A uniform way to build strongly perfect MTL-algebras via Boolean algebras and prelinear semihoops

Sara Ugolini

University of Pisa, Department of Computer Science

sara.ugolini@di.unipi.it

(with Stefano Aguzzoli and Tommaso Flaminio)

SYSMICS 2016

A MTL-algebra is a structure $\mathbf{A} = (A, \odot, \rightarrow, \land, \lor, \bot, \top)$ where:

- $(A, \land, \lor, \bot, \top)$ is a bounded distributive lattice,
- (A,\odot,\top) is a commutative monoid,
- $x \odot y \le z \Leftrightarrow z \le x \to y$ holds for every $x, y, z \in A$,
- $(x \to y) \lor (y \to x) = \top$ holds for every $x, y \in A$.

A MTL-algebra is a structure $\mathbf{A} = (A, \odot, \rightarrow, \land, \lor, \bot, \top)$ where:

- $(A, \land, \lor, \bot, \top)$ is a bounded distributive lattice,
- (A,\odot,\top) is a commutative monoid,
- $x \odot y \leq z \Leftrightarrow z \leq x \rightarrow y$ holds for every $x, y, z \in A$,
- $(x \to y) \lor (y \to x) = \top$ holds for every $x, y \in A$.

In every MTL-algebra we can define further operations and abbreviations:

$$\neg x = x \rightarrow \bot$$
, $x \oplus y = \neg (\neg x \odot \neg y)$, $x^2 = x \odot x$, $2x = x \oplus x$.

MTL-algebras form the variety MTL.

A MTL-algebra is a structure $\mathbf{A} = (A, \odot, \rightarrow, \land, \lor, \bot, \top)$ where:

- $(A, \land, \lor, \bot, \top)$ is a bounded distributive lattice,
- (A, \odot, \top) is a commutative monoid,
- $x \odot y \le z \Leftrightarrow z \le x \to y$ holds for every $x, y, z \in A$,
- $(x \to y) \lor (y \to x) = \top$ holds for every $x, y \in A$.

In every MTL-algebra we can define further operations and abbreviations:

$$\neg x = x \to \bot, \quad x \oplus y = \neg (\neg x \odot \neg y), \quad x^2 = x \odot x, \quad 2x = x \oplus x.$$

MTL-algebras form the variety MTL.

BL-algebras are MTL algebras that satisfy divisibility: $x * (x \rightarrow y) = y * (y \rightarrow x).$

A strongly perfect MTL-algebra (SBP $_0$ -algebra) is any MTL-algebra satisfying:

(DL) $(2x)^2 = 2(x^2)$. (N) $\neg(x)^2 \to (\neg \neg x \to x) = 1$,

The class of SBP₀ forms a variety denoted by \mathbb{SBP}_0 .

We will denote $\mathbb{BP}_0 = \mathbb{MTL} + (DL)$ (i.e. the variety generated by *perfect* MTL-algebras).

Given an MTL-algebra ${\bf A},$ the radical ${\it Rad}({\bf A})$ is the intersection of its maximal filters.

The co-radical of \mathbf{A} , $coRad(\mathbf{A}) = \{x \in A \mid \neg x \in Rad(\mathbf{A})\}.$

Given an MTL-algebra $\bm{A},$ the radical $\mathit{Rad}(\bm{A})$ is the intersection of its maximal filters.

The co-radical of A, $coRad(\mathbf{A}) = \{x \in A \mid \neg x \in Rad(\mathbf{A})\}.$

In *perfect* MTL algebras $\mathbf{A} = Rad(\mathbf{A}) \cup coRad(\mathbf{A})$.

Given an MTL-algebra ${\bf A},$ the radical ${\it Rad}({\bf A})$ is the intersection of its maximal filters.

The co-radical of \mathbf{A} , $coRad(\mathbf{A}) = \{x \in A \mid \neg x \in Rad(\mathbf{A})\}.$

In *perfect* MTL algebras $\mathbf{A} = Rad(\mathbf{A}) \cup coRad(\mathbf{A})$.

