algebras $\mathbf{A}=\operatorname{Rad}(\mathbf{A}) \cup \operatorname{coRad}(\mathbf{A})$.
In strongly perfect MTL-algebras $\operatorname{coRad}(\mathbf{A})=\{\neg x \mid x \in \operatorname{Rad}(\mathbf{A})\}$.

Introduction

Notable subvarieties of SBP_{0} algebras are:

- Pseudocomplemented MTL-algebras SMTL: MTL $+x \wedge \neg x=0$
- Product algebras $\Pi: \mathrm{BL}+\neg x \vee((x \rightarrow x \cdot y) \rightarrow y)=1$
- Gödel algebras $\mathrm{G}: \mathrm{BL}+x \cdot x=x$
- Involutive BP_{0}-algebras $\mathrm{IBP}_{0}: \mathrm{SBP}_{0}+\neg \neg x=x$
- The variety generated by perfect MV-algebras DLMV : $\mathrm{IBP}_{0}+x *(x \rightarrow y)=y *(y \rightarrow x)$
- The variety generated by the nilpotent minimum algebra $[0,1] \backslash\{1 / 2\}$ $\mathrm{NM}^{-}: \mathrm{IDL}+\neg\left(x^{2}\right) \vee\left(x \rightarrow x^{2}\right)=1$.

Introduction

Introduction

Introduction

A prelinear semihoop is an algebra $\mathbf{H}=(H, *, \rightarrow, \wedge, \vee, 1)$ such that:

- $(H, *, 1)$ is a commutative monoid,
- $(H, \wedge, \vee, 1)$ is a lattice with top element 1 ,
- $(*, \rightarrow)$ forms a residuated pair,
- H is prelinear: $(x \rightarrow y) \vee(y \rightarrow x)=1$, for all $x, y \in H$

Introduction

A prelinear semihoop is an algebra $\mathbf{H}=(H, *, \rightarrow, \wedge, \vee, 1)$ such that:

- $(H, *, 1)$ is a commutative monoid,
- $(H, \wedge, \vee, 1)$ is a lattice with top element 1 ,
- $(*, \rightarrow)$ forms a residuated pair,
- H is prelinear: $(x \rightarrow y) \vee(y \rightarrow x)=1$, for all $x, y \in H$

Notable subvarieties:
Basic hoops: \quad PSH $+x *(x \rightarrow y)=y *(y \rightarrow x)$
Gödel hoops :
$\mathrm{BH}+x=x^{2}$
Wajsberg hoops :
$\mathrm{BH}+(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$
Cancellative hoops: $\quad \mathrm{BH} \quad+\quad x \rightarrow(x * y)=y$

CH -Triples and product algebras

[Montagna - U., 2015]: The category \mathbb{P} of product algebras is equivalent to a category whose objects are triples $\left(\mathbf{B}, \mathbf{C}, \vee_{e}\right)$, where \mathbf{B} is a Boolean algebra, \mathbf{C} is a cancellative hoop and $\vee_{e}: B \times C \rightarrow C$ satisfies suitable properties.

CH -Triples and product algebras

[Montagna - U., 2015]: The category \mathbb{P} of product algebras is equivalent to a category whose objects are triples $\left(\mathbf{B}, \mathbf{C}, \vee_{e}\right)$, where \mathbf{B} is a Boolean algebra, \mathbf{C} is a cancellative hoop and $\vee_{e}: B \times C \rightarrow C$ satisfies suitable properties.

Key idea Directly indecomposable product algebras are of the kind $\mathbf{2} \oplus \mathbf{C}$ [Cignoli, Torrens].

