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� Logics that may lack some of structural rules
(exchange/weakening/contraction)

� Axiomatic extensions of Full Lambek Calculus FL

(= noncommutative intuitionistic linear logic without !)

� Study of the universe of logics

Why is the subject interesting?

� Common basis for various nonclassical logics
linear, BI, relevant, fuzzy, superintuitionistic logics

� Common basis for various ordered algebras
lattice-ordered groups, relation algebras, ideal lattices of
rings, MV algebras, Heyting algebras

� Abundance of weird logics/algebras
pathology for proof theory
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Main topic: cut elimination.

Difficlty 1: Not many consequences.

� Analyticity (subformula property)
� Decidability, complexity upperbounds (sometimes)
� Disjunction property, interpolation
� Standard completeness (density elimination)
� Efficient reasoning (even though very few people reason

substructurally)
� Curry-Howard correspondence (even though very few

people program substructurally)
� . . .

Difficlty 2: Limitation on systematic approach.
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Classification of axioms

P0,N0 ::= the set of variables
Pn ::= Nn−1 | 1 | Pn ∨ Pn | Pn · Pn

Nn ::= Pn−1 | 0 | Nn ∧Nn | Pn → Nn

Some N2 axioms:

A → 1, 0 → A weakening
A → A ·A contraction
A ·A → A expansion
An → Am knotted axioms (n,m ≥ 0)
¬(A ∧ ¬A) no-contradiction
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Classification of axioms

P0,N0 ::= the set of variables
Pn ::= Nn−1 | 1 | Pn ∨ Pn | Pn · Pn

Nn ::= Pn−1 | 0 | Nn ∧Nn | Pn → Nn

Some P3 axioms:

(A → B) ∨ (B → A) prelinearity
A ∨ ¬A excluded middle
¬A ∨ ¬¬A weak excluded middle
¬(A ·B) ∨ (A ∧B → A ·B) weak nilpotent minimum
∨k

i=0
(Ai →

∨

j 6=i Aj) bounded width ≤ k
∨k

i=0
(A0 ∧ · · · ∧ Ai−1 → Ai) bounded size ≤ k



Substructural hierarchy

Failure of
completion

Failure of
conservativity

6 / 51

P3 N3

P2 N2

P1 N1

P0 N0

♣

♣

♣

♣

♣

♣

♣

♣

♣

✻

♣

♣

♣

♣

♣

♣

♣

♣

♣

✻

✻

�
�
��✒ ✻

❅
❅

❅❅■

✻

�
�
��✒ ✻

❅
❅

❅❅■

✻

�
�
��✒ ✻

❅
❅

❅❅■

Classification of axioms

P0,N0 ::= the set of variables
Pn ::= Nn−1 | 1 | Pn ∨ Pn | Pn · Pn

Nn ::= Pn−1 | 0 | Nn ∧Nn | Pn → Nn

Theorem (Ciabattoni, Galatos, T. 08)

Over FLew,

� every N2 axiom can be transformed into
sequent structural rules,

� every P3 axiom can be transformed into
hypersequent structural rules,

so that the calculus admits cut elimination.
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� The next target would be N3, that contains

((A → B) → B) → (B → A) → A axiom  L
A ∧B → A · (A → B) divisibility
(A → A ·B) → B cancellativity

� Is there a good “hyper-hyper” sequent calculus for N3?

� No! Here is an absolute limitation.
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Algebraic semantics: To each logic L corresponds a class V(L)
of algebras.

V(Cl) Boolean algebras
V(Int) Heyting algebras
V(FLe) pointed commutative residuated lattices
V( L) MV algebras

A completion of an algebra A is a complete algebra B such that
A →֒ B.
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Algebraic semantics: To each logic L corresponds a class V(L)
of algebras.

V(Cl) Boolean algebras
V(Int) Heyting algebras
V(FLe) pointed commutative residuated lattices
V( L) MV algebras

A completion of an algebra A is a complete algebra B such that
A →֒ B.
Theorem (Chang’s chain)

There is an algebra C in V( L) which has no completion in V( L).

C can be syntactically described.
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Theorem (Chang’s chain formalized)

There is a set C of (finitary) formulas such that

�  L + C is consistent,

�  L + C + infinitary ∧ is inconsistent.