In strongly perfect MTL-algebras $coRad(\mathbf{A}) = \{\neg x \mid x \in Rad(\mathbf{A})\}.$

Given an MTL-algebra **A**, the radical $Rad(\mathbf{A})$ is the intersection of its maximal filters.

The co-radical of **A**, $coRad(\mathbf{A}) = \{x \in A \mid \neg x \in Rad(\mathbf{A})\}.$

In *perfect* MTL algebras $\mathbf{A} = Rad(\mathbf{A}) \cup coRad(\mathbf{A})$.

In strongly perfect MTL-algebras $coRad(\mathbf{A}) = \{\neg x \mid x \in Rad(\mathbf{A})\}.$

Notable subvarieties of SBP₀ algebras are:

- Pseudocomplemented MTL-algebras SMTL: MTL + $x \land \neg x = 0$
 - Product algebras $\Pi : \mathsf{BL} + \neg x \lor ((x \to x \cdot y) \to y) = 1$
 - Gödel algebras G : BL + $x \cdot x = x$
- Involutive BP₀-algebras IBP₀ : SBP₀ + $\neg \neg x = x$
 - The variety generated by perfect MV-algebras DLMV : IBP₀ + $x * (x \rightarrow y) = y * (y \rightarrow x)$
 - The variety generated by the nilpotent minimum algebra $[0,1]\setminus\{1/2\}$ NM⁻ : IDL + $\neg(x^2) \lor (x \to x^2) = 1$.

A prelinear semihoop is an algebra $\mathbf{H} = (H, *, \rightarrow, \wedge, \lor, 1)$ such that:

- (H,*,1) is a commutative monoid,
- $(H, \wedge, \lor, 1)$ is a lattice with top element 1,
- $(*, \rightarrow)$ forms a residuated pair,
- **H** is prelinear: $(x \to y) \lor (y \to x) = 1$, for all $x, y \in H$

A prelinear semihoop is an algebra $\mathbf{H}=(H,*,\rightarrow,\wedge,\vee,1)$ such that:

- (H, *, 1) is a commutative monoid,
- $(H, \wedge, \lor, 1)$ is a lattice with top element 1,
- $(*, \rightarrow)$ forms a residuated pair,
- **H** is prelinear: $(x \to y) \lor (y \to x) = 1$, for all $x, y \in H$

Notable subvarieties:

Basic hoops :	PSH	+	$x \ast (x \to y) = y \ast (y \to x)$
Gödel hoops :	BH	+	$x = x^2$
Wajsberg hoops :	BH	+	$(x \to y) \to y = (y \to x) \to x$
Cancellative hoops :	BH	+	$x \to (x \ast y) = y$

CH-Triples and product algebras

[Montagna - U., 2015]: The category \mathbb{P} of product algebras is equivalent to a category whose objects are triples $(\mathbf{B}, \mathbf{C}, \vee_e)$, where \mathbf{B} is a Boolean algebra, \mathbf{C} is a cancellative hoop and $\vee_e : B \times C \to C$ satisfies suitable properties.

CH-Triples and product algebras

[Montagna - U., 2015]: The category \mathbb{P} of product algebras is equivalent to a category whose objects are triples $(\mathbf{B}, \mathbf{C}, \vee_e)$, where \mathbf{B} is a Boolean algebra, \mathbf{C} is a cancellative hoop and $\vee_e : B \times C \to C$ satisfies suitable properties.

Key idea Directly indecomposable product algebras are of the kind $\mathbf{2} \oplus \mathbf{C}$ [Cignoli, Torrens].

