SYSMICS 2016
 Universitat De Barcelona 5-9 September 2016

ℓ-Groups

RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Introduction

Outline of the Talk

In this talk, I wish to demonstrate the significant role of lattice-ordered groups (ℓ-groups) in the study of algebras of logic by focusing on two aspects of their multifaceted influence.

- First, I discuss the role ℓ-groups play in the definition of well-studied classes of ordered algebras.

Introduction

Outline

Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

- Second, I review recent research on residuated lattices that has been inspired by related research in the theory of ℓ-groups.

The Equational Consequence Relation: The Interplay of Algebra and Logic

The Equational Consequence Relation: The Interplay of

Algebra and Logic

- \mathbb{X} : a fixed countably infinite set of variables
- \mathcal{L} : a fixed signature of algebras
- $\operatorname{Fm}(\mathbb{X})$: the term (formula) algebra of signature \mathcal{L} over \mathbb{X}
- $E q(\mathbb{X})=F m(\mathbb{X}) \times F m(\mathbb{X})$: the equations of signature \mathcal{L} with variables in \mathbb{X}

Let \mathcal{U} be a class of algebras of signature \mathcal{L}. Given $\Sigma \cup\{\varepsilon\} \subseteq E q(\mathbb{X})$, we say that ε is a \mathcal{U}-consequence of Σ provided for every $\mathbf{A} \in \mathcal{U}$ and every homomorphism $\varphi: \operatorname{Fm}(\mathbb{X}) \rightarrow \mathbf{A}$, if $\Sigma \subseteq \operatorname{Ker}(\varphi)$, then $\varepsilon \in \operatorname{Ker}(\varphi)$.

Introduction

Outline
Equat. Cons. Relation
ℓ-Group
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Lattice-Ordered Groups

A lattice-ordered group (ℓ-group) is an algebra $\mathbf{G}=\left\langle G, \wedge, \vee, \cdot,{ }^{-1}, \mathrm{e}\right\rangle$ such that
(i) $\langle G, \wedge, \vee\rangle$ is a lattice;
(ii) $\left\langle G, \cdot,^{-1}, \mathrm{e}\right\rangle$ is a group; and
(iii) multiplication is isotone.

Examples

Introductio

Outline
Equat. Cons. Relation
८-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

- $\operatorname{Aut}(\Omega)$ (order-automorphisms of a chain Ω)

Lattice-Ordered Groups

A lattice-ordered group (ℓ-group) is an algebra $\mathbf{G}=\left\langle G, \wedge, \vee, \cdot,{ }^{-1}, \mathrm{e}\right\rangle$ such that
(i) $\langle G, \wedge, \vee\rangle$ is a lattice;
(ii) $\left\langle G, \cdot,^{-1}, \mathrm{e}\right\rangle$ is a group; and
(iii) multiplication is isotone.

Examples

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

- $\operatorname{Aut}(\Omega)$ (order-automorphisms of a chain Ω)

Holland's Embedding Theorem
Every ℓ-group can be embedded into some $\operatorname{Aut}(\Omega)$.

Residuated Lattices

A residuated lattice is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot\rangle,, /, \mathrm{e}\rangle$ such that:
(i) $\langle A, \wedge, \vee\rangle$ is a lattice;
(ii) $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid; and
(iii) the operation • is residuated with residuals \backslash and /. This means that, for all $x, y, z \in A$,

$$
x y \leq z \Longleftrightarrow x \leq z / y \Longleftrightarrow y \leq x \backslash z
$$

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Residuated Lattices

A residuated lattice is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot\rangle,, /, \mathrm{e}\rangle$ such that:
(i) $\langle A, \wedge, \vee\rangle$ is a lattice;
(ii) $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid; and
(iii) the operation • is residuated with residuals \backslash and /. This means that, for all $x, y, z \in A$,

$$
x y \leq z \Longleftrightarrow x \leq z / y \Longleftrightarrow y \leq x \backslash z .
$$

An algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}, \mathrm{f}\rangle$ is said to be a pointed residuated lattice (or an FL algebra) provided: (i) $\mathbf{A}=\langle A, \wedge, \vee, \cdot\rangle,, /, \mathrm{e}\rangle$ is a residuated lattice; and (ii) f is a distinguished element of A.

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Residuated Lattices

A residuated lattice is an algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot\rangle,, /, \mathrm{e}\rangle$ such that:
(i) $\langle A, \wedge, \vee\rangle$ is a lattice;
(ii) $\langle A, \cdot, \mathrm{e}\rangle$ is a monoid; and
(iii) the operation • is residuated with residuals \backslash and /. This means that, for all $x, y, z \in A$,

$$
x y \leq z \Longleftrightarrow x \leq z / y \Longleftrightarrow y \leq x \backslash z
$$

An algebra $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}, \mathrm{f}\rangle$ is said to be a pointed residuated lattice (or an FL algebra) provided: (i) $\mathbf{A}=\langle A, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}\rangle$ is a residuated lattice; and (ii) f is a distinguished element of A.

The classes $\mathcal{R} \mathcal{L}$ (residuated lattices) and $\mathcal{P} \mathcal{R} \mathcal{L}$ (pointed residuated lattices) are finitely based equational classes. Their defining equations consist of the defining equations for lattices and monoids together with the equations below.

$$
\begin{array}{llll}
\text { (RL1) } & x(y \vee z) \approx x y \vee x z & \text { (RL2) } & (y \vee z) x \approx y x \vee z x \\
\text { (RL3) } & x \backslash y \leq x \backslash(y \vee z) & \text { (RL4) } & y / x \leq(y \vee z) / x \\
\text { (RL5) } & x(x \backslash y) \leq y \leq x \backslash x y & \text { (RL6) } & (y / x) x \leq y \leq y x / x
\end{array}
$$

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups).

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice \mathbf{L} is cancellative if and only if it satisfies the equations $x y / y \approx x$ and $x \approx y \backslash y x$.

Introduction
 Outline

Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice \mathbf{L} is cancellative if and only if it satisfies the equations $x y / y \approx x$ and $x \approx y \backslash y x$.
Any other interesting examples of cancellative residuated lattices beyond ℓ-groups?

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice \mathbf{L} is cancellative if and only if it satisfies the equations $x y / y \approx x$ and $x \approx y \backslash y x$. Any other interesting examples of cancellative residuated lattices beyond ℓ-groups? The negative cone of a residuated lattice L is the residuated lattice \mathbf{L}^{-}with universe $L^{-}=\{x \in L: x \leq \mathrm{e}\}$, whose monoid and lattice operations are the restrictions to L^{-}of the corresponding operations in L, and whose residuals $_{-}$ and / _ are defined by

$$
x \backslash y=(x \backslash y) \wedge \mathrm{e} \quad \text { and } \quad \mathrm{y} / _\mathrm{x}=(\mathrm{y} / \mathrm{x}) \wedge \mathrm{e},
$$

where \backslash and / denote the residuals in L.

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice \mathbf{L} is cancellative if and only if it satisfies the equations $x y / y \approx x$ and $x \approx y \backslash y x$. Any other interesting examples of cancellative residuated lattices beyond ℓ-groups? The negative cone of a residuated lattice L is the residuated lattice L^{-}with universe $L^{-}=\{x \in L: x \leq \mathrm{e}\}$, whose monoid and lattice operations are the restrictions to L^{-}of the corresponding operations in L, and whose residuals $_{-}$ and / _ are defined by

$$
x \backslash _y=(x \backslash y) \wedge \mathrm{e} \quad \text { and } \quad \mathrm{y} / _\mathrm{x}=(\mathrm{y} / \mathrm{x}) \wedge \mathrm{e},
$$

where \backslash and / denote the residuals in L.
The negative cone of an ℓ-group is an integral cancellative residuated lattice.

