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In this talk, I wish to demonstrate the significant role of lattice-ordered groups
(ℓ-groups) in the study of algebras of logic by focusing on two aspects of their
multifaceted influence.

� First, I discuss the role ℓ-groups play in the definition of well-studied classes of
ordered algebras.

� Second, I review recent research on residuated lattices that has been inspired
by related research in the theory of ℓ-groups.
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• X: a fixed countably infinite set of variables
• L: a fixed signature of algebras
• Fm(X): the term (formula) algebra of signature L over X
• Eq(X)= Fm(X)× Fm(X): the equations of signature L with variables in X

Let U be a class of algebras of signature L. Given Σ ∪ {ε} ⊆ Eq(X), we say that
ε is a U -consequence of Σ provided for every A ∈ U and every homomorphism
ϕ : Fm(X) → A, if Σ ⊆ Ker(ϕ), then ε ∈ Ker(ϕ).
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A lattice-ordered group (ℓ-group) is an algebra G = 〈G,∧,∨, ·, −1, e〉 such that

(i) 〈G,∧,∨〉 is a lattice;
(ii)〈G, ·, −1, e〉 is a group; and
(iii) multiplication is isotone.

Examples

• Aut(Ω) (order-automorphisms of a chain Ω)
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A lattice-ordered group (ℓ-group) is an algebra G = 〈G,∧,∨, ·, −1, e〉 such that

(i) 〈G,∧,∨〉 is a lattice;
(ii)〈G, ·, −1, e〉 is a group; and
(iii) multiplication is isotone.

Examples

• Aut(Ω) (order-automorphisms of a chain Ω)

Holland’s Embedding Theorem
Every ℓ-group can be embedded into some Aut(Ω).
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A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e〉 such that:

(i) 〈A,∧,∨〉 is a lattice;
(ii) 〈A, ·, e〉 is a monoid; and
(iii) the operation · is residuated with residuals \ and /. This means that, for
all x, y, z ∈ A,

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.
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A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e〉 such that:

(i) 〈A,∧,∨〉 is a lattice;
(ii) 〈A, ·, e〉 is a monoid; and
(iii) the operation · is residuated with residuals \ and /. This means that, for
all x, y, z ∈ A,

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

An algebra A = 〈A,∧,∨, ·, \, /, e, f〉 is said to be a pointed residuated lattice (or
an FL algebra) provided: (i) A = 〈A,∧,∨, ·, \, /, e〉 is a residuated lattice; and
(ii) f is a distinguished element of A.
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A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e〉 such that:

(i) 〈A,∧,∨〉 is a lattice;
(ii) 〈A, ·, e〉 is a monoid; and
(iii) the operation · is residuated with residuals \ and /. This means that, for
all x, y, z ∈ A,

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

An algebra A = 〈A,∧,∨, ·, \, /, e, f〉 is said to be a pointed residuated lattice (or
an FL algebra) provided: (i) A = 〈A,∧,∨, ·, \, /, e〉 is a residuated lattice; and
(ii) f is a distinguished element of A.

The classes RL (residuated lattices) and PRL (pointed residuated lattices) are
finitely based equational classes. Their defining equations consist of the defining
equations for lattices and monoids together with the equations below.

(RL1) x(y ∨ z) ≈ xy ∨ xz (RL2) (y ∨ z)x ≈ yx ∨ zx

(RL3) x\y ≤ x\(y ∨ z) (RL4) y/x ≤ (y ∨ z)/x
(RL5) x(x\y) ≤ y ≤ x\xy (RL6) (y/x)x ≤ y ≤ yx/x
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The variety of ℓ-groups is term equivalent to the subvariety, LG, of RL defined
by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.
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The variety of ℓ-groups is term equivalent to the subvariety, LG, of RL defined
by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.

It is clear that ℓ-groups are cancellative (as semigroups).
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The variety of ℓ-groups is term equivalent to the subvariety, LG, of RL defined
by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice L is
cancellative if and only if it satisfies the equations xy/y ≈ x and x ≈ y\yx.
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The variety of ℓ-groups is term equivalent to the subvariety, LG, of RL defined
by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice L is
cancellative if and only if it satisfies the equations xy/y ≈ x and x ≈ y\yx.

Any other interesting examples of cancellative residuated lattices beyond ℓ-groups?
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by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice L is
cancellative if and only if it satisfies the equations xy/y ≈ x and x ≈ y\yx.