Any directly indecomposable SMTL algebra A is a lifting of a prelinear semihoop H, $A = 2 \oplus H$:

Directly indecomposable SMTL and IBP_0 algebras Any directly indecomposable SMTL algebra A is a lifting of a prelinear

semihoop \mathbf{H} , $\mathbf{A} = \mathbf{2} \oplus \mathbf{H}$:

Any directly indecomposable IBP₀ algebra A is a disconnected rotation of a prelinear semihoop H, $A = \{0, 1\} \times H$:

More in general, every directly indecomposable SBP₀ algebra can be obtained starting from a prelinear semihoop \mathbf{H} , using a a weakening of Cignoli-Torrens dl-admissible operator δ .

More in general, every directly indecomposable SBP₀ algebra can be obtained starting from a prelinear semihoop \mathbf{H} , using a a weakening of Cignoli-Torrens dl-admissible operator δ .

We shall call a map $\delta: H \to H$ w-admissible iff for all $a, b \in H$:

$$\begin{array}{lll} a \to \delta(a) &= 1, & & \delta(\delta(a)) &= a, \\ \delta(a \to b) &\leq a \to \delta(b), & & \delta(a * b) &= \delta(\delta(a) * \delta(b)), \\ \delta(a \wedge b) &= \delta(a) \wedge \delta(b), & & \delta(a \lor b) &= \delta(a) \lor \delta(b). \end{array}$$

Observation: the weakened condition allows to get rid of Glivenko equation $\neg \neg (\neg \neg x \rightarrow x) = 1$.

More in general, every directly indecomposable SBP₀ algebra can be obtained starting from a prelinear semihoop \mathbf{H} , using a a weakening of Cignoli-Torrens dl-admissible operator δ .

We shall call a map $\delta: H \to H$ w-admissible iff for all $a, b \in H$:

$$\begin{array}{lll} a \to \delta(a) &= 1, & \delta(\delta(a)) &= a, \\ \delta(a \to b) &\leq a \to \delta(b), & \delta(a * b) &= \delta(\delta(a) * \delta(b)), \\ \delta(a \wedge b) &= \delta(a) \wedge \delta(b), & \delta(a \lor b) &= \delta(a) \lor \delta(b). \end{array}$$

Observation: the weakened condition allows to get rid of Glivenko equation $\neg \neg (\neg \neg x \rightarrow x) = 1$.

Examples

•
$$\delta_D(a) = a$$
 for all $a \in H$.

• $\delta_L(a) = 1$ for all $a \in H$.

In particular, with δ_L and δ_D we obtain respectively directly indecomposable SMTL and IBP₀ algebras.

Indeed, $\delta_L(H) = \{1\}$ and $\delta_D(H) = H$.

Directly indecomposable SMTL and IBP_0 algebras

Every $a \in \mathbf{A}$ d.i. SMTL-algebra is such that $a = b \wedge c$, where $b \in \{0, 1\}$, $c \in H$.

Directly indecomposable SMTL and IBP_0 algebras

Every $a \in \mathbf{A}$ d.i. SMTL-algebra is such that $a = b \wedge c$, where $b \in \{0, 1\}$, $c \in H$.

Every $a \in \mathbf{A'}$ d.i. IBP₀-algebra is such that $a = (b \wedge c) \vee (\neg b \wedge \neg c)$, where $b \in \{0, 1\}$, $c \in H$.

In general, every $a \in \mathbf{A}$ d.i. SBP₀-algebra is such that $a = (b \wedge c) \lor (\neg b \land \neg c)$, where $b \in \{0, 1\}$, $c \in H$.

In general, every $a \in \mathbf{A}$ d.i. SBP₀-algebra is such that $a = (b \wedge c) \lor (\neg b \land \neg c)$, where $b \in \{0, 1\}$, $c \in H$.

Since this equation hold in any directly indecomposable SBP_0 algebra, it holds for any algebra of the variety.

 SBP_0 algebras decomposition

Let A be a SBP₀ algebra, then to each $a \in A$ we can associate a pair (b, c) where b is *boolean* and c is an element of the greatest prelinear sub-semihoop of A.