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

Examples I

The variety of ℓ-groups is term equivalent to the subvariety, $\mathcal{L G}$, of $\mathcal{R} \mathcal{L}$ defined by the equation $x(x \backslash \mathrm{e}) \approx \mathrm{e}$. The term equivalence is given by

$$
x^{-1}=x \backslash \mathrm{e} \text { and } \mathrm{x} / \mathrm{y}=\mathrm{xy}^{-1}, \mathrm{y} \backslash \mathrm{x}=\mathrm{y}^{-1} \mathrm{x}
$$

It is clear that ℓ-groups are cancellative (as semigroups). A residuated lattice \mathbf{L} is cancellative if and only if it satisfies the equations $x y / y \approx x$ and $x \approx y \backslash y x$.
Any other interesting examples of cancellative residuated lattices beyond ℓ-groups?

Introduction

Outline
Equat. Cons. Relation
ℓ-Groups
RLs

The negative cone of a residuated lattice L is the residuated lattice L^{-}with universe $L^{-}=\{x \in L: x \leq e\}$, whose monoid and lattice operations are the restrictions to L^{-}of the corresponding operations in \mathbf{L}, and whose residuals $_{-}$ and / _ are defined by

$$
x \backslash _y=(x \backslash y) \wedge \mathrm{e} \quad \text { and } \quad \mathrm{y} / _\mathrm{x}=(\mathrm{y} / \mathrm{x}) \wedge \mathrm{e},
$$

where \backslash and / denote the residuals in L.
The negative cone of an ℓ-group is an integral cancellative residuated lattice.
Further, it satisfies the divisibility laws

$$
x(x \backslash y) \approx x \wedge y \approx(y / x) x
$$

Examples II

Every lattice is a sublattice of a cancellative residuated lattice. Let \mathbf{L} be an arbitrary lattice with a top element, and let \mathbf{L}^{*} be the free monoid over L. We order L* as follows:

Introductio
 Outline

Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples II

Every lattice is a sublattice of a cancellative residuated lattice. Let \mathbf{L} be an arbitrary lattice with a top element, and let L^{*} be the free monoid over L. We order \mathbf{L}^{*} as follows:

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples II

Every lattice is a sublattice of a cancellative residuated lattice. Let \mathbf{L} be an arbitrary lattice with a top element, and let \mathbf{L}^{*} be the free monoid over L. We order \mathbf{L}^{*} as follows:

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples II

Every lattice is a sublattice of a cancellative residuated lattice. Let \mathbf{L} be an arbitrary lattice with a top element, and let \mathbf{L}^{*} be the free monoid over L. We order \mathbf{L}^{*} as follows:

Introductio
 Outline

Equat. Cons. Relation
-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples II

Every lattice is a sublattice of a cancellative residuated lattice. Let \mathbf{L} be an arbitrary lattice with a top element, and let \mathbf{L}^{*} be the free monoid over L. We order \mathbf{L}^{*} as follows:

Introductio
 Outline

Equat. Cons. Relation
-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Examples III

Richard Dedekind

Robert P. Dilworth

Garrett Birkhoff

Introductio

Outline
Equat. Cons. Relation
ℓ-Groups
RLs
Examples I
Examples II
Examples III
Two Categorical Equivalences
Convex Subuniverses
Consequences

Ideal lattices of rings: $I \cdot J=\left\{\sum_{k=1}^{n} a_{k} b_{k} \mid a_{k} \in I ; b_{k} \in J ; n \in \mathbb{Z}^{+}\right\}$
Notation: If $x \backslash y=y / x$, we write $x \rightarrow y$ for the common value.
Heyting algebras: $x y \approx x \wedge y$ and $x \wedge \mathrm{f} \approx \mathrm{f}$.
Boolean algebras: $x y \approx x \wedge y,(x \rightarrow y) \rightarrow y \approx x \vee y$ and $x \wedge \mathrm{f} \approx \mathrm{f}$.
MV algebras: $x y \approx y x,(x \rightarrow y) \rightarrow y \approx x \vee y$ and $x \wedge \mathrm{f} \approx \mathrm{f}$.
$\Psi \mathrm{MV}$ algebras (pseudo-MV algebras): $y /(x \backslash y) \approx x \vee y,(y / x) \backslash y \approx x \vee y$, and $x \wedge \mathrm{f} \approx \mathrm{f}$.

Categorical Equivalences

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

The subvariety $\mathcal{I G B L}$ of integral GBL algebras (pseudo-hoops) is axiomatized,

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

The subvariety $\mathcal{I G B L}$ of integral GBL algebras (pseudo-hoops) is axiomatized,

The variety $\mathcal{G M} \mathcal{V}$ of GMV algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
y /(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \vee \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \backslash \mathrm{y}
$$

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

The subvariety $\mathcal{I G B L}$ of integral GBL algebras (pseudo-hoops) is axiomatized,

Introduction
Two Categorical Equivalences
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses relative to $\mathcal{R} \mathcal{L}$, by the equations $x(x \backslash y) \approx x \wedge y \approx(y / x) x$.

The variety $\mathcal{G M} \mathcal{V}$ of GMV algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
y /(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \vee \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \backslash \mathrm{y}
$$

The subvariety $\mathcal{I G M V}$ of integral GMV algebras (Wajsberg pseudo-hoops) is axiomatized, relative to $\mathcal{R} \mathcal{L}$, by the equations $x /(y \backslash x) \approx x \vee y \approx(x / y) \backslash x$.

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

The subvariety $\mathcal{I G B L}$ of integral GBL algebras (pseudo-hoops) is axiomatized,

Introduction
Two Categorical Equivalences
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses relative to $\mathcal{R} \mathcal{L}$, by the equations $x(x \backslash y) \approx x \wedge y \approx(y / x) x$.

The variety $\mathcal{G M} \mathcal{V}$ of GMV algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
y /(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \vee \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \backslash \mathrm{y}
$$

The subvariety $\mathcal{I G M V}$ of integral GMV algebras (Wajsberg pseudo-hoops) is axiomatized, relative to $\mathcal{R} \mathcal{L}$, by the equations $x /(y \backslash x) \approx x \vee y \approx(x / y) \backslash x$.

Lemma: $\mathcal{G M V} \subseteq \mathcal{G B \mathcal { L }}$

GBL and GMV algebras

The variety $\mathcal{G B L}$ of $G B L$ algebras is the subvariety of $\mathcal{R} \mathcal{L}$ satisfying the equations

$$
x(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \wedge \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \mathrm{x}
$$

The subvariety $\mathcal{I G B L}$ of integral GBL algebras (pseudo-hoops) is axiomatized,

Introduction
Two Categorical Equivalences
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses relative to $\mathcal{R} \mathcal{L}$, by the equations $x(x \backslash y) \approx x \wedge y \approx(y / x) x$.
 equations

$$
y /(x \backslash y \wedge \mathrm{e}) \approx \mathrm{x} \vee \mathrm{y} \approx(\mathrm{y} / \mathrm{x} \wedge \mathrm{e}) \backslash \mathrm{y}
$$

The subvariety $\mathcal{I G M V}$ of integral GMV algebras (Wajsberg pseudo-hoops) is axiomatized, relative to $\mathcal{R} \mathcal{L}$, by the equations $x /(y \backslash x) \approx x \vee y \approx(x / y) \backslash x$.

