Epimorphisms in Varieties of Residuated Structures

JAMES RAFTERY

(Univ. Pretoria, South Africa)

JOINT WORK WITH

Guram Bezhanishvili (New Mexico State Univ., USA)

Tommaso Moraschini (Acad. Sci., Czech Republic)

if $f \circ h = g \circ h$, then f = g.

Note: (1) Surjective \mathcal{K} -morphisms are \mathcal{K} -epimorphisms.

(2) We say that \mathcal{K} has the **ES property** if all \mathcal{K} -epimorphisms are surjective.

if $f \circ h = g \circ h$, then f = g.

Note: (1) Surjective \mathcal{K} -morphisms are \mathcal{K} -epimorphisms.

(2) We say that *K* has the **ES property** if all *K*-epimorphisms are surjective.

if $f \circ h = g \circ h$, then f = g.

Note: (1) Surjective \mathcal{K} -morphisms are \mathcal{K} -epimorphisms.

(2) We say that *K* has the **ES property** if all *K*-epimorphisms are surjective.

if $f \circ h = g \circ h$, then f = g.

Note: (1) Surjective \mathcal{K} -morphisms are \mathcal{K} -epimorphisms.

(2) We say that \mathcal{K} has the **ES property** if all \mathcal{K} -epimorphisms are surjective.

if $f \circ h = g \circ h$, then f = g.

Note: (1) Surjective \mathcal{K} -morphisms are \mathcal{K} -epimorphisms.

- (2) We say that *K* has the ES property if all *K*-epimorphisms are surjective.
- (3) A variety *K* has the ES property iff no *B* ∈ *K* has a
 (*K*-) epic (proper) subalgebra *D*, i.e., one such that any
 K-morphism *f*: *B* → *C* is determined by *f*|_{*D*}.

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

This is due to the uniqueness of existent complements in distributive lattices.

Image: A marked and A marked

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

This is due to the uniqueness of existent complements in distributive lattices.

・ロト ・日下・ ・ ヨト

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:

it holds in {Lattices}, but not in {Distributive Lattices}, where

This is due to the uniqueness of existent complements in distributive lattices.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

・ロト ・日下・ ・ ヨト

(5) The variety {Rings} *lacks* ES, as \mathbb{Z} is epic in \mathbb{Q} .

This is because, although multiplicative inverses needn't exist, they are **implicitly definable** in rings—i.e., *uniquely determined* or *non-existent*.

(6) The ES property needn't persist in subvarieties:it holds in {Lattices}, but not in {Distributive Lattices}, where

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash ,

e.g., {Boolean algebras} \leftrightarrow classical propositional logic, or {Heyting algebras} \leftrightarrow intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \operatorname{Form}(X \cup Z)$ and

 $\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in Form(X)$ such that

 $\Gamma \vdash z \leftrightarrow \varphi_{\mathbf{Z}}.$

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash ,

e.g., {Boolean algebras} \leftrightarrow classical propositional logic, or {Heyting algebras} \leftrightarrow intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \operatorname{Form}(X \cup Z)$ and

 $\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in Form(X)$ such that

 $\Gamma \vdash z \leftrightarrow \varphi_{\mathbf{Z}}.$

・ロト・日本・日本・日本・日本・日本

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \operatorname{Form}(X \cup Z)$ and

 $\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in Form(X)$ such that

 $\Gamma \vdash Z \leftrightarrow \varphi_{Z}.$

<ロ> <同> <同> < 同> < 同> < 同> 、

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \operatorname{Form}(X \cup Z)$ and

 $\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash \mathbf{z} \leftrightarrow h(\mathbf{z})$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in Form(X)$ such that

 $\Gamma \vdash z \leftrightarrow \varphi_{\mathbf{Z}}.$

▲ロ → ▲園 → ▲国 → ▲国 → ▲回 →

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \text{Form}(X \cup Z)$ and

 $\Gamma \cup h[\Gamma] \vdash z \leftrightarrow h(z)$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in Form(X)$ such that

 $\Gamma \vdash z \leftrightarrow \varphi_{\mathbf{Z}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Theorem. (Blok & Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the **infinite Beth** (definability) **property**, which means:

whenever $\Gamma \subseteq \text{Form}(X \cup Z)$ and

 $\Gamma \cup h[\Gamma] \vdash z \leftrightarrow h(z)$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that h(x) = x for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_z \in \text{Form}(X)$ such that

 $\Gamma \vdash z \leftrightarrow \varphi_{\mathbf{Z}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' *K*-epimorphism is onto,

where '*h*: $A \rightarrow B$ is *almost onto*' means that *B* is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

