Kleene algebras with implication

Hernán Javier San Martín

CONICET Departamento de Matemática, Facultad de Ciencias Exactas, UNLP

September 2016

Hernán Javier San Martín (UNLP)

< <p>I I

DQC

1 / 16

A De Morgan algebra is an algebra $\langle A, \vee, \wedge, \sim, 0, 1 \rangle$ of type (2, 2, 1, 0, 0)such that $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice and \sim satisfies

- $\sim \sim x = x$,
- $\sim (x \lor y) = \sim x \land \sim y, \ \sim (x \land y) = \sim x \lor \sim y.$

A *De Morgan* algebra is an algebra $\langle A, \lor, \land, \sim, 0, 1 \rangle$ of type (2, 2, 1, 0, 0) such that $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice and \sim satisfies

• $\sim \sim x = x$,

•
$$\sim (x \lor y) = \sim x \land \sim y, \ \sim (x \land y) = \sim x \lor \sim y.$$

A Kleene algebra is a De Morgan algebra which satisfies

 $x \wedge \sim x \leq y \vee \sim y.$

Sac

2 / 16

A *De Morgan* algebra is an algebra $\langle A, \lor, \land, \sim, 0, 1 \rangle$ of type (2, 2, 1, 0, 0) such that $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice and \sim satisfies

• $\sim \sim x = x$,

•
$$\sim (x \lor y) = \sim x \land \sim y, \ \sim (x \land y) = \sim x \lor \sim y.$$

A Kleene algebra is a De Morgan algebra which satisfies

$$x \wedge \sim x \leq y \vee \sim y$$
.

A Kleene algebra is *centered* if it has a center. That is, an element **c** such that \sim **c** = **c** (it is necessarily unique).

In 1958 Kalman proved that if L is a bounded distributive lattice, then

$$\mathrm{K}(L)=\{(a,b)\in L imes L:a\wedge b=0\}$$

is a centered Kleene algebra defining

$$\begin{array}{rcl} (a,b) \lor (d,e) & := & (a \lor d, b \land e), \\ (a,b) \land (d,e) & := & (a \land d, b \lor e), \\ & \sim (a,b) & := & (b,a), \end{array}$$

(0,1) as the zero, (1,0) as the top and (0,0) as the center.

In 1958 Kalman proved that if L is a bounded distributive lattice, then

$$\mathrm{K}(L)=\{(a,b)\in L imes L:a\wedge b=0\}$$

is a centered Kleene algebra defining

$$\begin{array}{rcl} (a,b) \lor (d,e) & := & (a \lor d, b \land e), \\ (a,b) \land (d,e) & := & (a \land d, b \lor e), \\ & \sim (a,b) & := & (b,a), \end{array}$$

(0,1) as the zero, (1,0) as the top and (0,0) as the center.

• Kalman J.A, *Lattices with involution*. Trans. Amer. Math. Soc. 87, 485–491, 1958.

For $(a, b) \in K(L)$ we have that

$$(a, b) \land (0, 0) = (a \land 0, b \lor 0) = (0, b),$$

 $(a, b) \lor (0, 0) = (a \lor 0, b \land 0) = (a, 0).$

<<p>・ロト

DQC

For $(a, b) \in K(L)$ we have that

$$(a, b) \land (0, 0) = (a \land 0, b \lor 0) = (0, b),$$

 $(a, b) \lor (0, 0) = (a \lor 0, b \land 0) = (a, 0).$

Therefore, the center give us the coordinates of (a, b).

< D >

Dac

• K can be extended to a functor from the category of bounded distributive lattices BDL to the category of centered Kleene algebras.

Sar

K can be extended to a functor from the category of bounded distributive lattices BDL to the category of centered Kleene algebras.
 If f : L → M is a morphism in BDL then K(f) : K(L) → K(M) given by K(f)(a, b) = (fa, fb) is a morphism of Kleene algebras.

- K can be extended to a functor from the category of bounded distributive lattices BDL to the category of centered Kleene algebras.
 If f : L → M is a morphism in BDL then K(f) : K(L) → K(M) given by K(f)(a, b) = (fa, fb) is a morphism of Kleene algebras.
- 2 There is an equivalence between BDL and the category of centered Kleene algebras which satisfy a condition called the *interpolation property* (IP).