Lemma: $\mathcal{G M V} \subseteq \mathcal{G B L}$
Theorem: A residuated lattice is L is a GBL (respectively, GMV) algebra if and only if it has a direct sum decomposition $\mathbf{L}=\mathbf{A} \bigoplus \mathbf{B}$, where \mathbf{A} is an ℓ-group and \mathbf{B} is an integral GBL (respectively, GMV) algebra.

Nuclei and Co-Nuclei

A nucleus on a residuated lattice \mathbf{L} is a closure operator γ on $\langle L, \leq\rangle$ that satisfies the inequality $\gamma(a) \gamma(b) \leq \gamma(a b)$, for all $a, b \in L$.

Nuclei and Co-Nuclei

A nucleus on a residuated lattice \mathbf{L} is a closure operator γ on $\langle L, \leq\rangle$ that satisfies the inequality $\gamma(a) \gamma(b) \leq \gamma(a b)$, for all $a, b \in L$.

A co-nucleus on a residuated lattice \mathbf{L} is a co-closure operator η on $\langle L, \leq\rangle$ satisfying $\eta(\mathrm{e})=\mathrm{e}$ and $\eta(a) \eta(b) \leq \eta(a b)$ for all $a, b \in L$.

Two Categorical Equivalence
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses
Consequences

Nuclei and Co-Nuclei

A nucleus on a residuated lattice \mathbf{L} is a closure operator γ on $\langle L, \leq\rangle$ that satisfies the inequality $\gamma(a) \gamma(b) \leq \gamma(a b)$, for all $a, b \in L$.

A co-nucleus on a residuated lattice \mathbf{L} is a co-closure operator η on $\langle L, \leq\rangle$ satisfying $\eta(\mathrm{e})=\mathrm{e}$ and $\eta(a) \eta(b) \leq \eta(a b)$ for all $a, b \in L$.

Proposition
Let γ be a nucleus on a residuated lattice $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \cdot, /, \mathrm{e}\rangle$. Then the structure $\gamma[\mathbf{L}]=\left\langle\gamma[L], \wedge, \vee_{\gamma}, \circ_{\gamma}, \backslash, /, \gamma(\mathrm{e})\right\rangle$ - where $x \vee_{\gamma} y=\gamma(x \vee y)$ and $x \circ_{\gamma} y=\gamma(x y)$, for all $x, y \in \gamma[L]$, is a residuated lattice.

Two Categorical Equivalences
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses
Consequences

Nuclei and Co-Nuclei

A nucleus on a residuated lattice \mathbf{L} is a closure operator γ on $\langle L, \leq\rangle$ that satisfies the inequality $\gamma(a) \gamma(b) \leq \gamma(a b)$, for all $a, b \in L$.

A co-nucleus on a residuated lattice \mathbf{L} is a co-closure operator η on $\langle L, \leq\rangle$ satisfying $\eta(\mathrm{e})=\mathrm{e}$ and $\eta(a) \eta(b) \leq \eta(a b)$ for all $a, b \in L$.

Proposition
Let γ be a nucleus on a residuated lattice $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \cdot, /, \mathrm{e}\rangle$. Then the structure $\gamma[\mathbf{L}]=\left\langle\gamma[L], \wedge, \vee_{\gamma}, \circ_{\gamma}, \backslash, /, \gamma(\mathrm{e})\right\rangle$ - where $x \vee_{\gamma} y=\gamma(x \vee y)$ and $x \circ_{\gamma} y=\gamma(x y)$, for all $x, y \in \gamma[L]$, is a residuated lattice.

Proposition
If $\mathbf{L}=\langle L, \wedge, \vee, \cdot, \backslash, /, \mathrm{e}\rangle$ is a residuated lattice and η a co-nucleus on it, then the structure $\eta[\mathbf{L}]=\left\langle\eta[L], \wedge_{\eta}, \vee, \cdot, \backslash_{\eta}, /_{\eta}, \mathrm{e}\right\rangle$ - where $x \wedge_{\eta} y=\eta(x \wedge y)$, $x /{ }_{\eta} y=\eta(x / y)$ and $x \backslash_{\eta} y=\eta(x \backslash y)$, for all $x, y \in \eta[L]$ - is a residuated lattice.

Two Categorical Equivalences

GMV Algebras and Cancellative Residuated Lattices

Every integral GMV algebra may be viewed as the negative cone of an ℓ-group endowed with a suitable nucleus (namely one whose image generates the negative cone as semigroup).

- N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra

The preceding result implies the categorical equivalence between MV algebras and unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between $\Psi \mathrm{MV}$ algebras and unital ℓ-groups (A. Dvurečenskij; 2002).

GMV Algebras and Cancellative Residuated Lattices

Every integral GMV algebra may be viewed as the negative cone of an ℓ-group endowed with a suitable nucleus (namely one whose image generates the negative cone as semigroup).

- N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra 283(1) (2005), 254-291.

The preceding result implies the categorical equivalence between MV algebras and unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between $\Psi \mathrm{MV}$ algebras and unital ℓ-groups (A. Dvurečenskij; 2002).

Any cancellative residuated lattice L whose monoid reduct is a right reversible monoid (Ore residuated lattice) may be viewed as an ℓ-group endowed with a suitable co-nucleus.

Two Categorical Equivalences
GBL and GMV algebras
Nuclei and Co-Nuclei
Modal ℓ-groups
Convex Subuniverses

GMV Algebras and Cancellative Residuated Lattices

Every integral GMV algebra may be viewed as the negative cone of an ℓ-group endowed with a suitable nucleus (namely one whose image generates the negative cone as semigroup).

- N. Galatos and C. Tsinakis, Generalized MV-algebras, Journal of Algebra 283(1) (2005), 254-291.

The preceding result implies the categorical equivalence between MV algebras and unital commutative ℓ-groups (D. Mundici; 1986), as well as the one between $\Psi \mathrm{MV}$ algebras and unital ℓ-groups (A. Dvurečenskij; 2002).

Any cancellative residuated lattice L whose monoid reduct is a right reversible monoid (Ore residuated lattice) may be viewed as an ℓ-group endowed with a suitable co-nucleus. In more detail, if \mathbf{L} is an Ore residuated lattice and \mathbf{G} is the ℓ-group of left fractions of \mathbf{L}, then the map $\eta: a^{-1} b \mapsto a \backslash b$ is a co-nucleus on $\mathbf{G}(\mathbf{L})$ and $\mathbf{L}=\eta[\mathbf{G}(\mathbf{L})]$.

- F. Montagna and C. Tsinakis, Ordered groups with a co-nucleus, Journal of Pure and Applied Algebra 214 (1) (2010), 71-88.

The Structure of the Lattice of Convex Subuniverses

Bibliography

(1) M. Botur, J. Kühr, L. Liu, and C. Tsinakis, The Conrad Program: From ℓ-groups to Algebras of Logic, J. Algebra 450 (2016), 173-203.
(2) J. Gil-Férez, A. Ledda, F. Paoli and C. Tsinakis, Projectable ℓ-groups and algebras of logic: categorical and algebraic connections, J. Pure and Applied Algebra 220 (10) (2016), 3514-3532.
(3) G. Metcalfe, F. Montagna, and C. Tsinakis, Amalgamation and interpolation in ordered algebras, J. Algebra, 402 (2014) 21-82.
(4) A. Ledda, F. Paoli and C. Tsinakis, Lattice-theoretic properties of algebras of logic, J. Pure and Applied Algebra, 218 (10) (2014), 1932-1952.
(5) F. Paoli and C. Tsinakis, On Birkhoff's "common abstraction problem", Studia Logica 100(6) (2012), 1079-1105.
(6) J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted.
(7) M. Botur, J. Kühr, and C. Tsinakis, Strong simplicity and states in ordered algebras: Pushing the limits, in preparation.
(8) A. Ledda, F. Paoli, and C. Tsinakis, The Archimedean property: New horizons and perspectives, in preparation.
(9) J. Gil-Férez, L. Spada, C. Tsinakis, and Hongjun Zhou, The finite embeddability property for algebras of logic, in preparation.