Any other interesting examples of cancellative residuated lattices beyond ℓ-groups?

The negative cone of a residuated lattice L is the residuated lattice L
− with

universe L− = {x ∈ L : x ≤ e}, whose monoid and lattice operations are the
restrictions to L− of the corresponding operations in L, and whose residuals \

−

and /
−

are defined by

x\
−

y = (x\y) ∧ e and y/
−

x = (y/x) ∧ e,

where \ and / denote the residuals in L.
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− with

universe L− = {x ∈ L : x ≤ e}, whose monoid and lattice operations are the
restrictions to L− of the corresponding operations in L, and whose residuals \

−

and /
−

are defined by

x\
−

y = (x\y) ∧ e and y/
−

x = (y/x) ∧ e,

where \ and / denote the residuals in L.

The negative cone of an ℓ-group is an integral cancellative residuated lattice.
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by the equation x(x\e) ≈ e. The term equivalence is given by

x−1 = x\e and x/y = xy−1, y\x = y−1x.

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice L is
cancellative if and only if it satisfies the equations xy/y ≈ x and x ≈ y\yx.

Any other interesting examples of cancellative residuated lattices beyond ℓ-groups?

The negative cone of a residuated lattice L is the residuated lattice L
− with

universe L− = {x ∈ L : x ≤ e}, whose monoid and lattice operations are the
restrictions to L− of the corresponding operations in L, and whose residuals \

−

and /
−

are defined by

x\
−

y = (x\y) ∧ e and y/
−

x = (y/x) ∧ e,

where \ and / denote the residuals in L.

The negative cone of an ℓ-group is an integral cancellative residuated lattice.
Further, it satisfies the divisibility laws

x(x\y) ≈ x ∧ y ≈ (y/x)x.
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Every lattice is a sublattice of a cancellative residuated lattice. Let L be an
arbitrary lattice with a top element, and let L∗ be the free monoid over L. We
order L∗ as follows:  

        

 

W1 = L  
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Ideal lattices of rings: I · J = {
∑n

k=1 akbk|ak ∈ I; bk ∈ J ;n ∈ Z
+}

Notation: If x\y = y/x, we write x → y for the common value.

Heyting algebras: xy ≈ x ∧ y and x ∧ f ≈ f.

Boolean algebras: xy ≈ x ∧ y, (x → y) → y ≈ x ∨ y and x ∧ f ≈ f.

MV algebras: xy ≈ yx, (x → y) → y ≈ x ∨ y and x ∧ f ≈ f.

ΨMV algebras (pseudo-MV algebras): y/(x\y) ≈ x ∨ y, (y/x)\y ≈ x ∨ y, and
x ∧ f ≈ f.
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The variety GBL of GBL algebras is the subvariety of RL satisfying the equations

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.
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The variety GBL of GBL algebras is the subvariety of RL satisfying the equations

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.

The subvariety IGBL of integral GBL algebras (pseudo-hoops) is axiomatized,
relative to RL, by the equations x(x\y) ≈ x ∧ y ≈ (y/x)x.
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The variety GBL of GBL algebras is the subvariety of RL satisfying the equations

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.

The subvariety IGBL of integral GBL algebras (pseudo-hoops) is axiomatized,
relative to RL, by the equations x(x\y) ≈ x ∧ y ≈ (y/x)x.

The variety GMV of GMV algebras is the subvariety of RL satisfying the
equations

y/(x\y ∧ e) ≈ x ∨ y ≈ (y/x ∧ e)\y.
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The variety GBL of GBL algebras is the subvariety of RL satisfying the equations

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.

The subvariety IGBL of integral GBL algebras (pseudo-hoops) is axiomatized,
relative to RL, by the equations x(x\y) ≈ x ∧ y ≈ (y/x)x.

The variety GMV of GMV algebras is the subvariety of RL satisfying the
equations

y/(x\y ∧ e) ≈ x ∨ y ≈ (y/x ∧ e)\y.

The subvariety IGMV of integral GMV algebras (Wajsberg pseudo-hoops) is
axiomatized, relative to RL, by the equations x/(y\x) ≈ x ∨ y ≈ (x/y)\x.
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Lemma: GMV ⊆ GBL
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The variety GBL of GBL algebras is the subvariety of RL satisfying the equations

x(x\y ∧ e) ≈ x ∧ y ≈ (y/x ∧ e)x.