{ ⇒ Γ, Ai }i∈I
⇒ Γ,∧i∈IAi
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Theorem (Chang’s chain formalized)

There is a set C of (finitary) formulas such that

�  L + C is consistent,

�  L + C + infinitary ∧ is inconsistent.

{ ⇒ Γ, Ai }i∈I
⇒ Γ,∧i∈IAi

� If there were a good calculus with cut elimination for  L, it
would allow us to remove infinitary ∧ from the derivation of
finitary assumptions and conclusions.

� Proof theory was invented for Hilbert’s program, which aims
at reducing ideal arguments to finitist ones.

� NB: There is a calculus for  L (GMO 2005), but it doesn’t
allow to eliminate infinitary ∧.
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N3 no systematic proof theory

P3 hypersequent calculus

N2 sequent calculus

Theorem (Jerabek 15)

Over FLe, the hirarchy collapses to N3.
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1. Are there other applications of proof theory?

2. To what extent proof theory is useful for N3?

⇒ Brouwer’s fixed point theorem based on  L
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Usually:

� Knaster-Tarski (or Banach)

Given a complete lattice L, any monotone map
f : L −→ L has a fixpoint.

� least/greatest fixpoints for monotone formulas
� foundation of induction/coinduction

Today:

� Brouwer

Any continuous map f : [0, 1]n −→ [0, 1]n has
a fixpoint.

� fixpoints for arbitrary formulas
� related to naive comprehension
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Knaster-Tarski fixpoints can be found by brutal force:

fix f := fα(⊥), for some ordinal α.

Brouwer fixpoints need some ingenuity:

� algebraic topology (no continuous map from a ball to its
sphere)

� combnatrial argument (Sperner’s lemma)
� HEX (no draw)
� . . .

Our attempt: Prove it by proof theory!
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Int (intuitionistic logic) with self-contradiction

(sc) α ↔ ¬α

is inconsistent (α a propositional constant).

α ⇒ α
¬α, α ⇒
α, α ⇒
α ⇒ (c)

....
α ⇒
⇒ ¬α
⇒ α

⇒

� Contraction is the criminal.
� Cut elimination procedure works stepwise, though does

not terminate.
� Induction on the cut formula is not available.
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Fact
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FLew: Int without contraction.
= intuitionistic multiplicative-additive linear logic +
weakening

Fact

FLew is consistent with (sc).

� Proofs shrink by reducing (principal) cuts:

....
Γ ⇒ ¬α
Γ ⇒ α

....
¬α ⇒ Π
α ⇒ Π

Γ ⇒ Π
−→

....
Γ ⇒ ¬α

....
¬α ⇒ Π

Γ ⇒ Π

even though the cut formula may become more
complicated.
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Rule (wcn):
n+1

︷ ︸︸ ︷

Γ, . . . ,Γ,Σ ⇒
Γ, . . . ,Γ
︸ ︷︷ ︸

n

,Σ ⇒
(wcn)

Rule (c′):

Γ,Γ,Σ ⇒ Π ∆,∆,Σ ⇒ Π
Γ,∆,Σ ⇒ Π

(c′)

Both admit stepwise cut elimination procedures.
Do they terminate?

Fact

1. FLew + (wcn) is inconsistent with β ↔ ¬βn.

2. FLew + (c′) is consistent with any fixpoints.
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Connectives: ∧, ∨, ·, →, 1, 0
We identify a fixpoint constant with its unfoldings:

α = ¬α = ¬¬α = ¬¬¬α = · · ·

We also consider mutual fixpoints: α = A(β), β = B(α)

α = A(B(α)) = A(B(A(β))) = A(B(A(B(α)))) = · · ·

More generally we assume: given n formulas in n variables
A1(~p), . . . , An(~p), there are constants α1, . . . , αn such that

α1 = A1(α1, . . . , αn)
...

...
αn = An(α1, . . . , αn)

This defines System FLewfix.
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Fact

FLewfix + (c′) is consistent.

Γ,Γ,Σ ⇒ Π ∆,∆,Σ ⇒ Π
Γ,∆,Σ ⇒ Π

(c′)
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Proof Idea: any proof of contradiction shrinks by stepwise
cut elimination.

.

.

.