・ロト ・ 日 ・ ・ ヨ ・ ・

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' \mathcal{K} -epimorphism is onto,

where '*h*: $A \rightarrow B$ is *almost onto*' means that *B* is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' *K*-epimorphism is onto,

where '*h*: $A \rightarrow B$ is *almost onto*' means that B is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' \mathcal{K} -epimorphism is onto,

where 'h: $A \rightarrow B$ is *almost onto*' means that **B** is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

Image: A marked and A marked

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' *K*-epimorphism is onto,

where '*h*: $A \rightarrow B$ is *almost onto*' means that *B* is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

Image: A marked and A marked

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the **weak ES property**, which means:

every 'almost onto' *K*-epimorphism is onto,

where '*h*: $A \rightarrow B$ is *almost onto*' means that *B* is generated by $h[A] \cup \{b\}$ for some $b \in B$.

Problem. Does the *finite Beth property* imply the *infinite* one?

Question. Does weak ES imply ES (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does weak ES imply ES (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does weak ES imply ES (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Answer. Not all. (Blok-Hoogland Conjecture confirmed.)

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?

Answer. Not all. (Blok-Hoogland Conjecture confirmed.)

Some of the counter-examples are locally finite.

Question. Does *weak ES* imply *ES* (at least for varieties)?

Yes, for *amalgamable* varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2^{\aleph_0} varieties of **Heyting algebras** ALL have *weak ES* (Kreisel, 1960), but *only finitely many* of them are amalgamable (Maksimova, 1970s).

 $\mathcal{HA} := \{ all Heyting algebras \} has ES.$

Question. Which *subvarieties* of *HA* have ES?
Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. $(2^{\aleph_0} \text{ examples.})$

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. $(2^{\aleph_0} \text{ examples.})$

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called strong ES property: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Theorem. If a variety of Heyting algebras has *finite depth*, then it has surjective epimorphisms. (2^{\aleph_0} examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every *finitely generated* variety of Heyting algebras has surjective epimorphisms.

[In contrast, it's known that only finitely many subvarieties of \mathcal{HA} have the so-called **strong ES property**: whenever $A \leq B \in \mathcal{K}$ and $b \in B \setminus A$, there are two \mathcal{K} -morphisms $f, g: B \to C$ that agree on A but not at b (Maksimova, 2000).]

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := y;$ $h_n := x_n \lor (x_n \to h_{n-1})$ $(0 < n \in \omega),$ then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular—or more generally if its theorems include a formula from the sequence

 $h_0 := y;$ $h_n := x_n \lor (x_n \to h_{n-1})$ $(0 < n \in \omega),$ then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := \mathbf{y}; \quad h_n := \mathbf{x}_n \vee (\mathbf{x}_n \rightarrow h_{n-1}) \ (0 < n \in \omega),$

then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := y;$ $h_n := x_n \lor (x_n \to h_{n-1})$ $(0 < n \in \omega),$ then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := \mathbf{y}; \quad h_n := \mathbf{x}_n \vee (\mathbf{x}_n \rightarrow h_{n-1}) \ (0 < n \in \omega),$

then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := \mathbf{y}; \quad h_n := \mathbf{x}_n \vee (\mathbf{x}_n \rightarrow h_{n-1}) \ (\mathbf{0} < n \in \omega),$

then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := \mathbf{y}; \quad h_n := \mathbf{x}_n \vee (\mathbf{x}_n \rightarrow h_{n-1}) \ (\mathbf{0} < n \in \omega),$

then it has the infinite Beth property. Likewise all Gödel logics.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is **tabular**—or more generally if its theorems include a formula from the sequence

 $h_0 := \mathbf{y}; \quad h_n := \mathbf{x}_n \vee (\mathbf{x}_n \rightarrow h_{n-1}) \ (\mathbf{0} < n \in \omega),$

then it has the infinite Beth property. Likewise all Gödel logics.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \boldsymbol{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

< 日 > < 回 > < 回 > < 回 > < 回 > <

The ES property is categorical, so it transfers.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \mathbf{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The ES property is categorical, so it transfers.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \mathbf{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The ES property is categorical, so it transfers.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \mathbf{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

< □ > < □ > < 亘 > < 亘 > < 亘 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The ES property is categorical, so it transfers.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \mathbf{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

The ES property is categorical, so it transfers.