The subvariety IGBL of integral GBL algebras (pseudo-hoops) is axiomatized,
relative to RL, by the equations x(x\y) ≈ x ∧ y ≈ (y/x)x.

The variety GMV of GMV algebras is the subvariety of RL satisfying the
equations

y/(x\y ∧ e) ≈ x ∨ y ≈ (y/x ∧ e)\y.

The subvariety IGMV of integral GMV algebras (Wajsberg pseudo-hoops) is
axiomatized, relative to RL, by the equations x/(y\x) ≈ x ∨ y ≈ (x/y)\x.

Lemma: GMV ⊆ GBL

Theorem: A residuated lattice is L is a GBL (respectively, GMV) algebra if and
only if it has a direct sum decomposition L = A

⊕

B, where A is an ℓ-group and
B is an integral GBL (respectively, GMV) algebra.
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A nucleus on a residuated lattice L is a closure operator γ on 〈L,≤〉 that satisfies
the inequality γ(a)γ(b) ≤ γ(ab), for all a, b ∈ L.
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A nucleus on a residuated lattice L is a closure operator γ on 〈L,≤〉 that satisfies
the inequality γ(a)γ(b) ≤ γ(ab), for all a, b ∈ L.

A co-nucleus on a residuated lattice L is a co-closure operator η on 〈L,≤〉
satisfying η(e) = e and η(a)η(b) ≤ η(ab) for all a, b ∈ L.
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A nucleus on a residuated lattice L is a closure operator γ on 〈L,≤〉 that satisfies
the inequality γ(a)γ(b) ≤ γ(ab), for all a, b ∈ L.

A co-nucleus on a residuated lattice L is a co-closure operator η on 〈L,≤〉
satisfying η(e) = e and η(a)η(b) ≤ η(ab) for all a, b ∈ L.

Proposition
Let γ be a nucleus on a residuated lattice L = 〈L,∧,∨, ·, ·, /, e〉. Then the
structure γ[L] = 〈γ[L],∧,∨γ, ◦γ, \, /, γ(e)〉 – where x ∨γ y = γ(x ∨ y) and
x ◦γ y = γ(xy), for all x, y ∈ γ[L], is a residuated lattice.
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A nucleus on a residuated lattice L is a closure operator γ on 〈L,≤〉 that satisfies
the inequality γ(a)γ(b) ≤ γ(ab), for all a, b ∈ L.

A co-nucleus on a residuated lattice L is a co-closure operator η on 〈L,≤〉
satisfying η(e) = e and η(a)η(b) ≤ η(ab) for all a, b ∈ L.

Proposition
Let γ be a nucleus on a residuated lattice L = 〈L,∧,∨, ·, ·, /, e〉. Then the
structure γ[L] = 〈γ[L],∧,∨γ, ◦γ, \, /, γ(e)〉 – where x ∨γ y = γ(x ∨ y) and
x ◦γ y = γ(xy), for all x, y ∈ γ[L], is a residuated lattice.

Proposition

If L = 〈L,∧,∨, ·, \, /, e〉 is a residuated lattice and η a co-nucleus on it, then the
structure η[L] = 〈η[L],∧

η
,∨, ·, \

η
, /

η
, e〉 – where x ∧

η
y = η(x ∧ y),

x/
η
y = η(x/y) and x\

η
y = η(x\y), for all x, y ∈ η[L] – is a residuated lattice.
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Every integral GMV algebra may be viewed as the negative cone of an

ℓ-group endowed with a suitable nucleus (namely one whose image generates
the negative cone as semigroup).

• N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra
283(1) (2005), 254-291.

The preceding result implies the categorical equivalence between MV algebras and
unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between
ΨMV algebras and unital ℓ-groups (A. Dvurečenskij; 2002).
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ℓ-group endowed with a suitable nucleus (namely one whose image generates
the negative cone as semigroup).

• N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra
283(1) (2005), 254-291.

The preceding result implies the categorical equivalence between MV algebras and
unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between
ΨMV algebras and unital ℓ-groups (A. Dvurečenskij; 2002).

Any cancellative residuated lattice L whose monoid reduct is a right

reversible monoid (Ore residuated lattice) may be viewed as an ℓ-group

endowed with a suitable co-nucleus.
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283(1) (2005), 254-291.

The preceding result implies the categorical equivalence between MV algebras and
unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between
ΨMV algebras and unital ℓ-groups (A. Dvurečenskij; 2002).