.
dA
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.
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.
dB

⇒ B

.
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.
dAA

A,A ⇒

.

.

.

.
dBB

B,B ⇒

A,B ⇒
(c′)

⇒ (cut)
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Proof Idea: any proof of contradiction shrinks by stepwise
cut elimination.

.

.

.

.
dA

⇒ A

.

.

.

.
dB

⇒ B

.

.

.

.
dAA

A,A ⇒

.

.

.

.
dBB

B,B ⇒

A,B ⇒
(c′)

⇒ (cut)

reduces to

.

.

.

.
dA

⇒ A

.

.

.

.
dA

⇒ A

.

.

.

.
dAA

A,A ⇒
⇒ (cut)

AND

.

.

.

.
dB

⇒ B

.

.

.

.
dB

⇒ B

.

.

.

.
dBB

B,B ⇒
⇒ (cut)

Compare |dA| and |dB|. If |dA| ≤ |dB|,
the left proof is smaller than the original one.
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Actually we have a more general result. Note that FLew +
(c′) is a sublogic of  L (blackboard).

Theorem

Let L be an axiomatic extension of FLew.

1. If L is above FLew + (wcn) for some n, Lfix is incon-
sistent.

2. If L is below  L, Lfix is consistent.
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Actually we have a more general result. Note that FLew +
(c′) is a sublogic of  L (blackboard).

Theorem

Let L be an axiomatic extension of FLew.

1. If L is above FLew + (wcn) for some n, Lfix is incon-
sistent.

2. If L is below  L, Lfix is consistent.

� 1 subsumes all superintuitionistic logics and all finite
valued logics extending FLew.

� 2 is to be discussed later.
� It is not a full classification.

Problem 1

Sharpen the above theorem.
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Fixpoints Naive set theory
 Lukasiewicz logic  Lfix  Lset

Monoidal t-norm logic MTLfix MTLset

Int. logic without contraction FLewfix FLewset

� FLewset is a basis for resource bounded set theory.
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Terms and formulas:

t ::= x | {x : ϕ}
ϕ ::= t ∈ t | 0 | ϕ → ϕ | ∀x.ϕ
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Terms and formulas:

t ::= x | {x : ϕ}
ϕ ::= t ∈ t | 0 | ϕ → ϕ | ∀x.ϕ

FLewset: extension of FLew∀ with naive comprehension:

t ∈ {x : ϕ(x)} ↔ ϕ(t).

Eg. let R := {x : x 6∈ x}. Then

R ∈ R ↔ R 6∈ R.

More generally, any set {A1(~p), . . . , An(~p)} admits a mutual
fixpoint.

Hence FLewfix is embeddable into FLewset.
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There is a shrinking cut elimination procedure:
.
.
.
.

Γ ⇒ ϕ(t)

Γ ⇒ t ∈ {x : ϕ(x)}

.

.

.

.

ϕ(t) ⇒ Π

t ∈ {x : ϕ(x)} ⇒ Π

Γ ⇒ Π
−→

.

.

.

.

Γ ⇒ ϕ(t)

.

.

.

.

ϕ(t) ⇒ Π

Γ ⇒ Π

Theorem (Grisin 1982)

FLewset is consistent.
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� logical connectives
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� natural numbers
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� natural numbers

Theorem

For any formula A(x, y) there is a term tA such that

x ∈ tA ↔ A(x, tA).
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We may define

� Leipniz equality
� logical connectives
� union, intersection, complement
� natural numbers

Theorem

For any formula A(x, y) there is a term tA such that

x ∈ tA ↔ A(x, tA).

This allows us to define a term N such that

x ∈ N ↔ x = 0 ∨ ∃y ∈ N. x = y + 1.
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Fact

FLewset ⊢ t ∈ N ⇐⇒ t is a natural number.
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We may also define all r.e. sets.

Theorem

Provability in FLewset is Σ0
1-complete.

However, FLewset is a very weak theory, which is analogous
to Robinson’s Q in arithmetic.
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Fact

FLewset ⊢ t ∈ N ⇐⇒ t is a natural number.

We may also define all r.e. sets.

Theorem

Provability in FLewset is Σ0
1-complete.

However, FLewset is a very weak theory, which is analogous
to Robinson’s Q in arithmetic.