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

Key Properties for a Manageable Structure Theory

Key Properties for a Manageable Structure Theory

(1) Divisibility

GBL(1)

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Classification
Prelinearity
e-Cyclicity
Distributivity

Key Properties for a Manageable Structure Theory

(1) Divisibility (2) Involutive Implication

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Classification
Prelinearity
e-Cyclicity
Distributivity

Key Properties for a Manageable Structure Theory

(1) Divisibility (2) Involutive Implication (3) Cancellativity

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity Distributivity Pseudocompl. and Polars

Key Properties for a Manageable Structure Theory

(1) Divisibility (2) Involutive Implication (3) Cancellativity
(4) e-Cyclicity (e/x $\approx x \backslash e$)

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Classification
e-Cyclicity Distributivity Pseudocompl. and Polars
Primes
Primes
Normality
Consequences

Key Properties for a Manageable Structure Theory

(1) Divisibility (2) Involutive Implication (3) Cancellativity
(4) e-Cyclicity (e/x $\approx x \backslash e$) (5) ADD PRE-LINEARITY

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity Distributivity Pseudocompl. and Polars
Primes
Primes
Values
Normality
Consequences

Left Prelinearity Law LP and Right Prelinearity Law RP

$$
\begin{aligned}
& (L P) \quad((x \backslash y) \wedge e) \vee((y \backslash x) \wedge e) \approx e \\
& (R P) \quad((y / x) \wedge e) \vee((x / y) \wedge e) \approx e
\end{aligned}
$$

e-Cyclic RLs (4)
(5)

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity Distributivity Pseudocompl. and Polars
Primes
Primes
Normality
Consequences

e-Cyclicity

We call a (pointed) residuated lattice e-cyclic if it satisfies the identity $\mathrm{e} / \mathrm{x} \approx \mathrm{x} \backslash \mathrm{e}$. Unless stated otherwise, all residuated lattices under consideration will be e-cyclic. This variety encompasses most, but not all, varieties of notable significance.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity

e-Cyclicity

Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

e-Cyclicity

We call a (pointed) residuated lattice e-cyclic if it satisfies the identity $\mathrm{e} / \mathrm{x} \approx \mathrm{x} \backslash \mathrm{e}$. Unless stated otherwise, all residuated lattices under consideration will be e-cyclic. This variety encompasses most, but not all, varieties of notable significance.

Let $\mathcal{C}(\mathbf{L})$ denote the algebraic closure system of all convex subuniverses of a residuated lattice \mathbf{L}.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity

e-Cyclicity

Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

-Cyclicity

We call a (pointed) residuated lattice e-cyclic if it satisfies the identity e/x $\approx x \backslash e$. Unless stated otherwise, all residuated lattices under consideration will be e-cyclic. This variety encompasses most, but not all, varieties of notable significance.

Let $\mathcal{C}(\mathbf{L})$ denote the algebraic closure system of all convex subuniverses of a residuated lattice \mathbf{L}.

NOTATION

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity

e-Cyclicity

Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

- $\langle S\rangle$, the submonoid generated by $S \subseteq L$
- $\mathrm{C}[S]$, the convex subuniverse generated by $S \subseteq L$
- $\mathrm{C}[a]=\mathrm{C}[\{a\}]$, the principal convex subuniverse generated by $a \in L$

-Cyclicity

We call a (pointed) residuated lattice e-cyclic if it satisfies the identity $\mathrm{e} / \mathrm{x} \approx \mathrm{x} \backslash \mathrm{e}$. Unless stated otherwise, all residuated lattices under consideration will be e-cyclic. This variety encompasses most, but not all, varieties of notable significance.

Let $\mathcal{C}(\mathbf{L})$ denote the algebraic closure system of all convex subuniverses of a residuated lattice \mathbf{L}.

NOTATION

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity

e-Cyclicity

Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

- $\langle S\rangle$, the submonoid generated by $S \subseteq L$
- $\mathrm{C}[S]$, the convex subuniverse generated by $S \subseteq L$
- $\mathrm{C}[a]=\mathrm{C}[\{a\}]$, the principal convex subuniverse generated by $a \in L$

The absolute value of $a \in L$ is the element $|a|=a \wedge(\mathrm{e} / \mathrm{a}) \wedge \mathrm{e}$. If $S \subseteq L$, we set $|S|=\{|a|: a \in S\}$.

Distributivity

If $S \subseteq L$, then

$$
\mathrm{C}[S]=\mathrm{C}[|S|]=\{x \in L: h \leq|x|, \text { for some } h \in\langle | S| \rangle\} .
$$

In particular, if $a \in L$, then

$$
\mathrm{C}[a]=\mathrm{C}[|a|]=\left\{x \in L:|a|^{n} \leq|x|, \text { for some } n \in \mathbb{N}\right\} .
$$

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Pseudocompl. and Polar
Primes
Values
Normality
Consequences
(Note that if H is a convex subuniverse of \mathbf{L}, then $H=\mathrm{C}\left[H^{-}\right]$.)

Distributivity

If $S \subseteq L$, then

$$
\mathrm{C}[S]=\mathrm{C}[|S|]=\{x \in L: h \leq|x|, \text { for some } h \in\langle | S| \rangle\} .
$$

In particular, if $a \in L$, then

$$
\mathrm{C}[a]=\mathrm{C}[|a|]=\left\{x \in L:|a|^{n} \leq|x|, \text { for some } n \in \mathbb{N}\right\} .
$$

Two Categorical Equivalences
(Note that if H is a convex subuniverse of \mathbf{L}, then $H=\mathrm{C}\left[H^{-}\right]$.)

THEOREM

If \mathbf{L} is an e-cyclic residuated lattice, then $\mathcal{C}(\mathbf{L})$ is a distributive algebraic lattice. The poset $\mathcal{K}(\mathcal{C}(\mathbf{L}))$ of compact elements of $\mathcal{C}(\mathbf{L})$ consists of the principal convex subuniverses of \mathbf{L} and is a sublattice of $\mathcal{C}(\mathbf{L})$. More specifically, for all $a, b \in L$,

$$
\mathrm{C}[a] \cap \mathrm{C}[b]=\mathrm{C}[|a| \vee|b|] \text { and } \mathrm{C}[a] \vee \mathrm{C}[b]=\mathrm{C}[|a| \wedge|b|]=\mathrm{C}[|a||b|]
$$

Relative Pseudo-complements and Polars

The lattice $\mathcal{C}(\mathbf{L})$ (with \mathbf{L} e-cyclic) satisfies the join-infinite distributive law

$$
H \cap \bigvee_{i \in I} K_{i}=\bigvee_{i \in I}\left(H \cap K_{i}\right)
$$

Hence, for all $H, K \in \mathcal{C}(\mathbf{L})$, the relative pseudo-complement $H \rightarrow K$ of H relative to K exists:

$$
H \rightarrow K=\max \{J \in \mathcal{C}(\mathbf{L}): H \cap J \subseteq K\}
$$

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity Pseudocompl. and Polars
Primes
Values
Normality
Consequences

Relative Pseudo-complements and Polars

The lattice $\mathcal{C}(\mathbf{L})$ (with \mathbf{L} e-cyclic) satisfies the join-infinite distributive law

$$
H \cap \bigvee_{i \in I} K_{i}=\bigvee_{i \in I}\left(H \cap K_{i}\right)
$$

Hence, for all $H, K \in \mathcal{C}(\mathbf{L})$, the relative pseudo-complement $H \rightarrow K$ of H relative to K exists:

$$
H \rightarrow K=\max \{J \in \mathcal{C}(\mathbf{L}): H \cap J \subseteq K\}
$$