Any cancellative residuated lattice L whose monoid reduct is a right

reversible monoid (Ore residuated lattice) may be viewed as an ℓ-group

endowed with a suitable co-nucleus. In more detail, if L is an Ore residuated
lattice and G is the ℓ-group of left fractions of L, then the map η : a−1b 7→ a\b is
a co-nucleus on G(L) and L = η[G(L)].

• F. Montagna and C. Tsinakis, Ordered groups with a co-nucleus, Journal of
Pure and Applied Algebra 214 (1) (2010), 71-88.
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(LP) ((x\y) ∧ e) ∨ ((y\x) ∧ e) ≈ e

(RP) ((y/x) ∧ e) ∨ ((x/y) ∧ e) ≈ e
!

!

!
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We call a (pointed) residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e.
Unless stated otherwise, all residuated lattices under consideration will be e-cyclic.
This variety encompasses most, but not all, varieties of notable significance.
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We call a (pointed) residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e.
Unless stated otherwise, all residuated lattices under consideration will be e-cyclic.
This variety encompasses most, but not all, varieties of notable significance.

Let C(L) denote the algebraic closure system of all convex subuniverses of a
residuated lattice L.
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We call a (pointed) residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e.
Unless stated otherwise, all residuated lattices under consideration will be e-cyclic.
This variety encompasses most, but not all, varieties of notable significance.

Let C(L) denote the algebraic closure system of all convex subuniverses of a
residuated lattice L.

NOTATION

� 〈S〉, the submonoid generated by S ⊆ L

� C[S], the convex subuniverse generated by S ⊆ L

� C[a] = C[{a}], the principal convex subuniverse generated by a ∈ L
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We call a (pointed) residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e.
Unless stated otherwise, all residuated lattices under consideration will be e-cyclic.
This variety encompasses most, but not all, varieties of notable significance.

Let C(L) denote the algebraic closure system of all convex subuniverses of a
residuated lattice L.

NOTATION

� 〈S〉, the submonoid generated by S ⊆ L

� C[S], the convex subuniverse generated by S ⊆ L

� C[a] = C[{a}], the principal convex subuniverse generated by a ∈ L

The absolute value of a ∈ L is the element |a| = a ∧ (e/a) ∧ e. If S ⊆ L, we set
|S| = {|a| : a ∈ S}.
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If S ⊆ L, then

C[S] = C[|S|] = {x ∈ L : h ≤ |x|, for some h ∈ 〈|S|〉}.

In particular, if a ∈ L, then

C[a] = C[|a|] = {x ∈ L : |a|n ≤ |x|, for some n ∈ N}.

(Note that if H is a convex subuniverse of L, then H = C[H−].)
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If S ⊆ L, then

C[S] = C[|S|] = {x ∈ L : h ≤ |x|, for some h ∈ 〈|S|〉}.

In particular, if a ∈ L, then

C[a] = C[|a|] = {x ∈ L : |a|n ≤ |x|, for some n ∈ N}.

(Note that if H is a convex subuniverse of L, then H = C[H−].)

THEOREM

If L is an e-cyclic residuated lattice, then C(L) is a distributive algebraic lattice.
The poset K(C(L)) of compact elements of C(L) consists of the principal convex
subuniverses of L and is a sublattice of C(L). More specifically, for all a, b ∈ L,

C[a] ∩ C[b] = C[|a| ∨ |b|] and C[a] ∨ C[b] = C[|a| ∧ |b|] = C[|a||b|]

.
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The lattice C(L) (with L e-cyclic) satisfies the join-infinite distributive law

H ∩
∨

i∈I

Ki =
∨

i∈I

(H ∩ Ki).

Hence, for all H,K ∈ C(L), the relative pseudo-complement H → K of H
relative to K exists:

H → K = max{J ∈ C(L) : H ∩ J ⊆ K}.
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H ∩
∨

i∈I

Ki =
∨

i∈I

(H ∩ Ki).

Hence, for all H,K ∈ C(L), the relative pseudo-complement H → K of H
relative to K exists:

H → K = max{J ∈ C(L) : H ∩ J ⊆ K}.

An element-wise description of H → K is

H → K = {a ∈ L : |a| ∨ |x| ∈ K, for all x ∈ H}.