SBP_0 algebras decomposition

Let A be a SBP₀ algebra, then to each $a \in A$ we can associate a pair (b, c) where b is *boolean* and c is an element of the greatest prelinear sub-semihoop of A. Moreover, we can uniquely associate to A the pair $(\mathbf{B}_{\mathbf{A}}, \mathbf{H}_{\mathbf{A}})$:

- $B_A = \{x \in A \mid x \lor \neg x = 1\}$ is the dominium of the greatest Boolean subalgebra, or the Boolean skeleton, of **A**.
- $H_A = \{x \in A \mid x > \neg x\}$ is the dominium of the greatest prelinear semihoop contained in **A**, that is exactly $Rad(\mathbf{A})$.

SBP_0 algebras decomposition

Let A be a SBP₀ algebra, then to each $a \in A$ we can associate a pair (b, c) where b is *boolean* and c is an element of the greatest prelinear sub-semihoop of A. Moreover, we can uniquely associate to A the pair $(\mathbf{B}_{\mathbf{A}}, \mathbf{H}_{\mathbf{A}})$:

- $B_A = \{x \in A \mid x \lor \neg x = 1\}$ is the dominium of the greatest Boolean subalgebra, or the Boolean skeleton, of **A**.
- $H_A = \{x \in A \mid x > \neg x\}$ is the dominium of the greatest prelinear semihoop contained in **A**, that is exactly $Rad(\mathbf{A})$.

But a pair (\mathbf{B}, \mathbf{H}) does not uniquely determine \mathbf{A} .

PSH-triples

A prelinear semihoop triple, a PSH-triple, is a triple $(\mathbf{B}, \mathbf{H}, \vee_e)$ where \mathbf{B} is a Boolean algebra, \mathbf{H} is a prelinear semihoop such that $B \cap H = \{1\}$, and \vee_e is a map from $\mathbf{B} \times \mathbf{H}$ into \mathbf{H} such that:

(V1) For fixed
$$b \in B$$
 and $c \in H$:
the map $h_b(x) = b \lor_e x$ is an endomorphism of \mathbf{H} ,
the map $k_c(x) = x \lor_e c$ is a lattice homomorphism from \mathbf{B} into \mathbf{H} .

(V2) h_0 is the identity on **H**, h_1 is constantly equal to 1.

(V3) For all
$$b, b' \in B$$
 and for all $c, c' \in H$,
 $h_b(c) \lor h_{b'}(c') = h_{b \lor b'}(c \lor c') = h_b(h_{b'}(c \lor c')).$

The category of PSH-triples

A good morphism pair from a PSH-triple $(\mathbf{B}, \mathbf{H}, \vee_e)$ to another PSH-triple $(\mathbf{B}', \mathbf{H}', \vee'_e)$ is a pair (h, k) where:

- h is a homomorphism from **B** to **B**',
- k is a homomorphism from H to H',
- for all $x \in B$ and $y \in H$, $k(x \vee_e y) = h(x) \vee'_e k(y)$.

The category $\mathcal{T}_{\mathbb{PSH}}$ of PSH-triples has PSH-triples as objects and good morphism pairs as morphisms, with composition defined componentwise: $(h,k) \circ (h',k') = (h \circ h', k \circ k')$.

The category of PSH-triples

A good morphism pair from a PSH-triple $(\mathbf{B}, \mathbf{H}, \vee_e)$ to another PSH-triple $(\mathbf{B}', \mathbf{H}', \vee'_e)$ is a pair (h, k) where:

- h is a homomorphism from **B** to **B**',
- k is a homomorphism from H to H',
- for all $x \in B$ and $y \in H$, $k(x \vee_e y) = h(x) \vee'_e k(y)$.

The category $\mathcal{T}_{\mathbb{PSH}}$ of PSH-triples has PSH-triples as objects and good morphism pairs as morphisms, with composition defined componentwise: $(h,k) \circ (h',k') = (h \circ h', k \circ k')$.