An element-wise description of $H \rightarrow K$ is
Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity

$$
H \rightarrow K=\{a \in L:|a| \vee|x| \in K, \text { for all } x \in H\}
$$

In particular,

$$
H^{\perp}=H \rightarrow\{\mathrm{e}\}=\{\mathrm{a} \in \mathrm{~L}:|\mathrm{a}| \vee|\mathrm{x}|=\mathrm{e}, \text { for all } \mathrm{x} \in \mathrm{H}\} .
$$

Relative Pseudo-complements and Polars

The lattice $\mathcal{C}(\mathbf{L})$ (with \mathbf{L} e-cyclic) satisfies the join-infinite distributive law

$$
H \cap \bigvee_{i \in I} K_{i}=\bigvee_{i \in I}\left(H \cap K_{i}\right)
$$

Hence, for all $H, K \in \mathcal{C}(\mathbf{L})$, the relative pseudo-complement $H \rightarrow K$ of H relative to K exists:

$$
H \rightarrow K=\max \{J \in \mathcal{C}(\mathbf{L}): H \cap J \subseteq K\}
$$

An element-wise description of $H \rightarrow K$ is

Introduction
Two Categorical Equivalences

$$
H \rightarrow K=\{a \in L:|a| \vee|x| \in K, \text { for all } x \in H\} .
$$

In particular,

$$
H^{\perp}=H \rightarrow\{\mathrm{e}\}=\{\mathrm{a} \in \mathrm{~L}:|\mathrm{a}| \vee|\mathrm{x}|=\mathrm{e}, \text { for all } \mathrm{x} \in \mathrm{H}\} .
$$

X^{\perp} can be defined for any non-empty subset $X \subseteq L$, using the preceding equality. Then $X^{\perp}=\mathrm{C}[X]^{\perp}$. We refer to X^{\perp} as the polar of X, and $x^{\perp}=\{x\}^{\perp}$ $\left(=\mathrm{C}[x]^{\perp}\right)$ as the principal polar of x.

Relative Pseudo-complements and Polars

The lattice $\mathcal{C}(\mathbf{L})$ (with \mathbf{L} e-cyclic) satisfies the join-infinite distributive law

$$
H \cap \bigvee_{i \in I} K_{i}=\bigvee_{i \in I}\left(H \cap K_{i}\right)
$$

Hence, for all $H, K \in \mathcal{C}(\mathbf{L})$, the relative pseudo-complement $H \rightarrow K$ of H relative to K exists:

$$
H \rightarrow K=\max \{J \in \mathcal{C}(\mathbf{L}): H \cap J \subseteq K\}
$$

An element-wise description of $H \rightarrow K$ is

Introduction
Two Categorical Equivalences

$$
H \rightarrow K=\{a \in L:|a| \vee|x| \in K, \text { for all } x \in H\} .
$$

In particular,

$$
H^{\perp}=H \rightarrow\{\mathrm{e}\}=\{\mathrm{a} \in \mathrm{~L}:|\mathrm{a}| \vee|\mathrm{x}|=\mathrm{e}, \text { for all } \mathrm{x} \in \mathrm{H}\} .
$$

X^{\perp} can be defined for any non-empty subset $X \subseteq L$, using the preceding equality. Then $X^{\perp}=\mathrm{C}[X]^{\perp}$. We refer to X^{\perp} as the polar of X, and $x^{\perp}=\{x\}^{\perp}$ $\left(=\mathrm{C}[x]^{\perp}\right)$ as the principal polar of x.

By Glivenko's classical result, ${ }^{\perp \perp}: \mathcal{C}(\mathbf{L}) \rightarrow \mathcal{C}(\mathbf{L})$ is an intersection-preserving map (i.e., a nucleus with respect to \cap), and $\mathcal{B}(\mathbf{L})=^{\perp \perp}[\mathbf{L}]$ is a Boolean algebra.

Primes

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be prime if it is meet-irreducible in $\mathcal{C}(\mathbf{L})$.

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Normality
Consequences

Primes

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be prime if it is meet-irreducible in $\mathcal{C}(\mathbf{L})$.

Let \mathbf{L} be an e-cyclic residuated lattice that satisfies LP or RP. Then for every $H \in \mathcal{C}(\mathbf{L})$, the following are equivalent:
(1) H is a prime convex subuniverse of \mathbf{L}.
(2) For all $a, b \in L$, if $|a| \vee|b| \in H$, then $a \in H$ or $b \in H$.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences
(3) For all $a, b \in L$, if $|a| \vee|b|=\mathrm{e}$, then $a \in H$ or $b \in H$.
(4) The set of all convex subuniverses exceeding H is a chain under set-inclusion.

Primes

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be prime if it is meet-irreducible in $\mathcal{C}(\mathbf{L})$.

Let \mathbf{L} be an e-cyclic residuated lattice that satisfies LP or RP. Then for every $H \in \mathcal{C}(\mathbf{L})$, the following are equivalent:
(1) H is a prime convex subuniverse of \mathbf{L}.
(2) For all $a, b \in L$, if $|a| \vee|b| \in H$, then $a \in H$ or $b \in H$.
(3) For all $a, b \in L$, if $|a| \vee|b|=\mathrm{e}$, then $a \in H$ or $b \in H$.
(4) The set of all convex subuniverses exceeding H is a chain under set-inclusion.

Proposition
Let \mathbf{L} be an e-cyclic residuated lattice that satisfies either prelinerity law. If $\mathcal{C}(\mathbf{L})$ - equivalently, $\mathcal{K}(\mathcal{C}(\mathbf{L}))$ - is totally ordered, then so is \mathbf{L}.

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

Values

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be completely meet-irreducible in $\mathcal{C}(\mathbf{L})$ if $H \neq L$ and whenever $\left(K_{i}: i \in I\right)$ is a family of convex subuniverses of \mathbf{L} and $H=\bigcap_{i \in I} K_{i}$, then $H=K_{i}$ for some $i \in I$.

Two Categorical Equivalences

Primes

Values
Normality
Consequences

Values

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be completely meet-irreducible in $\mathcal{C}(\mathbf{L})$ if $H \neq L$ and whenever $\left(K_{i}: i \in I\right)$ is a family of convex subuniverses of \mathbf{L} and $H=\bigcap_{i \in I} K_{i}$, then $H=K_{i}$ for some $i \in I$.

A completely meet-irreducible subuniverse H has a unique cover H^{*} in $\mathcal{C}(\mathbf{L})$, namely the intersection of all convex subuniverses that properly contain it.

Values

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be completely meet-irreducible in $\mathcal{C}(\mathbf{L})$ if $H \neq L$ and whenever $\left(K_{i}: i \in I\right)$ is a family of convex subuniverses of \mathbf{L} and $H=\bigcap_{i \in I} K_{i}$, then $H=K_{i}$ for some $i \in I$.

A completely meet-irreducible subuniverse H has a unique cover H^{*} in $\mathcal{C}(\mathrm{L})$, namely the intersection of all convex subuniverses that properly contain it.

Given an element $a \neq \mathrm{e}$ in L, there exists a (necessarily completely meet-irreducible) convex subuniverse H that is maximal with respect to not containing a. Such a H is called a value of a.

Values

A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be completely meet-irreducible in $\mathcal{C}(\mathbf{L})$ if $H \neq L$ and whenever $\left(K_{i}: i \in I\right)$ is a family of convex subuniverses of \mathbf{L} and $H=\bigcap_{i \in I} K_{i}$, then $H=K_{i}$ for some $i \in I$.