In particular,

H⊥ = H → {e} = {a ∈ L: |a| ∨ |x| = e, for all x ∈ H}.
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The lattice C(L) (with L e-cyclic) satisfies the join-infinite distributive law

H ∩
∨

i∈I

Ki =
∨

i∈I

(H ∩ Ki).

Hence, for all H,K ∈ C(L), the relative pseudo-complement H → K of H
relative to K exists:

H → K = max{J ∈ C(L) : H ∩ J ⊆ K}.

An element-wise description of H → K is

H → K = {a ∈ L : |a| ∨ |x| ∈ K, for all x ∈ H}.

In particular,

H⊥ = H → {e} = {a ∈ L: |a| ∨ |x| = e, for all x ∈ H}.

X⊥ can be defined for any non-empty subset X ⊆ L, using the preceding
equality. Then X⊥ = C[X]⊥. We refer to X⊥ as the polar of X, and x⊥ = {x}⊥

(= C[x]⊥) as the principal polar of x.
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The lattice C(L) (with L e-cyclic) satisfies the join-infinite distributive law

H ∩
∨

i∈I

Ki =
∨

i∈I

(H ∩ Ki).

Hence, for all H,K ∈ C(L), the relative pseudo-complement H → K of H
relative to K exists:

H → K = max{J ∈ C(L) : H ∩ J ⊆ K}.

An element-wise description of H → K is

H → K = {a ∈ L : |a| ∨ |x| ∈ K, for all x ∈ H}.

In particular,

H⊥ = H → {e} = {a ∈ L: |a| ∨ |x| = e, for all x ∈ H}.

X⊥ can be defined for any non-empty subset X ⊆ L, using the preceding
equality. Then X⊥ = C[X]⊥. We refer to X⊥ as the polar of X, and x⊥ = {x}⊥

(= C[x]⊥) as the principal polar of x.

By Glivenko’s classical result, ⊥⊥ : C(L) → C(L) is an intersection-preserving map
(i.e., a nucleus with respect to ∩), and B(L) =⊥⊥ [L] is a Boolean algebra.
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A convex subuniverse H ∈ C(L) is said to be prime if it is meet-irreducible in
C(L).
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A convex subuniverse H ∈ C(L) is said to be prime if it is meet-irreducible in
C(L).

Let L be an e-cyclic residuated lattice that satisfies LP or RP. Then for every
H ∈ C(L), the following are equivalent:

(1) H is a prime convex subuniverse of L.
(2) For all a, b ∈ L, if |a| ∨ |b| ∈ H, then a ∈ H or b ∈ H.
(3) For all a, b ∈ L, if |a| ∨ |b| = e, then a ∈ H or b ∈ H.
(4) The set of all convex subuniverses exceeding H is a chain under set-inclusion.
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A convex subuniverse H ∈ C(L) is said to be prime if it is meet-irreducible in
C(L).

Let L be an e-cyclic residuated lattice that satisfies LP or RP. Then for every
H ∈ C(L), the following are equivalent:

(1) H is a prime convex subuniverse of L.
(2) For all a, b ∈ L, if |a| ∨ |b| ∈ H, then a ∈ H or b ∈ H.
(3) For all a, b ∈ L, if |a| ∨ |b| = e, then a ∈ H or b ∈ H.
(4) The set of all convex subuniverses exceeding H is a chain under set-inclusion.

Proposition
Let L be an e-cyclic residuated lattice that satisfies either prelinerity law. If C(L)
– equivalently, K(C(L)) – is totally ordered, then so is L.
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A convex subuniverse H ∈ C(L) is said to be completely meet-irreducible in C(L)
if H 6= L and whenever (Ki : i ∈ I) is a family of convex subuniverses of L and
H =

⋂

i∈I Ki, then H = Ki for some i ∈ I.
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A convex subuniverse H ∈ C(L) is said to be completely meet-irreducible in C(L)
if H 6= L and whenever (Ki : i ∈ I) is a family of convex subuniverses of L and
H =

⋂

i∈I Ki, then H = Ki for some i ∈ I.

A completely meet-irreducible subuniverse H has a unique cover H∗ in

C(L), namely the intersection of all convex subuniverses that properly

contain it.
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A convex subuniverse H ∈ C(L) is said to be completely meet-irreducible in C(L)
if H 6= L and whenever (Ki : i ∈ I) is a family of convex subuniverses of L and
H =

⋂

i∈I Ki, then H = Ki for some i ∈ I.