0

Directly indecomposable SMTL and IBP_{0} algebras

Any directly indecomposable SMTL algebra \mathbf{A} is a lifting of a prelinear semihoop $\mathbf{H}, \mathbf{A}=\mathbf{2} \oplus \mathbf{H}$:

${ }^{\circ} 0$

Directly indecomposable SMTL and IBP_{0} algebras

Any directly indecomposable SMTL algebra \mathbf{A} is a lifting of a prelinear semihoop $\mathbf{H}, \mathbf{A}=\mathbf{2} \oplus \mathbf{H}$:

${ }^{\circ}$
Any directly indecomposable IBP_{0} algebra \mathbf{A} is a disconnected rotation of a prelinear semihoop $\mathbf{H}, A=\{0,1\} \times H$:

Directly indecomposable SBP_{0} algebras

More in general, every directly indecomposable SBP_{0} algebra can be obtained starting from a prelinear semihoop \mathbf{H}, using a a weakening of Cignoli-Torrens dl-admissible operator δ.

Directly indecomposable SBP_{0} algebras

More in general, every directly indecomposable SBP_{0} algebra can be obtained starting from a prelinear semihoop \mathbf{H}, using a a weakening of Cignoli-Torrens dl-admissible operator δ.
We shall call a map $\delta: H \rightarrow H$ w-admissible iff for all $a, b \in H$:

$$
\begin{aligned}
& a \rightarrow \delta(a)=1, \\
& \delta(a \rightarrow b) \leq a \rightarrow \delta(b), \\
& \delta(\delta(a))=a, \\
& \delta(a * b)=\delta(\delta(a) * \delta(b)), \\
& \delta(a \wedge b)=\delta(a) \wedge \delta(b), \quad \delta(a \vee b)=\delta(a) \vee \delta(b) .
\end{aligned}
$$

Observation: the weakened condition allows to get rid of Glivenko equation $\neg \neg(\neg \neg x \rightarrow x)=1$.

Directly indecomposable SBP_{0} algebras

More in general, every directly indecomposable SBP_{0} algebra can be obtained starting from a prelinear semihoop \mathbf{H}, using a a weakening of Cignoli-Torrens dl-admissible operator δ.

We shall call a map $\delta: H \rightarrow H$ w-admissible iff for all $a, b \in H$:

$$
\begin{array}{lll}
a \rightarrow \delta(a) & =1, & \delta(\delta(a)) \\
=a \\
\delta(a \rightarrow b) & \leq a \rightarrow \delta(b), & \delta(a * b) \\
\delta(a \wedge b) & =\delta(a) \wedge \delta(b), & \delta(a \vee b) \\
\delta(\delta(a) * \delta(b)) \\
\delta(a) \vee \delta(b)
\end{array}
$$

Observation: the weakened condition allows to get rid of Glivenko equation $\neg \neg(\neg \neg x \rightarrow x)=1$.

Examples

- $\delta_{D}(a)=a$ for all $a \in H$.
- $\delta_{L}(a)=1$ for all $a \in H$.

Directly indecomposable SBP_{0} algebras

Any directly indecomposable SBP_{0}-algebra is isomorphic to one with domain $\{0\} \times \delta(H) \cup\{1\} \times H$:

Directly indecomposable SBP_{0} algebras

Any directly indecomposable SBP_{0}-algebra is isomorphic to one with domain $\{0\} \times \delta(H) \cup\{1\} \times H$:

Directly indecomposable SBP_{0} algebras

Any directly indecomposable SBP_{0}-algebra is isomorphic to one with domain $\{0\} \times \delta(H) \cup\{1\} \times H$:

Directly indecomposable SBP_{0} algebras

Any directly indecomposable SBP_{0}-algebra is isomorphic to one with domain $\{0\} \times \delta(H) \cup\{1\} \times H$:

Directly indecomposable SBP_{0} algebras

In particular, with δ_{L} and δ_{D} we obtain respectively directly indecomposable SMTL and IBP_{0} algebras.
Indeed, $\delta_{L}(H)=\{1\}$ and $\delta_{D}(H)=H$.

$00_{L}(H)$

Directly indecomposable SMTL and IBP_{0} algebras

Every $a \in \mathbf{A}$ d.i. SMTL-algebra is such that $a=b \wedge c$, where $b \in\{0,1\}$, $c \in H$.