A completely meet-irreducible subuniverse H has a unique cover H^{*} in $\mathcal{C}(\mathrm{L})$, namely the intersection of all convex subuniverses that properly contain it.

Primes

Values

Given an element $a \neq \mathrm{e}$ in L, there exists a (necessarily completely meet-irreducible) convex subuniverse H that is maximal with respect to not containing a. Such a H is called a value of a.

This is all lattice theory. To take advantage of the full structure of \mathbf{L} we need the concept of a normal convex subuniverse.

Normality

Let \mathbf{L} be a residuated lattice. Given an element $u \in L$, we define

$$
\lambda_{u}(x)=(u \backslash x u) \wedge \mathrm{e} \quad \text { and } \quad \rho_{\mathrm{u}}(\mathrm{x})=(\mathrm{ux} / \mathrm{u}) \wedge \mathrm{e},
$$

for all $x \in L$. We refer to λ_{u} and ρ_{u} as the left conjugation map and the right conjugation map by u.

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values

Normality

Let \mathbf{L} be a residuated lattice. Given an element $u \in L$, we define

$$
\lambda_{u}(x)=(u \backslash x u) \wedge \mathrm{e} \quad \text { and } \quad \rho_{\mathrm{u}}(\mathrm{x})=(\mathrm{ux} / \mathrm{u}) \wedge \mathrm{e},
$$

for all $x \in L$. We refer to λ_{u} and ρ_{u} as the left conjugation map and the right conjugation map by u.
A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be normal if $\lambda_{u}(h), \varrho_{u}(h) \in H$, for all $h \in H$ and $u \in L$.

Introduction

Two Categorical Equivalences
Convex Subuniverses
Bibliography
Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values

Normality

Let \mathbf{L} be a residuated lattice. Given an element $u \in L$, we define

$$
\lambda_{u}(x)=(u \backslash x u) \wedge \mathrm{e} \quad \text { and } \quad \rho_{\mathrm{u}}(\mathrm{x})=(\mathrm{ux} / \mathrm{u}) \wedge \mathrm{e},
$$

for all $x \in L$. We refer to λ_{u} and ρ_{u} as the left conjugation map and the right conjugation map by u.
A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be normal if $\lambda_{u}(h), \varrho_{u}(h) \in H$, for all $h \in H$ and $u \in L$.

The normal convex subuniverses of L form an algebraic distributive lattice $\mathcal{N C}(\mathbf{L})$ with respect to set-inclusion, and this lattice is isomorphic to the congruence lattice of \mathbf{L}. Specifically, the maps $H \mapsto \theta_{H}$ and $\theta \mapsto[\mathrm{e}]_{\theta}$, where
$\theta_{H}:=\left\{\langle x, y\rangle \in L^{2}: x \backslash y \wedge y \backslash x \wedge \mathrm{e} \in \mathrm{H}\right\}$ and $[a]_{\theta}:=\{x \in L:\langle x, a\rangle \in \theta\}$ for $a \in L$, are mutually inverse isomorphisms between the lattice $\mathcal{N C}(\mathbf{L})$ and the congruence lattice of \mathbf{L}.

Introduction

Two Categorical Equivalences
Convex Subuniverses

Bibliography

Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

Normality

Let \mathbf{L} be a residuated lattice. Given an element $u \in L$, we define

$$
\lambda_{u}(x)=(u \backslash x u) \wedge \mathrm{e} \quad \text { and } \quad \rho_{\mathrm{u}}(\mathrm{x})=(\mathrm{ux} / \mathrm{u}) \wedge \mathrm{e},
$$

for all $x \in L$. We refer to λ_{u} and ρ_{u} as the left conjugation map and the right conjugation map by u.
A convex subuniverse $H \in \mathcal{C}(\mathbf{L})$ is said to be normal if $\lambda_{u}(h), \varrho_{u}(h) \in H$, for all $h \in H$ and $u \in L$.

The normal convex subuniverses of \mathbf{L} form an algebraic distributive lattice $\mathcal{N C}(\mathbf{L})$ with respect to set-inclusion, and this lattice is isomorphic to the congruence lattice of \mathbf{L}. Specifically, the maps $H \mapsto \theta_{H}$ and $\theta \mapsto[\mathrm{e}]_{\theta}$, where
$\theta_{H}:=\left\{\langle x, y\rangle \in L^{2}: x \backslash y \wedge y \backslash x \wedge \mathrm{e} \in \mathrm{H}\right\}$ and $[a]_{\theta}:=\{x \in L:\langle x, a\rangle \in \theta\}$ for $a \in L$, are mutually inverse isomorphisms between the lattice $\mathcal{N C}(\mathbf{L})$ and the congruence lattice of \mathbf{L}.
Corollary
Let \mathbf{L} be an e-cyclic residuated lattice that satisfies one of the prelinearity laws. If H is a normal prime convex subuniverse of \mathbf{L}, then \mathbf{L} / H is totally ordered.

Introduction

Two Categorical Equivalences
Convex Subuniverses

Bibliography

Classification Scheme
Prelinearity
e-Cyclicity
Distributivity
Pseudocompl. and Polars
Primes
Values
Normality
Consequences

A Few Consequences

Semilinearity

Semilinearity

Theorem

For a variety \mathcal{V} of residuated lattices, the following statements are equivalent.
(1) \mathcal{V} is semilinear.
(2) \mathcal{V} satisfies either of the equations below.

$$
\begin{aligned}
& \lambda_{u}((x \vee y) \backslash x) \vee \rho_{v}((x \vee y) \backslash y) \approx \mathrm{e} \\
& \lambda_{u}(x /(x \vee y)) \vee \rho_{v}(y /(x \vee y)) \approx \mathrm{e}
\end{aligned}
$$

Two Categorical Equivalences
Convex Subuniverses
Consequences

Semilinearity

Theorem

For a variety \mathcal{V} of residuated lattices, the following statements are equivalent.
(1) \mathcal{V} is semilinear.
(2) \mathcal{V} satisfies either of the equations below.

$$
\begin{aligned}
& \lambda_{u}((x \vee y) \backslash x) \vee \rho_{v}((x \vee y) \backslash y) \approx \mathrm{e} \\
& \lambda_{u}(x /(x \vee y)) \vee \rho_{v}(y /(x \vee y)) \approx \mathrm{e}
\end{aligned}
$$

If in addition \mathcal{V} is a variety of e-cyclic residuated lattices and satisfies either of the prelinearity laws, the preceding conditions are equivalent to each of the following conditions.
(3) For all $\mathrm{L} \in \mathcal{V}$, all polars in $\mathcal{C}(\mathbf{L})$ are normal.
(4) For all $\mathbf{L} \in \mathcal{V}$, all minimal prime convex subuniverses of L are normal.

Two Categorical Equivalences
Convex Subuniverses

Consequences

Semilinearity

Extensions
Normal Values
Strongly Simple RLs States I
States II

Extensions

■ J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted for publication.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs States I
States II

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted for publication.
- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values Strongly Simple RLs States I
States II

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted for publication.
- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.
- Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted for publication.
- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.
- Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

A residuated lattice L is said to be
projectable if $x^{\perp} \vee^{\mathcal{C}(\mathbf{L})} x^{\perp \perp}=L$, for all $x \in L$;
strongly projectable if $H^{\perp} \vee^{\mathcal{C}(\mathbf{L})} H^{\perp \perp}=L$, for all $H \in \mathcal{C}(\mathbf{L})$; and

- laterally complete if all its orthogonal subsets have a greatest lower bound.