A completely meet-irreducible subuniverse H has a unique cover H∗ in

C(L), namely the intersection of all convex subuniverses that properly

contain it.

Given an element a 6= e in L, there exists a (necessarily completely
meet-irreducible) convex subuniverse H that is maximal with respect to not
containing a. Such a H is called a value of a.
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A convex subuniverse H ∈ C(L) is said to be completely meet-irreducible in C(L)
if H 6= L and whenever (Ki : i ∈ I) is a family of convex subuniverses of L and
H =

⋂

i∈I Ki, then H = Ki for some i ∈ I.

A completely meet-irreducible subuniverse H has a unique cover H∗ in

C(L), namely the intersection of all convex subuniverses that properly

contain it.

Given an element a 6= e in L, there exists a (necessarily completely
meet-irreducible) convex subuniverse H that is maximal with respect to not
containing a. Such a H is called a value of a.

This is all lattice theory. To take advantage of the full structure of L we need the
concept of a normal convex subuniverse.
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Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as the left conjugation map and the right
conjugation map by u.
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Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as the left conjugation map and the right
conjugation map by u.

A convex subuniverse H ∈ C(L) is said to be normal if λu(h), ̺u(h) ∈ H, for all
h ∈ H and u ∈ L.
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Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as the left conjugation map and the right
conjugation map by u.

A convex subuniverse H ∈ C(L) is said to be normal if λu(h), ̺u(h) ∈ H, for all
h ∈ H and u ∈ L.

The normal convex subuniverses of L form an algebraic distributive lattice NC(L)
with respect to set-inclusion, and this lattice is isomorphic to the congruence
lattice of L. Specifically, the maps H 7→ θH and θ 7→ [e]θ, where
θH := {〈x, y〉 ∈ L2 : x\y ∧ y\x ∧ e ∈ H} and [a]θ := {x ∈ L : 〈x, a〉 ∈ θ} for
a ∈ L, are mutually inverse isomorphisms between the lattice NC(L) and the
congruence lattice of L.
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Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as the left conjugation map and the right
conjugation map by u.

A convex subuniverse H ∈ C(L) is said to be normal if λu(h), ̺u(h) ∈ H, for all
h ∈ H and u ∈ L.

The normal convex subuniverses of L form an algebraic distributive lattice NC(L)
with respect to set-inclusion, and this lattice is isomorphic to the congruence
lattice of L. Specifically, the maps H 7→ θH and θ 7→ [e]θ, where
θH := {〈x, y〉 ∈ L2 : x\y ∧ y\x ∧ e ∈ H} and [a]θ := {x ∈ L : 〈x, a〉 ∈ θ} for
a ∈ L, are mutually inverse isomorphisms between the lattice NC(L) and the
congruence lattice of L.

Corollary

Let L be an e-cyclic residuated lattice that satisfies one of the prelinearity laws. If
H is a normal prime convex subuniverse of L, then L/H is totally ordered.
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Theorem

For a variety V of residuated lattices, the following statements are equivalent.

(1) V is semilinear.
(2) V satisfies either of the equations below.

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e
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Theorem

For a variety V of residuated lattices, the following statements are equivalent.

(1) V is semilinear.
(2) V satisfies either of the equations below.

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e

If in addition V is a variety of e-cyclic residuated lattices and satisfies either of the
prelinearity laws, the preceding conditions are equivalent to each of the following
conditions.

(3) For all L ∈ V, all polars in C(L) are normal.

(4) For all L ∈ V , all minimal prime convex subuniverses of L are normal.
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� strongly projectable if H⊥ ∨C(L) H⊥⊥ = L, for all H ∈ C(L); and

� laterally complete if all its orthogonal subsets have a greatest lower bound.
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embeddings into laterally complete objects.



Extensions

Introduction

Two Categorical Equivalences

Convex Subuniverses

Consequences

Semilinearity

Extensions

Normal Values

Strongly Simple RLs

States I

States II

26 / 30
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� projectable if x⊥ ∨C(L) x⊥⊥ = L, for all x ∈ L;

� strongly projectable if H⊥ ∨C(L) H⊥⊥ = L, for all H ∈ C(L); and

� laterally complete if all its orthogonal subsets have a greatest lower bound.

⊙ Most of the main embedding theorems for ℓ-groups and Riesz spaces involve
embeddings into laterally complete objects.

Theorem Any member of a semilinear variety V of e-cyclic residuated lattices can
be densely embedded into a laterally complete and projectable member of V .
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■ J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras:
Projectability, Strong Projectability and Lateral Completeness, submitted for
publication.