More general than Heyting/BL algebras are residuated lattices

 $\mathbf{A} = \langle \mathbf{A}; \boldsymbol{\cdot}, \boldsymbol{\rightarrow}, \boldsymbol{\wedge}, \boldsymbol{\vee}, \mathbf{e} \rangle.$

 $[\langle A; \land, \lor \rangle$ is a lattice and $\langle A; \cdot, e \rangle$ a commutative monoid with

 $x \cdot y \leq z \iff y \leq x \rightarrow z$ (law of residuation).]

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The ES property is categorical, so it transfers.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \land, \lor, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

[A Sugihara monoid $A = \langle A; \cdot, \rightarrow, \wedge, \vee, \neg, e \rangle$ is a residuated *distributive* lattice with an *involution* \neg , where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For $a \in A$, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(?)

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For $a \in A$, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(?)

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For $a \in A$, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(?)

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $T \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For $a \in A$, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

・ロト・日本・日本・日本・日本・日本

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.
From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

・ロト・日本・日本・日本・日本・日本

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - 釣�(で)

From **A**, we construct an *Esakia space* $A_* := \langle \Pr A; \subseteq, \tau \rangle$.

Pr **A** is the set of all *prime* filters of **A** (i.e., all lattice filters F with $\top \in F$, such that $A \setminus F$ is closed under \lor), and τ is a certain topology on Pr **A**.

For
$$a \in A$$
, we define $\varphi(a) = \{F \in \Pr A : a \in F\}$ and
 $\varphi(a)^c = \{F \in \Pr A : a \notin F\}.$

A sub-basis for τ is then $\{\varphi(a) : a \in A\} \cup \{\varphi(a)^c : a \in A\}$.

For a \mathcal{HA} -morphism $h: \mathbf{A} \to \mathbf{B}$, define $h_*: \mathbf{B}_* \to \mathbf{A}_*$ by $F \mapsto h^{-1}[F]$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X$; $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an Esakia space $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X$; $\downarrow W$ is clopen, for all clopen $W \subseteq X$. An Esakia morphism $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$ for all $x \in X$

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X$; $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

the categories \mathcal{HA} and \mathcal{ESP}^{op} are equivalent.

In general, an **Esakia space** $X = \langle X; \leq, \tau \rangle$ comprises a po-set $\langle X; \leq \rangle$ and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;

 $\uparrow x$ is closed, for all $x \in X$;

 $\downarrow W$ is clopen, for all clopen $W \subseteq X$.

An **Esakia morphism** $h: X \to Y$ between such spaces is a continuous function such that $h[\uparrow x] = \uparrow h(x)$, for all $x \in X$.

Depth: Let **A** be a Heyting algebra, with dual $\mathbf{A}_* = \langle \Pr \mathbf{A}; \subseteq, \tau \rangle$.

We say that **A** (and **A**_{*}) have **depth** $n \in \omega$ if, in **A**_{*}, there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \ \mathcal{HA}_1 = \{\text{Boolean algebras}\}; \ \mathcal{HA}_3 \text{ already has } 2^{\aleph_0} \text{ subvarieties [Kuznetsov 1974]}$

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that **A** (and **A**_{*}) have **depth** $n \in \omega$ if, in **A**_{*}, there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \ \mathcal{HA}_1 = \{\text{Boolean algebras}\}; \ \mathcal{HA}_3 \text{ already has } 2^{\aleph_0} \text{ subvarieties [Kuznetsov 1974]}$

Depth: Let *A* be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$. We say that *A* (and *A*_{*}) have depth $n \in \omega$ if, in *A*_{*}, there's a

chain $p_1 < ... < p_n$, but no chain $q_1 < ... < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \ \mathcal{HA}_1 = \{\text{Boolean algebras}\}; \ \mathcal{HA}_3 \text{ already has } 2^{\aleph_0} \text{ subvarieties [Kuznetsov 1974]}$

Depth: Let *A* be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$. We say that *A* (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \ \mathcal{HA}_1 = \{\text{Boolean algebras}\}; \ \mathcal{HA}_3 \text{ already has } 2^{\aleph_0} \text{ subvarieties } [\text{Kuznetsov 1974}]$

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that A (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has depth $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{$ trivials $\}; \mathcal{HA}_1 = \{$ Boolean algebras $\}; \mathcal{HA}_3$ already has 2^{\aleph_0} subvarieties [Kuznetsov 1974]

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that A (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has depth $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{$ trivials $\}; \mathcal{HA}_1 = \{$ Boolean algebras $\}; \mathcal{HA}_3$ already has 2^{\aleph_0} subvarieties [Kuznetsov 1974]

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that A (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{$ trivials $\}; \mathcal{HA}_1 = \{$ Boolean algebras $\}; \mathcal{HA}_3$ already has 2^{\aleph_0} subvarieties [Kuznetsov 1974]

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that A (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \mathcal{HA}_1 = \{\text{Boolean algebras}\};$

 \mathcal{HA}_3 already has 2^{\aleph_0} subvarieties [Kuznetsov 1974].