In arithmetic, one extends Q with inductions

In naive set theory, we extend FLewset with controlled
contractions.
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We may extend FLewset with K-modality !:

Γ ⇒ B
!Γ ⇒!B

!A, !A,Γ ⇒ Π

!A,Γ ⇒ Π

This is called the elementary affine set theory.
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We may extend FLewset with K-modality !:

Γ ⇒ B
!Γ ⇒!B

!A, !A,Γ ⇒ Π

!A,Γ ⇒ Π

This is called the elementary affine set theory.

N := {x : ∀X. !∀y(y ∈ X → y+1 ∈ X) →!(0 ∈ X → x ∈ X)}

It supports elementary induction principle:

A(0) ∀y.A(y) → A(y + 1)

∀x ∈ N.!A(x)

Theorem (Girard 98, T. 04)

A function f : N −→ N is elementary recursive iff it is prov-
ably total in elementary affine set theory.
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We may also extend FLewset with two modalities !, § with

A ⇒ B
!A ⇒!B

!A, !A,Γ ⇒ Π

!A,Γ ⇒ Π

Γ,∆ ⇒ B

!Γ, §∆ ⇒ §B

This is called the light affine set theory.
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We may also extend FLewset with two modalities !, § with

A ⇒ B
!A ⇒!B

!A, !A,Γ ⇒ Π

!A,Γ ⇒ Π

Γ,∆ ⇒ B

!Γ, §∆ ⇒ §B

This is called the light affine set theory.

Theorem (Girard 98, T. 04)

A function f : N −→ N is polynomial time computable iff it
is provably total in light affine set theory.
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� FLewset is a very weak naive set theory.

� It can be extended by modality ! controlling contraction.

� If ! is K, it captures elementary recursive functions.

� If ! is functorial and bounded by K-modality §, it
captures polynomial time functions.

� If ! is T, it is inconsistent.

!α ⇒!α
!α,¬!α ⇒
!α, α ⇒
!α, !α ⇒

(T )

!α ⇒
(c)

⇒ ¬!α
⇒ α (α = ¬!α)

Problem 2

Is K4 consistent? What about other modalities?
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Fixpoints Naive set theory
 Lukasiewicz logic  Lfix  Lset

Monoidal t-norm logic MTLfix MTLset

Int. logic without contraction FLewfix FLewset

� Consistency of  Lfix is equivalent to Brouwer’s fixpoint
theorem.



 Lukasiewicz’s infinite-valued logic

Failure of
completion

⊲
Failure of
conservativity

32 / 51

 L := FLew +

(axiom  L) ((A → B) → B) → (B → A) → A



 Lukasiewicz’s infinite-valued logic

Failure of
completion

⊲
Failure of
conservativity

32 / 51

 L := FLew +

(axiom  L) ((A → B) → B) → (B → A) → A

It allows us to define

A ∨B := (A → B) → B

A ⇒ A B ⇒ B

A,A → B ⇒ B

A ⇒ (A → B) → B

B ⇒ B A ⇒ A

B,B → A ⇒ A

B ⇒ (B → A) → A

B ⇒ (A → B) → B
( L)

A ⇒ C

C → B ⇒ A → B

(A → B) → B,C → B ⇒ B

(A → B) → B ⇒ (C → B) → B

B ⇒ C

(B → C) → C ⇒ C

(C → B) → B ⇒ C
( L)

(A → B) → B ⇒ C
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For linear logicians:  L is an extension of MLL in which
addtives are multiplicatively definable.
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(axiom  L) ((A → B) → B) → (B → A) → A

For linear logicians:  L is an extension of MLL in which
addtives are multiplicatively definable.

Theorem (Kowalski 2012)

Let A,B be →-only formulas.

� If (A → B) → B is provable in FLew, either A or B is
provable.