⊙ An ℓ-group (or a Riesz space) can be embedded into a conditionally complete
ℓ-group (or a Riesz space) iff it is Archimedean.

⊙ Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

A residuated lattice L is said to be

� projectable if x⊥ ∨C(L) x⊥⊥ = L, for all x ∈ L;

� strongly projectable if H⊥ ∨C(L) H⊥⊥ = L, for all H ∈ C(L); and

� laterally complete if all its orthogonal subsets have a greatest lower bound.

⊙ Most of the main embedding theorems for ℓ-groups and Riesz spaces involve
embeddings into laterally complete objects.

Theorem Any member of a semilinear variety V of e-cyclic residuated lattices can
be densely embedded into a laterally complete and projectable member of V .

Theorem Any member of a semilinear variety V of GMV-algebras has a unique
lateral, lateral and projectable, projectable, or strongly projectable hull in V .
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L is said to be normal-valued if every
completely meet-irreducible convex
subuniverse of L is normal in its
unique cover H∗ (in C(L)).
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L is said to be normal-valued if every
completely meet-irreducible convex
subuniverse of L is normal in its
unique cover H∗ (in C(L)).
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Theorem
Let L be an e-cyclic residuated lattice satisfying either
prelinearity law. Then L is normal-valued if and only if
L satisfies the following equations, for all n ∈ N.

(x ∧ e)2(y ∧ e)2 ≤ (y ∧ e)(x ∧ e)

(It suffices for GMV algebras)
(

(y/x ∧ e)n
∖

|x||y| ∧ e
)2

≤ |x||y|
/

(x\y ∧ e)4n

(

|x||y|
/

(x\y ∧ e)n ∧ e
)2

≤ (y/x ∧ e)4n
∖

|x||y|
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Let L be an e-cyclic residuated lattice satisfying either
prelinearity law. Then L is normal-valued if and only if
L satisfies the following equations, for all n ∈ N.
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(
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/
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Theorem [A. Dvurečenskij, 2007]

Any integral totally ordered GBL
algebra is normal-valued.
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unique cover H∗ (in C(L)).
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Theorem
Let L be an e-cyclic residuated lattice satisfying either
prelinearity law. Then L is normal-valued if and only if
L satisfies the following equations, for all n ∈ N.

(x ∧ e)2(y ∧ e)2 ≤ (y ∧ e)(x ∧ e)

(It suffices for GMV algebras)
(

(y/x ∧ e)n
∖

|x||y| ∧ e
)2

≤ |x||y|
/

(x\y ∧ e)4n

(

|x||y|
/

(x\y ∧ e)n ∧ e
)2

≤ (y/x ∧ e)4n
∖

|x||y|

Theorem [A. Dvurečenskij, 2007]

Any integral totally ordered GBL
algebra is normal-valued.

Corollary

Any semilinear GBL algebra is
normal-valued.
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An e-cyclic residuated lattice L is said to be
strongly simple provided its only convex subuni-
verses are {e} and L. (Simple and subdirectly
irreducible residuated lattices are too complicated
in general to be amenable to useful description of
their structure.)

= L  
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An e-cyclic residuated lattice L is said to be
strongly simple provided its only convex subuni-
verses are {e} and L. (Simple and subdirectly
irreducible residuated lattices are too complicated
in general to be amenable to useful description of
their structure.)

Proposition
A strongly simple GMV algebra is isomorphic to a subalgebra of the reals R, a
subalgebra of negative reals R−, or a subalgebra of the MV algebra [0, 1].

= L  
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An e-cyclic residuated lattice L is said to be
strongly simple provided its only convex subuni-
verses are {e} and L. (Simple and subdirectly
irreducible residuated lattices are too complicated
in general to be amenable to useful description of
their structure.)

Proposition
A strongly simple GMV algebra is isomorphic to a subalgebra of the reals R, a
subalgebra of negative reals R−, or a subalgebra of the MV algebra [0, 1].

Theorem
Let L be a strongly simple integral residuated chain.

� If L does not have a co-atom, then it is a commutative GMV algebra.

= L  
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An e-cyclic residuated lattice L is said to be
strongly simple provided its only convex subuni-
verses are {e} and L. (Simple and subdirectly
irreducible residuated lattices are too complicated
in general to be amenable to useful description of
their structure.)