We can define a functor Φ from the category of SBP_0-algebras \mathbb{SBP}_0 to $\mathcal{T}_{\mathbb{PSH}}$ as follows:

- $\Phi(\mathbf{A}) = (\mathbf{B}_{\mathbf{A}}, \mathbf{H}_{\mathbf{A}}, \vee)$
- $\bullet \ \Phi(f) = (f_{|_{B_A}}, f_{|_{H_A}})$

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H} . We define $(b, c) \sim_e (b', c')$ iff

$$b = b', \ \neg b \lor_e c = \neg b \lor_e c' \text{ and } b \lor_e \delta(c) = b \lor_e \delta(c')$$

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H} . We define $(b, c) \sim_e (b', c')$ iff

$$b = b', \ \neg b \lor_e c = \neg b \lor_e c' \text{ and } b \lor_e \delta(c) = b \lor_e \delta(c')$$

Intuition: When two pairs (b, c) and (b', c') represent the same element?

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H} . We define $(b, c) \sim_e (b', c')$ iff

$$b = b', \ \neg b \lor_e c = \neg b \lor_e c' \ \text{ and } \ b \lor_e \delta(c) = b \lor_e \delta(c')$$

Intuition: When two pairs (b, c) and (b', c') represent the same element?

In a SMTL algebra, a pair (b,c) intuitively represent the element of the SBP_0 algebra $b \wedge c.$

Hence, for instance, all pairs of the kind (0,c) for any $c\in H$ represent the same element.

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on **H**. We define $(b, c) \sim_e (b', c')$ iff

 $b = b', \ \neg b \lor_e c = \neg b \lor_e c' \text{ and } b \lor_e \delta(c) = b \lor_e \delta(c')$

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on \mathbf{H} . We define $(b,c) \sim_e (b',c')$ iff

$$\begin{split} b &= b', \ \neg b \lor_e c = \neg b \lor_e c' \ \text{ and } \ b \lor_e \delta(c) = b \lor_e \delta(c') \\ \mathbf{B} \otimes_e^{\delta} \mathbf{H} &= ((B \times H) / \sim_e, \otimes, \Rightarrow, \sqcap, \sqcup, [0, 1], [1, 1]) \end{split}$$

Let $(\mathbf{B}, \mathbf{H}, \vee_e)$ be a PSH-triple, and let δ be a w-admissible operator on **H**. We define $(b, c) \sim_e (b', c')$ iff

$$\begin{split} b &= b', \ \neg b \lor_e c = \neg b \lor_e c' \ \text{ and } \ b \lor_e \delta(c) = b \lor_e \delta(c') \\ \mathbf{B} \otimes_e^{\delta} \mathbf{H} &= ((B \times H) / \sim_e, \otimes, \Rightarrow, \sqcap, \sqcup, [0, 1], [1, 1]) \end{split}$$

where, for all $(b,c), (b',c') \in B \times H$:

$$\begin{aligned} &(b,c) \odot (b',c') = \\ &(b \wedge b', h_{b \vee b'}(1) \wedge h_{b \vee \neg b'}(c' \to c) \wedge h_{\neg b \vee b'}(c \to c') \wedge h_{\neg b \vee \neg b'}(c * c')); \\ &(b,c) \Rightarrow (b',c') = \\ &(b \to b', h_{b \vee b'}\delta(c' \to c) \wedge h_{b \vee \neg b'}(1) \wedge h_{\neg b \vee b'}\delta(c * c') \wedge h_{\neg b \vee \neg b'}(c \to c')); \\ &(b,c) \sqcap (b',c') = \\ &(b \wedge b', h_{b \vee b'}(c \vee c') \wedge h_{b \vee \neg b'}(c) \wedge h_{\neg b \vee b'}(c') \wedge h_{\neg b \vee \neg b'}(c \wedge c')); \\ &(b,c) \sqcup (b',c') = \\ &(b \vee b', h_{b \vee b'}(c \wedge c') \wedge h_{b \vee \neg b'}(c') \wedge h_{\neg b \vee b'}(c) \wedge h_{\neg b \vee \neg b'}(c \vee c')). \end{aligned}$$

Where $h_b: H \to H$, $h_b(c) = b \vee_e c$ for all $b \in B$ and $c \in H$.