� The following inference is admissible in FLew

⇒ (A → B) → B

⇒ (B → A) → A
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 Lukasiewicz and Tarski (1930) assigned to each formula

B ≡ B(β1, . . . , βn)

a function
[[B]] : [0, 1]n −→ [0, 1]

defined by

[[βi]](~x) := xi

[[0]](~x) := 0
[[B → C]](~x) := min(1, 1− [[B]](~x) + [[C]](~x))
[[B · C]](~x) := max(0, [[B]](~x) + [[C]](~x)− 1)
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 Lukasiewicz and Tarski (1930) assigned to each formula

B ≡ B(β1, . . . , βn)

a function
[[B]] : [0, 1]n −→ [0, 1]

defined by

[[βi]](~x) := xi

[[0]](~x) := 0
[[B → C]](~x) := min(1, 1− [[B]](~x) + [[C]](~x))
[[B · C]](~x) := max(0, [[B]](~x) + [[C]](~x)− 1)

Theorem

This is the only assignment on [0, 1] which is both FLew-
sound and continuous.
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Theorem (Brouwer 1910)

Every continuous map f : [0, 1]n −→ [0, 1]n has a fixed point.
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Theorem (Brouwer 1910)

Every continuous map f : [0, 1]n −→ [0, 1]n has a fixed point.

Corollary

 Lfix is consistent.

Given A1(~α), . . . , An(~α), consider

([[A1]], . . . , [[An]]) : [0, 1]
n −→ [0, 1]n

and let (r1, . . . , rn) be a fixed point.

Then valuation v(αi) := ri satisfies all αi ↔ Ai( ~αi). Hence  Lfix

is consistent.
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Two reasons to study proof theory of  Lfix:

1. Con( Lfix) implies BFT.
2. First step to the consistency of  Lset, which is a big open

problem in fuzzy logic.
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Two reasons to study proof theory of  Lfix:

1. Con( Lfix) implies BFT.
2. First step to the consistency of  Lset, which is a big open

problem in fuzzy logic.

Note: White (1979) introduced a natural deduction system
for  Lset and “proved” its consistency. It has been believed
correct until recently. But it turned out incorrect (look at a
note on my webpage).
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A McNaughton function is a continuous piecewise-linear
function f : [0, 1]n −→ [0, 1] with integer coefficients. I.e,
there is a partition

[0, 1]n = X0 ∪ · · · ∪Xm

and on each Xi

f(~x) = a1x1 + · · · + anxn + a0

for some a0, . . . , an ∈ Z.

(blackboard)
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A McNaughton function is a continuous piecewise-linear
function f : [0, 1]n −→ [0, 1] with integer coefficients. I.e,
there is a partition

[0, 1]n = X0 ∪ · · · ∪Xm

and on each Xi

f(~x) = a1x1 + · · · + anxn + a0

for some a0, . . . , an ∈ Z.

(blackboard)

Theorem

f : [0, 1]n −→ [0, 1]n is a product of McNaughton functions
iff there are formulas A1, . . . , An with f = ([[A1]], . . . , [[An]]).
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Rational numbers are definable by fixpoints:

α ↔ ¬α =⇒ α = 1/2
α ↔ ¬(α · α) =⇒ α = 2/3
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Rational numbers are definable by fixpoints:

α ↔ ¬α =⇒ α = 1/2
α ↔ ¬(α · α) =⇒ α = 2/3

Given a (product of) McNaughton function
g : [0, 1]n+m −→ [0, 1]n and q1, . . . , qm ∈ [0, 1] ∩Q,

f(~x) := g(~x, ~q) : [0, 1]n −→ [0, 1]n

is called a quasi-McNaughton function.
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Rational numbers are definable by fixpoints:

α ↔ ¬α =⇒ α = 1/2
α ↔ ¬(α · α) =⇒ α = 2/3

Given a (product of) McNaughton function
g : [0, 1]n+m −→ [0, 1]n and q1, . . . , qm ∈ [0, 1] ∩Q,

f(~x) := g(~x, ~q) : [0, 1]n −→ [0, 1]n

is called a quasi-McNaughton function.

Lemma

Con( Lfix) implies BFT for quasi-McNaughton functions.
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Lemma

Con( Lfix) implies BFT for quasi-McNaughton functions.

Proof. Given a quasi-McNaughton f , there are A1, . . . , An and
q1, . . . , qm ∈ [0, 1] ∩Q such that

f(~x) = ([[A1]](~x, ~q), . . . , [[An]](~x, ~q)).
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q1, . . . , qm ∈ [0, 1] ∩Q such that
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The rationals q1, . . . , qm are definable by βi ↔ Bi(βi) for
i = 1, . . . ,m. Consider fixpoint equations for ~A(~α, ~β), ~B(~β).