Proposition
A strongly simple GMV algebra is isomorphic to a subalgebra of the reals R, a
subalgebra of negative reals R−, or a subalgebra of the MV algebra [0, 1].

Theorem
Let L be a strongly simple integral residuated chain.

� If L does not have a co-atom, then it is a commutative GMV algebra.
� If L is a GBL algebra and has a single co-atom a, then it is a commutative

GMV algebra, and L = {an : n ∈ N}.

= L  



Strongly Simple Residuated Lattices

Introduction

Two Categorical Equivalences

Convex Subuniverses

Consequences

Semilinearity

Extensions

Normal Values

Strongly Simple RLs

States I

States II

28 / 30

An e-cyclic residuated lattice L is said to be
strongly simple provided its only convex subuni-
verses are {e} and L. (Simple and subdirectly
irreducible residuated lattices are too complicated
in general to be amenable to useful description of
their structure.)

Proposition
A strongly simple GMV algebra is isomorphic to a subalgebra of the reals R, a
subalgebra of negative reals R−, or a subalgebra of the MV algebra [0, 1].

Theorem
Let L be a strongly simple integral residuated chain.

� If L does not have a co-atom, then it is a commutative GMV algebra.
� If L is a GBL algebra and has a single co-atom a, then it is a commutative

GMV algebra, and L = {an : n ∈ N}.
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Given a GMV algebra L, an order preserving map s : L → R is said to be a
(Riečan) state on L if for all x, y ∈ L,

(1) s(xy) = s(x) + s(y), whenever x\xy = y (equivalently, xy/y = x).

(Note that s(e) = 0.)

If L has a least element f , we also require that

(2) s(f) = −1.



States on GMV algebras

Introduction

Two Categorical Equivalences

Convex Subuniverses

Consequences

Semilinearity

Extensions

Normal Values

Strongly Simple RLs

States I

States II

29 / 30

Given a GMV algebra L, an order preserving map s : L → R is said to be a
(Riečan) state on L if for all x, y ∈ L,

(1) s(xy) = s(x) + s(y), whenever x\xy = y (equivalently, xy/y = x).

(Note that s(e) = 0.)

If L has a least element f , we also require that

(2) s(f) = −1.

Condition (1) above is equivalent to

(3) s(x/y) = s(x)− s(y) = s(y\x), if x ≤ y.
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Given a GMV algebra L, an order preserving map s : L → R is said to be a
(Riečan) state on L if for all x, y ∈ L,

(1) s(xy) = s(x) + s(y), whenever x\xy = y (equivalently, xy/y = x).

(Note that s(e) = 0.)

If L has a least element f , we also require that

(2) s(f) = −1.

Condition (1) above is equivalent to

(3) s(x/y) = s(x)− s(y) = s(y\x), if x ≤ y.

Theorem

If L = G×H
−
γ is a GMV algebra, then there is a bijective correspondence

between the states on L and those on the ℓ-group G×H.
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Given a GMV algebra L, an order preserving map s : L → R is said to be a
(Riečan) state on L if for all x, y ∈ L,

(1) s(xy) = s(x) + s(y), whenever x\xy = y (equivalently, xy/y = x).

(Note that s(e) = 0.)

If L has a least element f , we also require that

(2) s(f) = −1.

Condition (1) above is equivalent to

(3) s(x/y) = s(x)− s(y) = s(y\x), if x ≤ y.

Theorem

If L = G×H
−
γ is a GMV algebra, then there is a bijective correspondence

between the states on L and those on the ℓ-group G×H.

The situation with GBL algebras is less satisfactory.
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Let L be an integral Ore residuated lattice and let G(L) be its ℓ-group of left
fractions. Then the map η : a−1b 7→ a\b is a co-nucleus on G(L) and
L = η[G(L)].
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Let L be an integral Ore residuated lattice and let G(L) be its ℓ-group of left
fractions. Then the map η : a−1b 7→ a\b is a co-nucleus on G(L) and
L = η[G(L)].

Theorem

(1) If s : L → R is an order-preserving monoid homomorphism (i.e., a “Riečan
state” on L), then the map ŝ : a−1b 7→ s(b)− s(a) is an order-preserving
group homomorphism from G(L) to R, and ŝ↾L = s.

(2) If g is an order-preserving group homomorphism from G(L) to R, then
s = g↾L is an order-preserving monoid homomorphism from L to R

− and
ŝ = g.
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