Depth: Let **A** be a Heyting algebra, with dual $A_* = \langle \Pr A; \subseteq, \tau \rangle$.

We say that A (and A_*) have depth $n \in \omega$ if, in A_* , there's a chain $p_1 < \ldots < p_n$, but no chain $q_1 < \ldots < q_{n+1}$.

Depths of *elements* of A_* are defined similarly.

We say that $\mathcal{K} \subseteq \mathcal{HA}$ has **depth** $\leq n$ if all $\mathcal{A} \in \mathcal{K}$ do.

Fact. $\mathcal{HA}_n := \{ \mathbf{A} \in \mathcal{HA} : \operatorname{depth}(\mathbf{A}) \leq n \}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

 $\mathcal{HA}_0 = \{\text{trivials}\}; \ \mathcal{HA}_1 = \{\text{Boolean algebras}\}; \ \mathcal{HA}_3 \text{ already has } 2^{\aleph_0} \text{ subvarieties [Kuznetsov 1974]}.$

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.] We induct on n, the case n = 0 being trivial. Let n > 0. W.l.o.g., we can restrict to the following situation, in which $h: \mathbf{X} \rightarrow \mathbf{Y}$ is a \mathcal{K}_* -mono, with $x \neq y$ in \mathbf{X} , where $X = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

W.l.o.g., we can restrict to the following situation, in which $h: X \to Y$ is a \mathcal{K}_* -mono, with $x \neq y$ in X, where $X = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

W.l.o.g., we can restrict to the following situation, in which $h: X \to Y$ is a \mathcal{K}_* -mono, with $x \neq y$ in X, where $X = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

W.l.o.g., we can restrict to the following situation, in which $h: X \to Y$ is a \mathcal{K}_* -mono, with $x \neq y$ in X, where $X = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

W.l.o.g., we can restrict to the following situation, in which $h: \mathbf{X} \to \mathbf{Y}$ is a \mathcal{K}_* -mono, with $x \neq y$ in \mathbf{X} , where $X = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

W.l.o.g., we can restrict to the following situation, in which $h: \mathbf{X} \to \mathbf{Y}$ is a \mathcal{K}_* -mono, with $x \neq y$ in \mathbf{X} , where $\mathbf{X} = \uparrow \{x, y\}$ and — with a view to contradiction — h(x) = h(y).

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

Here, $P := \{u \in X : depth(u) < n\}$. By the induction hypothesis, $h|_P$ is one-to-one, so x or y has depth = n.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

Here, $P := \{u \in X : depth(u) < n\}$. By the induction hypothesis, $h|_P$ is one-to-one, so x or y has depth = n.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

Here, $P := \{u \in X : depth(u) < n\}$. By the induction hypothesis, $h|_P$ is one-to-one, so x or y has depth = n.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_* -monomorphisms h are injective. [Here, $h \circ f = h \circ g \implies f = g$.]

We induct on *n*, the case n = 0 being trivial. Let n > 0.

Here, $P := \{u \in X : depth(u) < n\}$. By the induction hypothesis, $h|_P$ is one-to-one, so x or y has depth = n.

Case: *x*, *y* both have depth *n*. (The other case is easier.)

As *h* is an \mathcal{ESP} -morphism and $h|_{\mathcal{P}}$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 : W \to X$ differing only in that

 $g_1: z \mapsto x$, while $g_2: z \mapsto y$ (both: $x \mapsto x; y \mapsto y$).

Case: *x*, *y* both have depth *n*. (The other case is easier.)

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces. Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow y$

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 : W \to X$ differing only in that

 $g_1: z \mapsto x$, while $g_2: z \mapsto y$ (both: $x \mapsto x; y \mapsto y$).
As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 : W \to X$ differing only in that

 $g_1: z \mapsto x$, while $g_2: z \mapsto y$ (both: $x \mapsto x; y \mapsto y$).

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 : W \to X$ differing only in that

 $g_1: z \mapsto x$, while $g_2: z \mapsto y$ (both: $x \mapsto x; y \mapsto y$).