Con( Lfix) ⇒ BFT

Failure of
completion

⊲
Failure of
conservativity

39 / 51

Lemma

Con( Lfix) implies BFT for quasi-McNaughton functions.

Proof. Given a quasi-McNaughton f , there are A1, . . . , An and
q1, . . . , qm ∈ [0, 1] ∩Q such that

f(~x) = ([[A1]](~x, ~q), . . . , [[An]](~x, ~q)).

The rationals q1, . . . , qm are definable by βi ↔ Bi(βi) for
i = 1, . . . ,m. Consider fixpoint equations for ~A(~α, ~β), ~B(~β).
Since  Lfix is consistent, there is an assignment

(r1, . . . , rn, q1, . . . , qm) ∈ [0, 1]n+m.

satisfying αi ↔ Ai(~α, ~β), that is, ~r = f(~r).
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Theorem

Con( Lfix) implies Brouwer’s fixed point theorem.

Proof. Every continuous f : [0, 1]n −→ [0, 1]n can be
approximated by a sequence of quasi-McNaughton {fi}i∈N:

fi(x) → f(x) (i → ∞).
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Since [0, 1]n is compact, we may assume ri → r (i → ∞).
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Theorem

Con( Lfix) implies Brouwer’s fixed point theorem.

Proof. Every continuous f : [0, 1]n −→ [0, 1]n can be
approximated by a sequence of quasi-McNaughton {fi}i∈N:

fi(x) → f(x) (i → ∞).

Each fi has a fixed point ri.
Since [0, 1]n is compact, we may assume ri → r (i → ∞).
We conclude f(r) = r.
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(axiom  L) is equivalent to

Γ, A → B ⇒ B ∆, B ⇒ A Σ, A ⇒ Π

Γ,∆,Σ ⇒ Π
( L)
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(axiom  L) is equivalent to

Γ, A → B ⇒ B ∆, B ⇒ A Σ, A ⇒ Π

Γ,∆,Σ ⇒ Π
( L)

(cut) and ( L) can be eliminated stepwise from derivations of ⇒:
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.

.

.

.
d2

B ⇒ A

.

.
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.
d3

A ⇒
⇒ (cut)

Problem 3

Does the procedure terminate? If so, we would obtain a proof-
theoretic proof of Brouwer’s fixpoint theorem.
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Fixpoints Naive set theory
 Lukasiewicz logic  Lfix  Lset

Monoidal t-norm logic MTLfix MTLset

Int. logic without contraction FLewfix FLewset

� Consistency of  Lset is a big open problem.
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Terms and formulas:

t ::= x | {x : ϕ(x)}
ϕ ::= t ∈ t | 0 | ϕ → ϕ | ∀x.ϕ

 Lset: extension of  L∀ with naive comprehension axiom:

t ∈ {x : ϕ(x)} ↔ ϕ(t).
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 Lukasiewicz interpretation can be extended:

[[∀x.ϕ(x)]] :=
∧

a∈D

[[ϕ(a)]].

Problem 4

Is  Lset consistent?

Two obstacles:

� Infinitary
∧

breaks continuity.
� Has to consider an infinite dimentional vector space.

BFT no more available. Forced to work proof-theoretically.
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Fixpoints Naive set theory
 Lukasiewicz logic  Lfix  Lset

Monoidal t-norm logic MTLfix MTLset

Int. logic without contraction FLewfix FLewset

� MTLfix, MTLset are more tractable.
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MTL := FLew with prelinearity:

(pl) A → B ∨B → A.

MTLfix: given n formulas A1(~p), . . . , An(~p), there are
constants α1, . . . , αn such that

α1 = A1(α1, . . . , αn)
...

...
αn = An(α1, . . . , αn)

Formulas are identified modulo the equivalence.
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MTL := FLew with prelinearity:

(pl) A → B ∨B → A.

MTLfix: given n formulas A1(~p), . . . , An(~p), there are
constants α1, . . . , αn such that

α1 = A1(α1, . . . , αn)
...