Directly indecomposable SMTL and IBP_{0} algebras

Every $a \in \mathbf{A}$ d.i. SMTL-algebra is such that $a=b \wedge c$, where $b \in\{0,1\}$, $c \in H$.

Every $a \in \mathbf{A}^{\prime}$ d.i. $\mid \mathrm{BP}_{0}$-algebra is such that $a=(b \wedge c) \vee(\neg b \wedge \neg c)$, where $b \in\{0,1\}, c \in H$.

Directly indecomposable SBP_{0} algebras

In general, every $a \in \mathbf{A}$ d.i. SBP_{0}-algebra is such that $a=(b \wedge c) \vee(\neg b \wedge \neg c)$, where $b \in\{0,1\}, c \in H$.

Directly indecomposable SBP_{0} algebras

In general, every $a \in \mathbf{A}$ d.i. SBP_{0}-algebra is such that
$a=(b \wedge c) \vee(\neg b \wedge \neg c)$, where $b \in\{0,1\}, c \in H$.
Since this equation hold in any directly indecomposable SBP_{0} algebra, it holds for any algebra of the variety.

SBP_{0} algebras decomposition

Let \mathbf{A} be a SBP_{0} algebra, then to each $a \in A$ we can associate a pair (b, c) where b is boolean and c is an element of the greatest prelinear sub-semihoop of \mathbf{A}.

SBP_{0} algebras decomposition

Let \mathbf{A} be a SBP_{0} algebra, then to each $a \in A$ we can associate a pair (b, c) where b is boolean and c is an element of the greatest prelinear sub-semihoop of \mathbf{A}. Moreover, we can uniquely associate to \mathbf{A} the pair $\left(\mathrm{B}_{\mathrm{A}}, \mathrm{H}_{\mathrm{A}}\right)$:

- $B_{A}=\{x \in A \mid x \vee \neg x=1\}$ is the dominium of the greatest Boolean subalgebra, or the Boolean skeleton, of \mathbf{A}.
- $H_{A}=\{x \in A \mid x>\neg x\}$ is the dominium of the greatest prelinear semihoop contained in \mathbf{A}, that is exactly $\operatorname{Rad}(\mathbf{A})$.

SBP_{0} algebras decomposition

Let \mathbf{A} be a SBP_{0} algebra, then to each $a \in A$ we can associate a pair (b, c) where b is boolean and c is an element of the greatest prelinear sub-semihoop of \mathbf{A}. Moreover, we can uniquely associate to \mathbf{A} the pair $\left(\mathrm{B}_{\mathrm{A}}, \mathrm{H}_{\mathrm{A}}\right)$:

- $B_{A}=\{x \in A \mid x \vee \neg x=1\}$ is the dominium of the greatest Boolean subalgebra, or the Boolean skeleton, of \mathbf{A}.
- $H_{A}=\{x \in A \mid x>\neg x\}$ is the dominium of the greatest prelinear semihoop contained in \mathbf{A}, that is exactly $\operatorname{Rad}(\mathbf{A})$.

But a pair (\mathbf{B}, \mathbf{H}) does not uniquely determine \mathbf{A}.

PSH-triples

A prelinear semihoop triple, a PSH-triple, is a triple $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ where \mathbf{B} is a Boolean algebra, \mathbf{H} is a prelinear semihoop such that $B \cap H=\{1\}$, and V_{e} is a map from $\mathbf{B} \times \mathbf{H}$ into \mathbf{H} such that:
(V1) For fixed $b \in B$ and $c \in H$:
the map $h_{b}(x)=b \vee_{e} x$ is an endomorphism of \mathbf{H},
the map $k_{c}(x)=x \vee_{e} c$ is a lattice homomorphism from \mathbf{B} into \mathbf{H}.
(V2) h_{0} is the identity on \mathbf{H},
h_{1} is constantly equal to 1 .
(V3) For all $b, b^{\prime} \in B$ and for all $c, c^{\prime} \in H$, $h_{b}(c) \vee h_{b^{\prime}}\left(c^{\prime}\right)=h_{b \vee b^{\prime}}\left(c \vee c^{\prime}\right)=h_{b}\left(h_{b^{\prime}}\left(c \vee c^{\prime}\right)\right)$.