Inverting Φ : functor Ξ^{δ}

Theorem $\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}$ is a SBP₀-algebra, for every δ w-admissible operator on \mathbf{H} .

Inverting Φ : functor Ξ^{δ}

Theorem

 $\mathbf{B} \otimes_{e}^{\delta} \mathbf{H}$ is a SBP₀-algebra, for every δ w-admissible operator on \mathbf{H} .

Moreover, as expected:

- $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a SMTL-algebra,
- $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a IBP₀-algebra.

Inverting Φ : functor Ξ^{δ}

Theorem

 $\mathbf{B} \otimes_e^{\delta} \mathbf{H}$ is a SBP₀-algebra, for every δ w-admissible operator on \mathbf{H} .

Moreover, as expected:

- $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a SMTL-algebra,
- $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a IBP₀-algebra.

We define functor Ξ^{δ_L} (or Ξ^{δ_D}) from $\mathcal{T}_{\mathbb{PSH}}$ into \mathbb{SMTL} (or \mathbb{IBP}_0 , respectively) as follows:

•
$$\Xi^{\delta_{L,D}}(\mathbf{B},\mathbf{H},\vee_e) = \mathbf{B} \otimes_e^{\delta_{L,D}} \mathbf{C}$$

•
$$\Xi^{\delta_{L,D}}(h,k)([b,c]) = [h(b),k(c)].$$

Let $\mathbb H$ be a variety of prelinear semihoops.

Let $\mathbb H$ be a variety of prelinear semihoops.

Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{PSH}}$ whose objects are triples $(\mathbf{B}, \mathbf{H}, \vee_e)$ where $\mathbf{H} \in \mathbb{H}$.

Let $\mathbb H$ be a variety of prelinear semihoops.

Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{PSH}}$ whose objects are triples $(\mathbf{B}, \mathbf{H}, \vee_e)$ where $\mathbf{H} \in \mathbb{H}$.

Let $SMTL_{\mathbb{H}}$ and $IBP_{0\mathbb{H}}$ be the full subcategory respectively of SMTL and IBP_0 consisting of algebras A such that the maximum sub-semihoop $H_A \in \mathbb{H}$.

Let $\mathbb H$ be a variety of prelinear semihoops.

Let $\mathbb{T}_{\mathbb{H}}$ be the full subcategory of $\mathbb{T}_{\mathbb{PSH}}$ whose objects are triples $(\mathbf{B}, \mathbf{H}, \vee_e)$ where $\mathbf{H} \in \mathbb{H}$.

Let $SMTL_{\mathbb{H}}$ and $\mathbb{IBP}_{0\mathbb{H}}$ be the full subcategory respectively of SMTL and \mathbb{IBP}_0 consisting of algebras A such that the maximum sub-semihoop $H_A \in \mathbb{H}$.

Suitably restricting the functors, we can prove the following.

Theorem

Given any $\mathbb H$ subvariety of $\mathbb {PSH},$ it holds:

- (Φ, Ξ^{δ_L}) provide a categorical equivalence between SMTL_H and $\mathcal{T}_{\mathbb{H}}$.
- (Φ, Ξ^{δ_D}) provide a categorical equivalence between $\mathbb{IBP}_{0\mathbb{H}}$ and $\mathcal{T}_{\mathbb{H}}$.

Corollary

For every \mathbb{H} subvariety of \mathbb{PSH} , $\mathbb{SMTL}_{\mathbb{H}}$ and $\mathbb{IBP}_{0\mathbb{H}}$ are categorically equivalent.

Special cases

Special cases

CH-Triples Let \mathbb{H} be the variety of cancellative hoops.