- K can be extended to a functor from the category of bounded distributive lattices BDL to the category of centered Kleene algebras.
 If f : L → M is a morphism in BDL then K(f) : K(L) → K(M) given by K(f)(a, b) = (fa, fb) is a morphism of Kleene algebras.
- 2 There is an equivalence between BDL and the category of centered Kleene algebras which satisfy a condition called the *interpolation property* (IP).
- Cignoli R., *The class of Kleene algebras satisfying an interpolation property and Nelson algebras.* Algebra Universalis 23, 262–292, 1986.

• Let *T* be a centered Kleene algebra. Write (CK) for the following condition:

For every x, y, if $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$ then there is z such that $z \lor \mathbf{c} = x$ and $\sim z \lor \mathbf{c} = y$.

Sac

6 / 16

• Let *T* be a centered Kleene algebra. Write (CK) for the following condition:

For every x, y, if $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$ then there is z such that $z \lor \mathbf{c} = x$ and $\sim z \lor \mathbf{c} = y$.

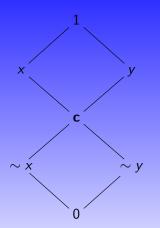
2 In K(L), if $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$ then x and y takes the form x = (a, 0), y = (b, 0) with $a \land b = 0$. In this case, z = (a, b).

• Let *T* be a centered Kleene algebra. Write (CK) for the following condition:

For every x, y, if $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$ then there is z such that $z \lor \mathbf{c} = x$ and $\sim z \lor \mathbf{c} = y$.

- **2** In K(L), if $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$ then x and y takes the form x = (a, 0), y = (b, 0) with $a \land b = 0$. In this case, z = (a, b).
- In an unpublished manuscript (2004) M. Sagastume proved: A centered Kleene algebra satisfies (IP) iff it satisfies (CK).

Centered Kleene algebra without (CK)

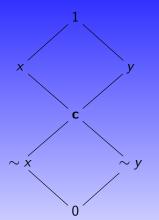


< D >

э

DQC

Centered Kleene algebra without (CK)



We have that $x, y \ge \mathbf{c}$ and $x \land y = \mathbf{c}$. However there is not z such that $z \lor \mathbf{c} = x$ and $\sim z \lor \mathbf{c} = y$.

If T is a centered Kleene algebra then C(T) = {x : x ≥ c} ∈ BDL.
If g : T → U is a morphism of centered Kleene algebras then C(g) : C(T) → C(U) given by C(g)(x) = g(x) is in BDL.

3

- If T is a centered Kleene algebra then $C(T) = \{x : x \ge c\} \in BDL$.
- If $g : T \to U$ is a morphism of centered Kleene algebras then $C(g) : C(T) \to C(U)$ given by C(g)(x) = g(x) is in BDL.
- If T is a centered Kleene algebra then β : T → K(C(T)) given by β(x) = (x ∨ c, ~x ∨ c) is an injective morphism of Kleene algebras. Moreover, T satisfies (CK) if and only if β is surjective.

- If T is a centered Kleene algebra then $C(T) = \{x : x \ge c\} \in BDL$.
- If $g : T \to U$ is a morphism of centered Kleene algebras then $C(g) : C(T) \to C(U)$ given by C(g)(x) = g(x) is in BDL.
- If T is a centered Kleene algebra then β : T → K(C(T)) given by β(x) = (x ∨ c, ~x ∨ c) is an injective morphism of Kleene algebras. Moreover, T satisfies (CK) if and only if β is surjective.
- If L ∈ BDL then α : L → C(K(L)) given by α(a) = (a, 0) is an isomorphism in BDL.

- If T is a centered Kleene algebra then $C(T) = \{x : x \ge c\} \in BDL$.
- ② If $g : T \to U$ is a morphism of centered Kleene algebras then C(g) : C(T) → C(U) given by C(g)(x) = g(x) is in BDL.
- If T is a centered Kleene algebra then β : T → K(C(T)) given by β(x) = (x ∨ c, ~x ∨ c) is an injective morphism of Kleene algebras. Moreover, T satisfies (CK) if and only if β is surjective.
- If $L \in BDL$ then $\alpha : L \to C(K(L))$ given by $\alpha(a) = (a, 0)$ is an isomorphism in BDL.

Theorem

There is a categorical equivalence $K \dashv C$ between BDL and the full subcategory of centered Kleene algebras whose objects satisfy (CK), whose unit is α and whose counit is β .