...
αn = An(α1, . . . , αn)

Formulas are identified modulo the equivalence.
MTL is a sublogic of  L, so:

Fact

MTLfix is consistent.
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Hypersequents: Θ1 | · · · | Θn with Θi a sequent.
Hypersequent calculus for FL consists of

Rules of FL Ext-Contraction
Ξ | A,Γ ⇒ B

Ξ | Γ ⇒ A → B

Ξ | Γ ⇒ Π | Γ ⇒ Π

Ξ | Γ ⇒ Π

Communication
Ξ | Γ1,∆1 ⇒ Π Ξ | Γ2,∆2 ⇒ Λ

Ξ | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Λ
(com)
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Hypersequents: Θ1 | · · · | Θn with Θi a sequent.
Hypersequent calculus for FL consists of

Rules of FL Ext-Contraction
Ξ | A,Γ ⇒ B

Ξ | Γ ⇒ A → B

Ξ | Γ ⇒ Π | Γ ⇒ Π

Ξ | Γ ⇒ Π

Communication
Ξ | Γ1,∆1 ⇒ Π Ξ | Γ2,∆2 ⇒ Λ

Ξ | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Λ
(com)

α ⇒ α β ⇒ β

α ⇒ β | β ⇒ α
(com)

⇒ α → β | ⇒ β → α
(→ r)

⇒ (α → β) ∨ (β → α) | ⇒ (α → β) ∨ (β → α)
(∨r)

⇒ (α → β) ∨ (β → α)
(EC)
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Goal: define a notion of size and design a shrinking cut
elimination procedure.

A slice of derivation d is a selection of 0 or 1 sequent from
each hypersequent in d such that:

Ξ | A,Γ ⇒ B

Ξ | Γ ⇒ A → B

Ξ | Γ ⇒ Π | Γ ⇒ Π

Ξ | Γ ⇒ Π or

Ξ | Γ ⇒ Π | Γ ⇒ Π

Ξ | Γ ⇒ Π

Ξ | Γ1,∆1 ⇒ Π Ξ | Γ2,∆2 ⇒ Λ

Ξ | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Λ
(com)

Ξ | Γ1,∆1 ⇒ Π Ξ | Γ2,∆2 ⇒ Λ

Ξ | Γ1,Γ2 ⇒ Π | ∆1,∆2 ⇒ Λ

The size |d| is a multiset of natural numbers defined by:

|d| := {|d′| : d′ is a slice of d}.

where |d′| is the number of inference rules visible in d′. We
consider multiset ordering (which is well founded).
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There is a shrinking cut elimination procedure for derivations
of contradiction ⇒.

.

.

.

.
dA

⇒ A

.

.

.

.
dB

⇒ B

.

.

.

.
dAA

A,A ⇒

.

.

.

.
dBB

B,B ⇒

A,B ⇒ | A,B ⇒
(com)

A,B ⇒
(EC)

⇒ (cut)
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.

.

.
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.

.

.

.
dA

⇒ A

.

.

.

.
dAA

A,A ⇒
⇒ (cut)
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.

.

.

.
dB

⇒ B

.

.

.

.
dB

⇒ B

.

.

.

.
dBB

B,B ⇒
⇒ (cut)
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There is a shrinking cut elimination procedure for derivations
of contradiction ⇒.
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B,B ⇒
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(EC)

⇒ (cut)

reduces to
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.

.

.
dA

⇒ A

.

.
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.
dA

⇒ A

.

.

.

.
dAA

A,A ⇒
⇒ (cut)

AND

.

.

.

.
dB

⇒ B

.

.

.

.
dB

⇒ B

.

.

.

.
dBB

B,B ⇒
⇒ (cut)

Theorem

Any proof of ⇒ can be reduced to a cut-free proof (which
does not exist).
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The previous argument works for MTLset as well.

Theorem

MTLset is consistent.
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Fixpoints Naive set theory
 Lukasiewicz logic  Lfix  Lset

Monoidal t-norm logic MTLfix MTLset

Int. logic without contraction FLewfix FLewset

� Consistency of  Lfix is equivalent to Brouwer’s fixpoint
theorem.

� Hence by proving the former proof-theoretically, we
obtain a new proof of the latter.

� Moreover, such a proof most likely extends to naive set
theory, which would lead to the consistency of  Lset, a big
open problem in fuzzy mathematics.
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