Let **B** be a Boolean algebra and $\mathbf{C} \in \mathbb{H}$. Then $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{C}$ is a product algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{C}$ is a DLMV-algebra, hence the category of product algebras is equivalent to the category of DLMV algebras \mathbb{DLMV} .

Special cases

CH-Triples Let \mathbb{H} be the variety of cancellative hoops.

Let **B** be a Boolean algebra and $\mathbf{C} \in \mathbb{H}$. Then $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{C}$ is a product algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{C}$ is a DLMV-algebra, hence the category of product algebras is equivalent to the category of DLMV algebras \mathbb{DLMV} .

GH-Triples Let \mathbb{H} be the variety of Gödel hoops.

Let ${\bf B}$ be a Boolean algebra and ${\bf H} \in \mathbb{H}.$

 $\mathbf{B} \otimes_{e}^{\delta_{L}} \mathbf{H}$ is a Gödel algebra, $\mathbf{B} \otimes_{e}^{\delta_{D}} \mathbf{H}$ is a NM⁻-algebra, and the category of Gödel algebras \mathbb{G} is equivalent to \mathbb{NM}^{-} .

Subvarieties of MTL-algebras

Reaching all strongly perfect MTL-algebras

Fix any $\mathbb H$ subvariety of $\mathbb P\mathbb S\mathbb H,$ and let $\mathcal Q_{\mathbb H}$ be the following category:

- The objects are quadruples $(\mathbf{B}, \mathbf{H}, \vee_e, \delta)$ where $\mathbf{H} \in \mathbb{H}$, $(\mathbf{B}, \mathbf{H}, \vee_e) \in \mathcal{T}_{\mathbb{H}}$ and $\delta : H \to H$ w-admissible.
- The morphisms are pairs $(f,g): (\mathbf{B_1},\mathbf{H_1},\vee^1_e,\delta_1) \to (\mathbf{B_2},\mathbf{H_2},\vee^2_e,\delta_2)$, such that:
 - (*f*, *g*) is a good morphism pair from $(\mathbf{B_1}, \mathbf{H_1}, \vee_e^1)$ to $(\mathbf{B_2}, \mathbf{H_2}, \vee_e^2)$ (2) for all $x \in H_1$, $g(\delta_1(x)) = \delta_2(g(x))$.

The general equivalence theorem

Let SBP_{0H} be the full subcategory of SBP_0 consisting of algebras A such that $H_A \in \mathbb{H}$.

Again, we can generalize our functors and prove the following.

Theorem

Given any \mathbb{H} subvariety of \mathbb{PSH} , $\mathbb{SBP}_{0\mathbb{H}}$ and $\mathcal{Q}_{\mathbb{H}}$ are categorically equivalent.

Hence in particular, \mathbb{SBP}_0 and $\mathcal{Q}_{\mathbb{PSH}}$ are categorically equivalent.

Now we focus on the construction.

Given ${\bf A}$ a SBP_0-algebra, for each $\mathfrak{p}\in \operatorname{Max} {\bf B}_{{\bf A}}$, let

$$\Theta_{\mathfrak{p}} = \{ (c, c') \in \mathbf{H}_{\mathbf{A}} \times \mathbf{H}_{\mathbf{A}} \ s.t. \ \exists b \in \mathfrak{p} \ | \ \neg b \lor_{e} c = \neg b \lor_{e} c' \}.$$

Each $\Theta_{\mathfrak{p}}$ is a congruence of $\mathbf{H}_{\mathbf{A}}$, moreover it holds:

Theorem

Every SBP₀-algebra \mathbf{A} is a subdirect product of the indexed family

$$\mathbf{B}_{\mathbf{A}}/\mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}}/\Theta_{\mathfrak{p}}$$

for some w-admissible operator δ , and for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$.

Definition

A weak Boolean product of an indexed family $(\mathbf{A}_x)_{x \in X}$, $X \neq \emptyset$, of algebras is a subdirect product $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_x$, where X can be endowed with a Boolean space topology such that:

1
$$\llbracket x = y \rrbracket$$
 is open for $x, y \in \mathbf{A}$.