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs States I
States II

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras: Projectability, Strong Projectability and Lateral Completeness, submitted for publication.
- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.
- Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

A residuated lattice L is said to be

- projectable if $x^{\perp} \vee^{\mathcal{C}(\mathbf{L})} x^{\perp \perp}=L$, for all $x \in L$;
- strongly projectable if $H^{\perp} \vee^{\mathcal{C}(\mathbf{L})} H^{\perp \perp}=L$, for all $H \in \mathcal{C}(\mathbf{L})$; and
- laterally complete if all its orthogonal subsets have a greatest lower bound.
- Most of the main embedding theorems for ℓ-groups and Riesz spaces involve embeddings into laterally complete objects.

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Normal Values
Strongly Simple RLs States I
States II

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras:

Projectability, Strong Projectability and Lateral Completeness, submitted for publication.

- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.
- Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

A residuated lattice \mathbf{L} is said to be
p projectable if $x^{\perp} \vee^{\mathcal{C}(\mathbf{L})} x^{\perp \perp}=L$, for all $x \in L$;

- strongly projectable if $H^{\perp} \vee^{\mathcal{C}(\mathbf{L})} H^{\perp \perp}=L$, for all $H \in \mathcal{C}(\mathbf{L})$; and
- laterally complete if all its orthogonal subsets have a greatest lower bound.
- Most of the main embedding theorems for ℓ-groups and Riesz spaces involve embeddings into laterally complete objects.

Theorem Any member of a semilinear variety \mathcal{V} of e-cyclic residuated lattices can be densely embedded into a laterally complete and projectable member of \mathcal{V}.

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Normal Values
Strongly Simple RLs States I
States II

Extensions

- J. Gil-Férez, A. Ledda, and C. Tsinakis, Hulls of Ordered Algebras:

Projectability, Strong Projectability and Lateral Completeness, submitted for publication.

- An ℓ-group (or a Riesz space) can be embedded into a conditionally complete ℓ-group (or a Riesz space) iff it is Archimedean.
- Any conditionally complete ℓ-group is strongly projectable. (F. Riesz (1940))

A residuated lattice \mathbf{L} is said to be

- projectable if $x^{\perp} \vee^{\mathcal{C}(\mathbf{L})} x^{\perp \perp}=L$, for all $x \in L$;
- strongly projectable if $H^{\perp} \vee^{\mathcal{C}(\mathbf{L})} H^{\perp \perp}=L$, for all $H \in \mathcal{C}(\mathbf{L})$; and
- laterally complete if all its orthogonal subsets have a greatest lower bound.
- Most of the main embedding theorems for ℓ-groups and Riesz spaces involve embeddings into laterally complete objects.

Theorem Any member of a semilinear variety \mathcal{V} of e-cyclic residuated lattices can be densely embedded into a laterally complete and projectable member of \mathcal{V}.
Theorem Any member of a semilinear variety \mathcal{V} of GMV-algebras has a unique lateral, lateral and projectable, projectable, or strongly projectable hull in \mathcal{V}.

Normal Values

\mathbf{L} is said to be normal-valued if every completely meet-irreducible convex subuniverse of \mathbf{L} is normal in its unique cover $H^{*}($ in $\mathcal{C}(\mathbf{L}))$.

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II

Normal Values

L is said to be normal-valued if every completely meet-irreducible convex
subuniverse of \mathbf{L} is normal in its unique cover $H^{*}($ in $\mathcal{C}(\mathbf{L}))$.

Theorem
Let \mathbf{L} be an e-cyclic residuated lattice satisfying either prelinearity law. Then L is normal-valued if and only if
 \mathbf{L} satisfies the following equations, for all $n \in \mathbb{N}$.

$$
\begin{aligned}
(x \wedge \mathrm{e})^{2}(\mathrm{y} \wedge \mathrm{e})^{2} & \leq(y \wedge \mathrm{e})(\mathrm{x} \wedge \mathrm{e}) \\
& (\text { It suffices for GMV algebras) } \\
\left((y / x \wedge \mathrm{e})^{\mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}| \wedge \mathrm{e}\right)^{2} & \leq|x||y| /(x \backslash y \wedge \mathrm{e})^{4 \mathrm{n}} \\
\left(|x||y| /(x \backslash y \wedge \mathrm{e})^{\mathrm{n}} \wedge \mathrm{e}\right)^{2} & \leq(y / x \wedge \mathrm{e})^{4 \mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}|
\end{aligned}
$$

Normal Values

L is said to be normal-valued if every completely meet-irreducible convex subuniverse of \mathbf{L} is normal in its unique cover $H^{*}($ in $\mathcal{C}(\mathbf{L}))$.

Theorem
Let \mathbf{L} be an e-cyclic residuated lattice satisfying either prelinearity law. Then L is normal-valued if and only if
 \mathbf{L} satisfies the following equations, for all $n \in \mathbb{N}$.

$$
\begin{aligned}
(x \wedge \mathrm{e})^{2}(\mathrm{y} \wedge \mathrm{e})^{2} & \leq(y \wedge \mathrm{e})(\mathrm{x} \wedge \mathrm{e}) \\
& (\text { It suffices for GMV algebras) } \\
\left((y / x \wedge \mathrm{e})^{\mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}| \wedge \mathrm{e}\right)^{2} & \leq|x||y| /(x \backslash y \wedge \mathrm{e})^{4 \mathrm{n}} \\
\left(|x||y| /(x \backslash y \wedge \mathrm{e})^{\mathrm{n}} \wedge \mathrm{e}\right)^{2} & \leq(y / x \wedge \mathrm{e})^{4 \mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}|
\end{aligned}
$$

Theorem [A. Dvurečenskij, 2007]
Any integral totally ordered GBL algebra is normal-valued.

Normal Values

L is said to be normal-valued if every completely meet-irreducible convex subuniverse of \mathbf{L} is normal in its unique cover $H^{*}($ in $\mathcal{C}(\mathbf{L}))$.

Theorem
Let \mathbf{L} be an e-cyclic residuated lattice satisfying either prelinearity law. Then L is normal-valued if and only if
 \mathbf{L} satisfies the following equations, for all $n \in \mathbb{N}$.

$$
\begin{aligned}
(x \wedge \mathrm{e})^{2}(\mathrm{y} \wedge \mathrm{e})^{2} & \leq(y \wedge \mathrm{e})(\mathrm{x} \wedge \mathrm{e}) \\
& (\text { It suffices for GMV algebras) } \\
\left((y / x \wedge \mathrm{e})^{\mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}| \wedge \mathrm{e}\right)^{2} & \leq|x||y| /(x \backslash y \wedge \mathrm{e})^{4 \mathrm{n}} \\
\left(|x||y| /(x \backslash y \wedge \mathrm{e})^{\mathrm{n}} \wedge \mathrm{e}\right)^{2} & \leq(y / x \wedge \mathrm{e})^{4 \mathrm{n}} \backslash|\mathrm{x}||\mathrm{y}|
\end{aligned}
$$

Theorem [A. Dvurečenskij, 2007]

Corollary
Any semilinear GBL algebra is normal-valued.

Any integral totally ordered GBL algebra is normal-valued.

Strongly Simple Residuated Lattices

An e-cyclic residuated lattice \mathbf{L} is said to be strongly simple provided its only convex subuniverses are $\{e\}$ and L. (Simple and subdirectly irreducible residuated lattices are too complicated in general to be amenable to useful description of their structure.)

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II

Strongly Simple Residuated Lattices

An e-cyclic residuated lattice \mathbf{L} is said to be strongly simple provided its only convex subuniverses are $\{e\}$ and L. (Simple and subdirectly irreducible residuated lattices are too complicated in general to be amenable to useful description of their structure.)