The category of PSH-triples

A good morphism pair from a PSH -triple $\left(\mathbf{B}, \mathbf{H}, \mathrm{V}_{e}\right)$ to another PSH-triple $\left(\mathbf{B}^{\prime}, \mathbf{H}^{\prime}, \vee_{e}^{\prime}\right)$ is a pair (h, k) where:

- h is a homomorphism from \mathbf{B} to \mathbf{B}^{\prime},
- k is a homomorphism from \mathbf{H} to \mathbf{H}^{\prime},
- for all $x \in B$ and $y \in H, k\left(x \vee_{e} y\right)=h(x) \vee_{e}^{\prime} k(y)$.

The category $\mathcal{T}_{\text {PSHH }}$ of PSH-triples has PSH-triples as objects and good morphism pairs as morphisms, with composition defined componentwise: $(h, k) \circ\left(h^{\prime}, k^{\prime}\right)=\left(h \circ h^{\prime}, k \circ k^{\prime}\right)$.

The category of PSH-triples

A good morphism pair from a PSH-triple $\left(\mathbf{B}, \mathbf{H}, \mathrm{V}_{e}\right)$ to another PSH-triple $\left(\mathbf{B}^{\prime}, \mathbf{H}^{\prime}, \vee_{e}^{\prime}\right)$ is a pair (h, k) where:

- h is a homomorphism from \mathbf{B} to \mathbf{B}^{\prime},
- k is a homomorphism from \mathbf{H} to \mathbf{H}^{\prime},
- for all $x \in B$ and $y \in H, k\left(x \vee_{e} y\right)=h(x) \vee_{e}^{\prime} k(y)$.

The category $\mathcal{T}_{\text {PSHH }}$ of PSH-triples has PSH-triples as objects and good morphism pairs as morphisms, with composition defined componentwise: $(h, k) \circ\left(h^{\prime}, k^{\prime}\right)=\left(h \circ h^{\prime}, k \circ k^{\prime}\right)$.

We can define a functor Φ from the category of SBP_{0}-algebras $\mathbb{S B P}_{0}$ to $\mathcal{T}_{\text {PSHII }}$ as follows:

- $\Phi(\mathbf{A})=\left(\mathbf{B}_{\mathbf{A}}, \mathbf{H}_{\mathbf{A}}, \mathrm{V}\right)$
- $\Phi(f)=\left(f_{\left.\right|_{B_{A}}}, f_{\left.\right|_{H_{A}}}\right)$

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on H. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
b=b^{\prime}, \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right)
$$

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H}. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
b=b^{\prime}, \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right)
$$

Intuition: When two pairs (b, c) and $\left(b^{\prime}, c^{\prime}\right)$ represent the same element?

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on H. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
b=b^{\prime}, \quad \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right)
$$

Intuition: When two pairs (b, c) and $\left(b^{\prime}, c^{\prime}\right)$ represent the same element? In a SMTL algebra, a pair (b, c) intuitively represent the element of the SBP $_{0}$ algebra $b \wedge c$.
Hence, for instance, all pairs of the kind $(0, c)$ for any $c \in H$ represent the same element.