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 \colon W \to X$ differing only in that $g_1 \colon z \mapsto x$, while $g_2 \colon z \mapsto y$ (both: $x \mapsto x$; $y \mapsto y$).

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2: W \to X$ differing only in that

 $g_1: z \mapsto x$, while $g_2: z \mapsto y$ (both: $x \mapsto x; y \mapsto y$).

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2: W \to X$ differing only in that

 $g_1: \mathbf{z} \mapsto \mathbf{x}$, while $g_2: \mathbf{z} \mapsto \mathbf{y}$ (both: $\mathbf{x} \mapsto \mathbf{x}; \mathbf{y} \mapsto \mathbf{y}$).

As *h* is an \mathcal{ESP} -morphism and $h|_P$ is one-to-one, we can show that *x* and *y* have the same covers in *X*.

It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Let **W** be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound *a* of *x* in *X* yields copies $a_x > x$, $a_y > y$ and $a_z > z$ of itself in *W*. Sending these back to *a*, we get Esakia morphisms $g_1, g_2 : W \to X$ differing only in that

 $g_1: \mathbf{z} \mapsto \mathbf{x}$, while $g_2: \mathbf{z} \mapsto \mathbf{y}$ (both: $\mathbf{x} \mapsto \mathbf{x}; \mathbf{y} \mapsto \mathbf{y}$).

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $\mathcal{W} \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\boldsymbol{A}_* \cong \boldsymbol{W} := (\uparrow x) \, \dot{\cup} \, (\uparrow y) \, \dot{\cup} \, (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

◆ロト★聞▶★臣▶★臣▶ 臣 のへで

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

・ロト・西・・日・・日・ つくぐ

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $\mathcal{W} \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

◆ロト★聞▶★臣▶★臣▶ 臣 のへで

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $\mathcal{W} \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i: (\uparrow x) \to X$ is an \mathcal{ESP} -morphism, so $i_*: X^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $\mathcal{W} \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i: (\uparrow x) \to X$ is an \mathcal{ESP} -morphism, so $i_*: X^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $\mathcal{W} \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}.$

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

◆ロト★聞▶★臣▶★臣▶ 臣 のへで

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}$.

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

▲ロ▶▲圖▶▲圖▶▲圖▶ ■ のの⊙

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i: (\uparrow x) \to X$ is an \mathcal{ESP} -morphism, so $i_*: X^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}$.

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\boldsymbol{A}_* \cong \boldsymbol{W} := (\uparrow x) \, \dot{\cup} \, (\uparrow y) \, \dot{\cup} \, (\uparrow z),$

so $W \in \mathcal{K}_*$, as required.

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}$.

So, $\mathbf{A} := (\uparrow \mathbf{x})^* \times (\uparrow \mathbf{y})^* \times (\uparrow \mathbf{z})^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

 $\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i: (\uparrow x) \to X$ is an \mathcal{ESP} -morphism, so $i_*: X^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}$.

So, $\mathbf{A} := (\uparrow \mathbf{x})^* \times (\uparrow \mathbf{y})^* \times (\uparrow \mathbf{z})^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

$$\mathbf{A}_* \cong \mathbf{W} := (\uparrow x) \dot{\cup} (\uparrow y) \dot{\cup} (\uparrow z),$$

Since $g_1 \neq g_2$, this will contradict the fact that *h* is a \mathcal{K}_* -monomorphism, *provided* that $W \in \mathcal{K}_*$.

As $\uparrow x$ is a closed up-set of **X**, the inclusion $i: (\uparrow x) \to \mathbf{X}$ is an \mathcal{ESP} -morphism, so $i_*: \mathbf{X}^* \to (\uparrow x)^*$ is onto, i.e.,

 $(\uparrow x)^* \in \mathbb{H}(X^*) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_* is a variety).

So, $(\uparrow x)^*, (\uparrow y)^*, (\uparrow z)^* \in \mathcal{K}$.

So, $\mathbf{A} := (\uparrow x)^* \times (\uparrow y)^* \times (\uparrow z)^* \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}.$

As it happens,

$$\mathbf{A}_* \cong \mathbf{W} := (\uparrow \mathbf{x}) \dot{\cup} (\uparrow \mathbf{y}) \dot{\cup} (\uparrow \mathbf{z}),$$

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(A)$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(A)$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(A)$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(A)$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

$\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

The variety $\mathbb{V}(\mathbf{A})$ generated by the Heyting algebra \mathbf{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\mathbf{A})$ -epic subalgebra.

 $\mathbb{V}(\mathbf{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.