Sac

8 / 16

- If T is a centered Kleene algebra then $C(T) = \{x : x \ge c\} \in BDL$.
- ② If $g : T \to U$ is a morphism of centered Kleene algebras then C(g) : C(T) → C(U) given by C(g)(x) = g(x) is in BDL.
- If T is a centered Kleene algebra then β : T → K(C(T)) given by β(x) = (x ∨ c, ~x ∨ c) is an injective morphism of Kleene algebras. Moreover, T satisfies (CK) if and only if β is surjective.
- If $L \in BDL$ then $\alpha : L \to C(K(L))$ given by $\alpha(a) = (a, 0)$ is an isomorphism in BDL.

Theorem

There is a categorical equivalence $K \dashv C$ between BDL and the full subcategory of centered Kleene algebras whose objects satisfy (CK), whose unit is α and whose counit is β .

• Sagastume, M. Categorical equivalence between centered Kleene algebras with condition (CK) and bounded distributive lattices, 2004.

A Nelson algebra is a Kleene algebra such that there exists

$$x \to y := x \to_{\mathrm{Hey}} (\sim x \lor y),$$

where $\rightarrow_{\mathrm{Hey}}$ is the Heyting implication,

$$(x \wedge y) \rightarrow z = x \rightarrow (y \rightarrow z).$$

2 A Nelson lattice is an involutive bounded conmutative residuated lattice which satisfies an additional equation. The varieties of Nelson algebras and Nelson lattices are term equivalent.

A Nelson algebra is a Kleene algebra such that there exists

$$x
ightarrow y := x
ightarrow_{ ext{Hey}} (\sim x \lor y),$$

where $\rightarrow_{\mathrm{Hey}}$ is the Heyting implication,

$$(x \wedge y) \rightarrow z = x \rightarrow (y \rightarrow z).$$

- 2 A Nelson lattice is an involutive bounded conmutative residuated lattice which satisfies an additional equation. The varieties of Nelson algebras and Nelson lattices are term equivalent.
- If → is the implication of a Nelson algebra, then the implication as Nelson lattice is given by

$$x \hat{\rightarrow} y = (x \rightarrow y) \land (\sim y \rightarrow \sim x)$$

A Nelson algebra is a Kleene algebra such that there exists

$$x
ightarrow y := x
ightarrow_{ ext{Hey}} (\sim x \lor y),$$

where $\rightarrow_{\mathrm{Hey}}$ is the Heyting implication,

$$(x \wedge y) \rightarrow z = x \rightarrow (y \rightarrow z).$$

- 2 A Nelson lattice is an involutive bounded conmutative residuated lattice which satisfies an additional equation. The varieties of Nelson algebras and Nelson lattices are term equivalent.
- If → is the implication of a Nelson algebra, then the implication as Nelson lattice is given by

$$x \hat{\rightarrow} y = (x \rightarrow y) \land (\sim y \rightarrow \sim x)$$

Kalman's functor for Heyting algebras

Theorem

(Cignoli) The category of Heyting algebras is equivalent to the category of centered Nelson algebras.

Sac

10 / 16

Kalman's functor for Heyting algebras

Theorem

(Cignoli) The category of Heyting algebras is equivalent to the category of centered Nelson algebras.

Theorem

The category of Heyting algebras is equivalent to the category of centered Nelson algebras. The equivalence can be proved using the functors ${\rm K}$ and ${\rm C}.$

Sac

10 / 16

Kalman's functor for Heyting algebras

Theorem

(Cignoli) The category of Heyting algebras is equivalent to the category of centered Nelson algebras.

Theorem

The category of Heyting algebras is equivalent to the category of centered Nelson algebras. The equivalence can be proved using the functors ${\rm K}$ and ${\rm C}.$

Theorem

The category of Heyting algebras is equivalent to the category of centered Nelson lattices. The equivalence can be proved using the functors K and C.

Let H be a Heyting algebra where \rightarrow is the Heyting implication. In K(H) the implication as Nelson algebra is given by

$$(a,b) \Rightarrow_{\mathrm{NA}} (d,e) = (a \rightarrow d, a \wedge e)$$

Sac

11 / 16

Let *H* be a Heyting algebra where \rightarrow is the Heyting implication. In K(*H*) the implication as Nelson algebra is given by

$$(a,b) \Rightarrow_{\mathrm{NA}} (d,e) = (a \rightarrow d, a \wedge e)$$

The implication \Rightarrow as Nelson lattice will be given by

$$(a,b) \Rightarrow (d,e) = ((a \rightarrow d) \land (e \rightarrow b), a \land e).$$

Sac

11 / 16

Definition

An algebra $(H, \land, \lor, \rightarrow, 0, 1)$ of type (2, 2, 2, 0, 0) is a DLI-algebra if $(H, \land, \lor, 0, 1)$ is a bounded distributive lattice and the following conditions are satisfied:

Sac

12 / 16

э

Definition

An algebra $(H, \land, \lor, \rightarrow, 0, 1)$ of type (2, 2, 2, 0, 0) is a DLI-algebra if $(H, \land, \lor, 0, 1)$ is a bounded distributive lattice and the following conditions are satisfied:

• Celani S., *Bounded distributive lattices with fusion and implication*. Southeast Asian Bull. Math. 27, 1–10, 2003.