2 If $x, y \in \mathbf{A}$ and N is a clopen subset of X, then $x_{|_N} \cup y_{|_{X \setminus N}} \in A$.

If $[\![x = y]\!]$ is clopen, $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$ is a Boolean product.

Definition

A weak Boolean product of an indexed family $(\mathbf{A}_x)_{x \in X}$, $X \neq \emptyset$, of algebras is a subdirect product $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_x$, where X can be endowed with a Boolean space topology such that:

1
$$\llbracket x = y \rrbracket$$
 is open for $x, y \in \mathbf{A}$.

2 If $x, y \in \mathbf{A}$ and N is a clopen subset of X, then $x_{|_N} \cup y_{|_{X \setminus N}} \in A$.

If $[\![x = y]\!]$ is clopen, $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_{\mathbf{x}}$ is a Boolean product.

We can prove that our construction is a weak Boolean product:

Theorem

Every SBP₀-algebra \mathbf{A} is a weak Boolean product of the indexed family

$$\mathbf{B}_{\mathbf{A}}/\mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}}/\Theta_{\mathfrak{p}}$$

for some w-admissible operator δ , and for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$.

In particular we can exhibit the equalizer:

(1) Let $N_b = \{ \mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}} \mid b \in \mathfrak{p} \}$ for $b \in \mathbf{B}_{\mathbf{A}}$. Those sets are the basis of the topology.

We have that the equalizer $[\![x=y]\!]$ is open since it is equal to:

$$O = \left(N_{b_1} \cap N_{b_2} \cap \bigcup_{b \in B_1} N_b\right) \cup \left(N_{\neg b_1} \cap N_{\neg b_2} \cap \bigcup_{\neg b' \in B_2} N_{\neg b'}\right).$$

Where we have $b_1, b_2 \in \mathbf{B}_{\mathbf{A}}, c_1, c_2 \in \mathbf{H}_{\mathbf{A}}$ such that: $x = (\neg b_1 \lor c_1) \land (b_1 \lor \neg c_1),$ $y = (\neg b_2 \lor c_2) \land (b_2 \lor \neg c_2).$ $B_1 = \{b \in \mathbf{B}_{\mathbf{A}} \mid \neg b \lor c_1 = \neg b \lor c_2\}$ $B_2 = \{\neg b' \in \mathbf{B}_{\mathbf{A}} \mid b' \lor \neg c_1 = b' \lor \neg c_2\}.$

Notice that if $\mathbf{B}_{\mathbf{A}}$ is complete,

$$\bigcup_{b\in B_1}N_b=N_{b^*} \text{ and } \bigcup_{\neg b'\in B_2}N_{\neg b'}=N_{b^{**}}$$

where $b^* = \bigvee_{b \in B_1} b$ and $b^{**} = \bigvee_{\neg b' \in B_2} \neg b'$.

Hence, $O = \llbracket x = y \rrbracket$ is clopen and we have a Boolean product.

Note: This does not characterize SBP₀-algebras with complete Boolean skeleton. Ex: it also holds in the case that \mathbf{A} is the direct product of the family $\mathbf{B}_{\mathbf{A}}/\mathfrak{p} \otimes_{e}^{\delta} \mathbf{H}_{\mathbf{A}}/\mathfrak{p}$, for $\mathfrak{p} \in \operatorname{Max} \mathbf{B}_{\mathbf{A}}$, where $\mathbf{B}_{\mathbf{A}}$ need not be complete.

Other ideas and future work

• Generalize the hoop.

In order to have our construction, it seems that we only need ${\bf H}$ to be a distributive integral lattice.

• Substitute the Boolean algebra.

We need a distributive lattice, whose dual space is compact. Finite MV algebras? Finite Gödel algebras in order to obtain ordinal sums?

• Sheaf representation?