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on H. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
b=b^{\prime}, \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right)
$$

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on H. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
\begin{gathered}
b=b^{\prime}, \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right) \\
\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}=\left((B \times H) / \sim_{e}, \otimes, \Rightarrow, \sqcap, \sqcup,[0,1],[1,1]\right)
\end{gathered}
$$

Inverting Φ : building a SBP_{0}-algebra

Let $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H}. We define $(b, c) \sim_{e}\left(b^{\prime}, c^{\prime}\right)$ iff

$$
\begin{gathered}
b=b^{\prime}, \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime} \quad \text { and } \quad b \vee_{e} \delta(c)=b \vee_{e} \delta\left(c^{\prime}\right) \\
\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}=\left((B \times H) / \sim_{e}, \otimes, \Rightarrow, \sqcap, \sqcup,[0,1],[1,1]\right)
\end{gathered}
$$

where, for all $(b, c),\left(b^{\prime}, c^{\prime}\right) \in B \times H$:
$(b, c) \odot\left(b^{\prime}, c^{\prime}\right)=$
$\left(b \wedge b^{\prime}, h_{b \vee b^{\prime}}(1) \wedge h_{b \vee \neg b^{\prime}}\left(c^{\prime} \rightarrow c\right) \wedge h_{\neg b \vee b^{\prime}}\left(c \rightarrow c^{\prime}\right) \wedge h_{\neg b \vee \neg b^{\prime}}\left(c * c^{\prime}\right)\right)$;
$(b, c) \Rightarrow\left(b^{\prime}, c^{\prime}\right)=$
$\left(b \rightarrow b^{\prime}, h_{b \vee b^{\prime}} \delta\left(c^{\prime} \rightarrow c\right) \wedge h_{b \vee \neg b^{\prime}}(1) \wedge h_{\neg b \vee b^{\prime}} \delta\left(c * c^{\prime}\right) \wedge h_{\neg b \vee \neg b^{\prime}}\left(c \rightarrow c^{\prime}\right)\right) ;$
$(b, c) \sqcap\left(b^{\prime}, c^{\prime}\right)=$
$\left(b \wedge b^{\prime}, h_{b \vee b^{\prime}}\left(c \vee c^{\prime}\right) \wedge h_{b \vee \neg b^{\prime}}(c) \wedge h_{\neg b \vee b^{\prime}}\left(c^{\prime}\right) \wedge h_{\neg b \vee \neg b^{\prime}}\left(c \wedge c^{\prime}\right)\right)$;
$(b, c) \sqcup\left(b^{\prime}, c^{\prime}\right)=$
$\left(b \vee b^{\prime}, h_{b \vee b^{\prime}}\left(c \wedge c^{\prime}\right) \wedge h_{b \vee \neg b^{\prime}}\left(c^{\prime}\right) \wedge h_{\neg b \vee b^{\prime}}(c) \wedge h_{\neg b \vee \neg b^{\prime}}\left(c \vee c^{\prime}\right)\right)$.
Where $h_{b}: H \rightarrow H, h_{b}(c)=b \vee_{e} c$ for all $b \in B$ and $c \in H$.

Inverting Φ : functor Ξ^{δ}

Theorem
$\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}$ is a $S B P_{0}$-algebra, for every δ w-admissible operator on \mathbf{H}.

Inverting Φ : functor Ξ^{δ}

Theorem
$\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}$ is a $S B P_{0}$-algebra, for every δ w-admissible operator on \mathbf{H}.

Moreover, as expected:

- $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a SMTL-algebra,
- $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a IBP_{0}-algebra.

Inverting Φ : functor Ξ^{δ}

Theorem
$\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}$ is a $S B P_{0}$-algebra, for every δ w-admissible operator on \mathbf{H}.

Moreover, as expected:

- $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a SMTL-algebra,
- $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a IBP_{0}-algebra.

We define functor $\Xi^{\delta_{L}}$ (or $\Xi^{\delta_{D}}$) from $\mathcal{T}_{\text {PSH }}$ into $\mathbb{S M T L}$ (or $\mathbb{I B P}_{0}$, respectively) as follows:

- $\Xi^{\delta_{L, D}}\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)=\mathbf{B} \otimes_{e}^{\delta_{L, D}} \mathbf{C}$
- $\Xi^{\delta_{L, D}}(h, k)([b, c])=[h(b), k(c)]$.