Sac

12 / 16

We are interested in DLI-algebras in which for (a, b), (d, e) in K(H) is possible to define the operation

$$(a,b) \Rightarrow (d,e) = ((a
ightarrow d) \land (e
ightarrow b), a \land e)$$

< D >

Sac

13 / 16

э

We are interested in DLI-algebras in which for (a, b), (d, e) in K(H) is possible to define the operation

$$(a,b) \Rightarrow (d,e) = ((a \rightarrow d) \land (e \rightarrow b), a \land e)$$

So we need that

$$a \wedge (a \rightarrow d) \wedge e \wedge (e \rightarrow b) = 0.$$

< D >

Sac

13 / 16

We are interested in DLI-algebras in which for (a, b), (d, e) in K(H) is possible to define the operation

$$(a,b) \Rightarrow (d,e) = ((a
ightarrow d) \land (e
ightarrow b), a \land e)$$

So we need that

$$a \wedge (a \rightarrow d) \wedge e \wedge (e \rightarrow b) = 0.$$

If for instance we consider DLI-algebras with the additional condition

$$a \wedge (a \rightarrow d) \leq d$$

then we obtain that \Rightarrow is a well defined map in K(H).

Sac

13 / 16

Definition

We write DLI^+ for the variety of DLI-algebras whose algebras satisfy the following equation:

 $a \wedge (a \rightarrow b) \leq b.$

< D >

3

DQC

Definition

We write DLI^+ for the variety of DLI-algebras whose algebras satisfy the following equation:

$$a \wedge (a \rightarrow b) \leq b.$$

Remark

Let (H, \wedge) be a meet semilattice and \rightarrow a binary operation on H. The following conditions are equivalent:

1
$$a \land (a \rightarrow b) \leq b$$
 for every a, b .

2 For every a, b, d, if $a \leq b \rightarrow d$ then $a \land b \leq d$.

Sac

14 / 16

In the paper

 Kleene algebras with implication (Castiglioni, Celani and San Martín, accepted in Algebra Universalis in 2016)

we consider the category KLI whose objects are called Kleene algebras with implication: these objects are algebras $(T, \land, \lor, \rightarrow, \sim, \mathbf{c}, 0, 1)$ of type (2, 2, 2, 1, 0, 0, 0) such that

- **(** $T, \land, \lor, \sim, \mathbf{c}, 0, 1$) is a centered Kleene algebra,
- **2** $(T, \land, \lor, \rightarrow, 0, 1)$ is a DLI-algebra.
- $\mathbf{S} \rightarrow \mathbf{is}$ a binary operation on T which satisfies certain equations involving the other operations.

In the paper

• *Kleene algebras with implication* (Castiglioni, Celani and San Martín, accepted in Algebra Universalis in 2016)

we consider the category KLI whose objects are called Kleene algebras with implication: these objects are algebras ($T, \land, \lor, \rightarrow, \sim, \mathbf{c}, 0, 1$) of type (2,2,2,1,0,0,0) such that

- **①** $(T, \land, \lor, \sim, \mathbf{c}, 0, 1)$ is a centered Kleene algebra,
- **2** $(T, \land, \lor, \rightarrow, 0, 1)$ is a DLI-algebra.
- \bullet → is a binary operation on T which satisfies certain equations involving the other operations.

Theorem

There is a categorical equivalence $K \dashv C$ between DLI^+ and the full subcategory of KLI whose objects satisfy (CK), whose unit is α and whose counit is β .

¿Why do we think the generalization of Kalman's functor using the implication as Nelson lattice?

< <p>I I

Sac

16 / 16

3

¿Why do we think the generalization of Kalman's functor using the implication as Nelson lattice?

- If $H \in DLI^+$ then K(H) is a DLI-algebra.
- If H ∈ DLI⁺ then the implication in K(H) is interdefinable with other operation, and K(H) with this operation is an algebra with fusion.
- This construction also generalizes some given for the case of integral commutative residuated lattices with bottom.