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II

Proposition
A strongly simple GMV algebra is isomorphic to a subalgebra of the reals \mathbb{R}, a subalgebra of negative reals \mathbb{R}^{-}, or a subalgebra of the MV algebra $[0,1]$.

Strongly Simple Residuated Lattices

An e-cyclic residuated lattice \mathbf{L} is said to be strongly simple provided its only convex subuniverses are $\{\mathrm{e}\}$ and L. (Simple and subdirectly irreducible residuated lattices are too complicated in general to be amenable to useful description of their structure.)

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values

Proposition

A strongly simple GMV algebra is isomorphic to a subalgebra of the reals \mathbb{R}, a subalgebra of negative reals \mathbb{R}^{-}, or a subalgebra of the MV algebra $[0,1]$.

Theorem

Let \mathbf{L} be a strongly simple integral residuated chain.

- If L does not have a co-atom, then it is a commutative GMV algebra.

Strongly Simple Residuated Lattices

An e-cyclic residuated lattice \mathbf{L} is said to be strongly simple provided its only convex subuniverses are $\{\mathrm{e}\}$ and L. (Simple and subdirectly irreducible residuated lattices are too complicated in general to be amenable to useful description of their structure.)

Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values

Proposition

A strongly simple GMV algebra is isomorphic to a subalgebra of the reals \mathbb{R}, a subalgebra of negative reals \mathbb{R}^{-}, or a subalgebra of the MV algebra $[0,1]$.

Theorem

Let \mathbf{L} be a strongly simple integral residuated chain.

- If L does not have a co-atom, then it is a commutative GMV algebra.
- If L is a GBL algebra and has a single co-atom a, then it is a commutative GMV algebra, and $L=\left\{a^{n}: n \in \mathbb{N}\right\}$.

Strongly Simple Residuated Lattices

An e-cyclic residuated lattice \mathbf{L} is said to be strongly simple provided its only convex subuniverses are $\{\mathrm{e}\}$ and L. (Simple and subdirectly irreducible residuated lattices are too complicated in general to be amenable to useful description of their structure.)

Proposition

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs

States I

States II

A strongly simple GMV algebra is isomorphic to a subalgebra of the reals \mathbb{R}, a subalgebra of negative reals \mathbb{R}^{-}, or a subalgebra of the MV algebra $[0,1]$.

Theorem

Let \mathbf{L} be a strongly simple integral residuated chain.

- If L does not have a co-atom, then it is a commutative GMV algebra.
- If \mathbf{L} is a GBL algebra and has a single co-atom a, then it is a commutative GMV algebra, and $L=\left\{a^{n}: n \in \mathbb{N}\right\}$.

States on GMV algebras

States on GMV algebras

Given a GMV algebra \mathbf{L}, an order preserving map $s: L \rightarrow \mathbb{R}$ is said to be a (Riečan) state on \mathbf{L} if for all $x, y \in L$,
(1) $s(x y)=s(x)+s(y)$, whenever $x \backslash x y=y$ (equivalently, $x y / y=x$).
(Note that $s(\mathrm{e})=0$.)
If \mathbf{L} has a least element f, we also require that

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity Extensions Normal Values Strongly Simple RLs
(2) $s(f)=-1$.

States on GMV algebras

Given a GMV algebra \mathbf{L}, an order preserving map $s: L \rightarrow \mathbb{R}$ is said to be a (Riečan) state on \mathbf{L} if for all $x, y \in L$,
(1) $s(x y)=s(x)+s(y)$, whenever $x \backslash x y=y$ (equivalently, $x y / y=x$).
(Note that $s(\mathrm{e})=0$.)
If \mathbf{L} has a least element f, we also require that

Introduction
Two Categorical Equivalences
Convex Subuniverses
Consequences
Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II
(2) $s(f)=-1$.

Condition (1) above is equivalent to
(3) $s(x / y)=s(x)-s(y)=s(y \backslash x)$, if $x \leq y$.

States on GMV algebras

Given a GMV algebra \mathbf{L}, an order preserving map $s: L \rightarrow \mathbb{R}$ is said to be a (Riečan) state on \mathbf{L} if for all $x, y \in L$,
(1) $s(x y)=s(x)+s(y)$, whenever $x \backslash x y=y$ (equivalently, $x y / y=x$).
(Note that $s(\mathrm{e})=0$.)
If \mathbf{L} has a least element f, we also require that

Introduction
Two Categorical Equivalences
Convex Subuniverses

Consequences

Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II
(2) $s(f)=-1$.

Condition (1) above is equivalent to
(3) $s(x / y)=s(x)-s(y)=s(y \backslash x)$, if $x \leq y$.

Theorem
If $\mathbf{L}=\mathbf{G} \times \mathbf{H}_{\gamma}^{-}$is a GMV algebra, then there is a bijective correspondence between the states on L and those on the ℓ-group $\mathbf{G} \times \mathbf{H}$.

States on GMV algebras

Given a GMV algebra \mathbf{L}, an order preserving map $s: L \rightarrow \mathbb{R}$ is said to be a (Riečan) state on \mathbf{L} if for all $x, y \in L$,
(1) $s(x y)=s(x)+s(y)$, whenever $x \backslash x y=y$ (equivalently, $x y / y=x$).
(Note that $s(\mathrm{e})=0$.)
If \mathbf{L} has a least element f, we also require that

Introduction
Two Categorical Equivalences
Convex Subuniverses

Consequences

Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II
(2) $s(f)=-1$.

Condition (1) above is equivalent to
(3) $s(x / y)=s(x)-s(y)=s(y \backslash x)$, if $x \leq y$.

Theorem
If $\mathbf{L}=\mathbf{G} \times \mathbf{H}_{\gamma}^{-}$is a GMV algebra, then there is a bijective correspondence between the states on L and those on the ℓ-group $\mathbf{G} \times \mathbf{H}$.

The situation with GBL algebras is less satisfactory.

States on Cancellative Residuated Lattices

States on Cancellative Residuated Lattices

Let L be an integral Ore residuated lattice and let $G(L)$ be its ℓ-group of left fractions. Then the map $\eta: a^{-1} b \mapsto a \backslash b$ is a co-nucleus on $\mathbf{G}(\mathbf{L})$ and
$\mathbf{L}=\eta[\mathbf{G}(\mathbf{L})]$.

States on Cancellative Residuated Lattices

Let \mathbf{L} be an integral Ore residuated lattice and let $\mathbf{G}(\mathbf{L})$ be its ℓ-group of left fractions. Then the map $\eta: a^{-1} b \mapsto a \backslash b$ is a co-nucleus on $\mathbf{G}(\mathbf{L})$ and $\mathbf{L}=\eta[\mathbf{G}(\mathbf{L})]$.

Theorem
(1) If $s: \mathbf{L} \rightarrow \mathbb{R}$ is an order-preserving monoid homomorphism (i.e., a "Riečan state" on \mathbf{L}), then the map $\hat{s}: a^{-1} b \mapsto s(b)-s(a)$ is an order-preserving group homomorphism from $\mathbf{G}(\mathbf{L})$ to \mathbb{R}, and $\hat{s} \upharpoonright_{L}=s$.
(2) If g is an order-preserving group homomorphism from $\mathbf{G}(\mathbf{L})$ to \mathbb{R}, then $s=g \upharpoonright_{L}$ is an order-preserving monoid homomorphism from \mathbf{L} to \mathbb{R}^{-}and $\hat{s}=g$.

Two Categorical Equivalences
Convex Subuniverses

Consequences

Semilinearity
Extensions
Normal Values
Strongly Simple RLs
States I
States II