Categorical equivalences

Let \mathbb{H} be a variety of prelinear semihoops.

Categorical equivalences

Let \mathbb{H} be a variety of prelinear semihoops.
Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{P S H}}$ whose objects are triples $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ where $\mathbf{H} \in \mathbb{H}$.

Categorical equivalences

Let \mathbb{H} be a variety of prelinear semihoops.
Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{P S H}}$ whose objects are triples $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ where $\mathbf{H} \in \mathbb{H}$.
Let $\mathbb{S M T L}_{\mathbb{H}}$ and $\mathbb{I B P} \mathbb{P}_{0 \mathbb{H}}$ be the full subcategory respectively of $\mathbb{S M T L}$ and $\mathbb{I B} \mathbb{P}_{0}$ consisting of algebras \mathbf{A} such that the maximum sub-semihoop $\mathbf{H}_{\mathbf{A}} \in \mathbb{H}$.

Categorical equivalences

Let \mathbb{H} be a variety of prelinear semihoops.
Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{P S H}}$ whose objects are triples $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right)$ where $\mathbf{H} \in \mathbb{H}$.
Let $\mathbb{S M T H}_{\mathbb{H}}$ and $\mathbb{I B P} \mathbb{P}_{0 \mathbb{H}}$ be the full subcategory respectively of $\mathbb{S M T L}$ and $\mathbb{I B} \mathbb{P}_{0}$ consisting of algebras \mathbf{A} such that the maximum sub-semihoop
$\mathbf{H}_{\mathbf{A}} \in \mathbb{H}$.
Suitably restricting the functors, we can prove the following.

Theorem

Given any \mathbb{H} subvariety of $\mathbb{P S H}$, it holds:

- $\left(\Phi, \Xi^{\delta_{L}}\right)$ provide a categorical equivalence between $\mathbb{S M T}_{\mathbb{H}}$ and $\mathcal{T}_{\mathbb{H}}$.
- $\left(\Phi, \Xi^{\delta_{D}}\right)$ provide a categorical equivalence between $\mathbb{I B P} \mathbb{P}_{0 \mathbb{H}}$ and $\mathcal{T}_{\mathbb{H}}$.

Corollary

For every \mathbb{H} subvariety of $\mathbb{P S H}, \mathbb{S M T L}_{\mathbb{H}}$ and $\mathbb{I B P}_{\mathbb{P}_{o \mathbb{H}}}$ are categorically equivalent.

Special cases

PSH-Triples Let \mathbb{H} be the variety of prelinear semihoops. We have that $\mathbb{S M T L}$ is categorically equivalent to $\mathbb{I B P} \mathbb{P}_{0}$.

Special cases

PSH-Triples Let \mathbb{H} be the variety of prelinear semihoops. We have that $\mathbb{S M T L}$ is categorically equivalent to $\mathbb{I B} \mathbb{P}_{0}$.

CH -Triples Let \mathbb{H} be the variety of cancellative hoops. Let \mathbf{B} be a Boolean algebra and $\mathbf{C} \in \mathbb{H}$.
Then $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{C}$ is a product algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{C}$ is a DLMV-algebra, hence the category of product algebras is equivalent to the category of DLMV algebras $\mathbb{D L M}$.

Special cases

PSH-Triples Let \mathbb{H} be the variety of prelinear semihoops.
We have that $\mathbb{S M T L}$ is categorically equivalent to $\mathbb{B B P}_{0}$.

CH -Triples Let \mathbb{H} be the variety of cancellative hoops.
Let \mathbf{B} be a Boolean algebra and $\mathbf{C} \in \mathbb{H}$.
Then $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{C}$ is a product algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{C}$ is a DLMV-algebra, hence the category of product algebras is equivalent to the category of DLMV algebras $\mathbb{D L M V}$.

GH-Triples Let \mathbb{H} be the variety of Gödel hoops.
Let \mathbf{B} be a Boolean algebra and $\mathbf{H} \in \mathbb{H}$.
$\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a Gödel algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a NM^{-}-algebra, and the category of Gödel algebras \mathbb{G} is equivalent to $\mathbb{N M}^{-}$.

Subvarieties of MTL-algebras

Reaching all strongly perfect MTL-algebras

Fix any \mathbb{H} subvariety of $\mathbb{P S H}$, and let $\mathcal{Q}_{\mathbb{H}}$ be the following category:

- The objects are quadruples $\left(\mathbf{B}, \mathbf{H}, \vee_{e}, \delta\right)$ where $\mathbf{H} \in \mathbb{H}$, $\left(\mathbf{B}, \mathbf{H}, \vee_{e}\right) \in \mathcal{T}_{\mathbb{H}}$ and $\delta: H \rightarrow H$ w-admissible.
- The morphisms are pairs
$(f, g):\left(\mathbf{B}_{\mathbf{1}}, \mathbf{H}_{\mathbf{1}}, \vee_{e}^{1}, \delta_{1}\right) \rightarrow\left(\mathbf{B}_{\mathbf{2}}, \mathbf{H}_{\mathbf{2}}, \vee_{e}^{2}, \delta_{2}\right)$, such that:
(1) (f, g) is a good morphism pair from $\left(\mathbf{B}_{\mathbf{1}}, \mathbf{H}_{\mathbf{1}}, \vee_{e}^{1}\right)$ to $\left(\mathbf{B}_{\mathbf{2}}, \mathbf{H}_{\mathbf{2}}, \vee_{e}^{2}\right)$
(2) for all $x \in H_{1}, g\left(\delta_{1}(x)\right)=\delta_{2}(g(x))$.

The general equivalence theorem

Let $\mathbb{S B P}_{0 \mathbb{H}}$ be the full subcategory of $\mathbb{S B}_{\mathbb{P}_{0}}$ consisting of algebras \mathbf{A} such that $H_{A} \in \mathbb{H}$.

Again, we can generalize our functors and prove the following.

Theorem
Given any \mathbb{H} subvariety of $\mathbb{P S H}, \mathbb{S B P}_{0 \mathbb{H}}$ and $\mathcal{Q}_{\mathbb{H}}$ are categorically equivalent.

Hence in particular, $\mathbb{S B P}_{0}$ and $\mathcal{Q}_{\mathbb{P S H}}$ are categorically equivalent.

Weak Boolean product

Now we focus on the construction.

Given \mathbf{A} a SBP_{0}-algebra, for each $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$, let

$$
\Theta_{\mathfrak{p}}=\left\{\left(c, c^{\prime}\right) \in \mathbf{H}_{\mathbf{A}} \times \mathbf{H}_{\mathbf{A}} \text { s.t. } \exists b \in \mathfrak{p} \mid \neg b \vee_{e} c=\neg b \vee_{e} c^{\prime}\right\} .
$$

Each $\Theta_{\mathfrak{p}}$ is a congruence of $\mathbf{H}_{\mathbf{A}}$, moreover it holds:
Theorem
Every $S B P_{0}$-algebra \mathbf{A} is a subdirect product of the indexed family

$$
\mathbf{B}_{\mathbf{A}} / \mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}} / \Theta_{\mathfrak{p}}
$$

for some w-admissible operator δ, and for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$.

Weak Boolean product

Definition
A weak Boolean product of an indexed family $\left(\mathbf{A}_{x}\right)_{x \in X}, X \neq \varnothing$, of algebras is a subdirect product $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$, where X can be endowed with a Boolean space topology such that:
(1) $\llbracket x=y \rrbracket$ is open for $x, y \in \mathbf{A}$.
(2) If $x, y \in \mathbf{A}$ and N is a clopen subset of X, then $x_{\left.\right|_{N}} \cup y_{\left.\right|_{X \backslash N}} \in A$. If $\llbracket x=y \rrbracket$ is clopen, $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$ is a Boolean product.

Weak Boolean product

Definition

A weak Boolean product of an indexed family $\left(\mathbf{A}_{x}\right)_{x \in X}, X \neq \varnothing$, of algebras is a subdirect product $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$, where X can be endowed with a Boolean space topology such that:
(1) $\llbracket x=y \rrbracket$ is open for $x, y \in \mathbf{A}$.
(2) If $x, y \in \mathbf{A}$ and N is a clopen subset of X, then $x_{\left.\right|_{N}} \cup y_{\left.\right|_{X \backslash N}} \in A$. If $\llbracket x=y \rrbracket$ is clopen, $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$ is a Boolean product.

We can prove that our construction is a weak Boolean product:
Theorem
Every $S B P_{0}$-algebra \mathbf{A} is a weak Boolean product of the indexed family

$$
\mathbf{B}_{\mathbf{A}} / \mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}} / \Theta_{\mathfrak{p}}
$$

for some w-admissible operator δ, and for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$.

Weak Boolean product

In particular we can exhibit the equalizer:
(1) Let $N_{b}=\left\{\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}} \mid b \in \mathfrak{p}\right\}$ for $b \in \mathbf{B}_{\mathbf{A}}$.

Those sets are the basis of the topology.
We have that the equalizer $\llbracket x=y \rrbracket$ is open since it is equal to:

$$
O=\left(N_{b_{1}} \cap N_{b_{2}} \cap \bigcup_{b \in B_{1}} N_{b}\right) \cup\left(N_{\neg b_{1}} \cap N_{\neg b_{2}} \cap \bigcup_{\neg b^{\prime} \in B_{2}} N_{\neg b^{\prime}}\right) .
$$

Where we have $b_{1}, b_{2} \in \mathbf{B}_{\mathbf{A}}, c_{1}, c_{2} \in \mathbf{H}_{\mathbf{A}}$ such that:

$$
\begin{aligned}
& x=\left(\neg b_{1} \vee c_{1}\right) \wedge\left(b_{1} \vee \neg c_{1}\right), \\
& y=\left(\neg b_{2} \vee c_{2}\right) \wedge\left(b_{2} \vee \neg c_{2}\right) . \\
& B_{1}=\left\{b \in \mathbf{B}_{\mathbf{A}} \mid \neg b \vee c_{1}=\neg b \vee c_{2}\right\} \\
& B_{2}=\left\{\neg b^{\prime} \in \mathbf{B}_{\mathbf{A}} \mid b^{\prime} \vee \neg c_{1}=b^{\prime} \vee \neg c_{2}\right\} .
\end{aligned}
$$

Weak Boolean product

Notice that if $\mathbf{B}_{\mathbf{A}}$ is complete,

$$
\bigcup_{b \in B_{1}} N_{b}=N_{b^{*}} \text { and } \bigcup_{\neg b^{\prime} \in B_{2}} N_{\neg b^{\prime}}=N_{b^{* *}}
$$

where $b^{*}=\bigvee_{b \in B_{1}} b$ and $b^{* *}=\bigvee_{\neg b^{\prime} \in B_{2}} \neg b^{\prime}$.
Hence, $O=\llbracket x=y \rrbracket$ is clopen and we have a Boolean product.
Note: This does not characterize SBP_{0}-algebras with complete Boolean skeleton. Ex: it also holds in the case that \mathbf{A} is the direct product of the family $\mathbf{B}_{\mathbf{A}} / \mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}} / \mathfrak{p}$, for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$, where $\mathbf{B}_{\mathbf{A}}$ need not be complete.

Other ideas and future work

- Generalize the hoop.

In order to have our construction, it seems that we only need \mathbf{H} to be a distributive integral lattice.

- Substitute the Boolean algebra.

We need a distributive lattice, whose dual space is compact.
Finite MV algebras?
Finite Gödel algebras in order to obtain ordinal sums?

- Sheaf representation?

