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In a concrete category K, a morphism h : A −→ B is called a
(K-) epimorphism when, for any K-morphisms f ,g : B −→ C,

if f ◦ h = g ◦ h, then f = g.
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Note: (1) Surjective K-morphisms are K-epimorphisms.

(2) We say that K has the ES property if all K-epimorphisms
are surjective.

(3) A variety K has the ES property iff no B ∈ K has a
(K-) epic (proper) subalgebra D, i.e., one such that any
K-morphism f : B −→ C is determined by f |D .
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(4) {Groups}, {R-modules}, {Lattices}, {Semilattices} and
{Boolean algebras} are varieties with the ES property.

(5) The variety {Rings} lacks ES, as Z is epic in Q.

This is because, although multiplicative inverses needn’t exist,
they are implicitly definable in rings—i.e., uniquely
determined or non-existent.

(6) The ES property needn’t persist in subvarieties:
it holds in {Lattices}, but not in {Distributive Lattices}, where
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This is due to the uniqueness of existent complements in
distributive lattices.
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Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



Why study ES? Let K be a variety algebraizing a logic `,

e.g., {Boolean algebras} ←→ classical propositional logic,
or {Heyting algebras} ←→ intuitionistic propositional logic.

Theorem. (Blok & Hoogland, 2006) K has the ES property iff
` has the infinite Beth (definability) property, which means:

whenever Γ ⊆ Form(X ∪̇ Z ) and

Γ ∪ h[Γ]` z↔h(z)

for all z ∈ Z and all substitutions h (of formulas for variables)
such that h(x) = x for all x ∈ X ,

THEN

for each z ∈ Z , there’s a formula ϕz ∈ Form(X ) such that

Γ` z↔ϕz .



The finite Beth property makes the same demand, but only
when Z is finite.

Theorem. (Németi, 1984) ` has the finite Beth property iff
K has the weak ES property, which means:

every ‘almost onto’ K-epimorphism is onto,

where ‘h : A −→ B is almost onto’ means that B is generated by
h[A] ∪ {b} for some b ∈ B.

Problem. Does the finite Beth property imply the infinite one?

Blok-Hoogland Conjecture: No.
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In algebraic terms:

Question. Does weak ES imply ES (at least for varieties)?

Yes, for amalgamable varieties (known), so we eschew these.

Where to look?

Although {Boolean algebras} have ES, the 2ℵ0 varieties of
Heyting algebras ALL have weak ES (Kreisel, 1960), but only
finitely many of them are amalgamable (Maksimova, 1970s).

HA := {all Heyting algebras} has ES.

Question. Which subvarieties ofHA have ES?

Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.
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NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then
it has surjective epimorphisms. (2ℵ0 examples.)

[Known: finitely generated⇒ finite depth⇒ locally finite.]

Corollary. Every finitely generated variety of Heyting algebras
has surjective epimorphisms.

[In contrast, it’s known that only finitely many subvarieties of
HA have the so-called strong ES property: whenever
A 6 B ∈ K and b ∈ B\A, there are two K-morphisms
f ,g : B −→ C that agree on A but not at b (Maksimova, 2000).]

Corollary. Every variety of Gödel algebras (i.e., of subdirect
products of totally ordered Heyting algebras) has ES.
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Corollary. Every variety of Gödel algebras (i.e., of subdirect
products of totally ordered Heyting algebras) has ES.



NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then
it has surjective epimorphisms. (2ℵ0 examples.)

[Known: finitely generated⇒ finite depth⇒ locally finite.]

Corollary. Every finitely generated variety of Heyting algebras
has surjective epimorphisms.

[In contrast, it’s known that only finitely many subvarieties of
HA have the so-called strong ES property: whenever
A 6 B ∈ K and b ∈ B\A, there are two K-morphisms
f ,g : B −→ C that agree on A but not at b (Maksimova, 2000).]
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Everything said thus far applies equally to Brouwerian
algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is
tabular—or more generally if its theorems include a formula
from the sequence

h0 := y ; hn := xn∨ (xn→hn−1) (0 < n ∈ ω),
then it has the infinite Beth property. Likewise all Gödel logics.

Even the finite Beth property fails in all axiomatic extensions
of Hajek’s Basic Logic (BL), excepting the Gödel logics
[Montagna, 2006]. Likewise many relevance logics
[Urquhart, 1999], but new exceptions emerge here.
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Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

A = 〈A; ·,→,∧,∨,e〉.

[〈A;∧,∨〉 is a lattice and 〈A; ·,e〉 a commutative monoid with

x · y 6 z ⇐⇒ y 6 x→ z (law of residuation).]

Several varieties of these are categorically equivalent to
varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

The ES property is categorical, so it transfers.

With more work, we obtain:



Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

A = 〈A; ·,→,∧,∨,e〉.

[〈A;∧,∨〉 is a lattice and 〈A; ·,e〉 a commutative monoid with

x · y 6 z ⇐⇒ y 6 x→ z (law of residuation).]

Several varieties of these are categorically equivalent to
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varieties of (enriched) Gödel algebras [Galatos & R, 2012/15].

The ES property is categorical, so it transfers.

With more work, we obtain:



Theorem. Every variety of Sugihara monoids has ES.

[A Sugihara monoid A = 〈A; ·,→,∧,∨,¬,e〉 is a residuated
distributive lattice with an involution ¬, where · is idempotent.

It needn’t be integral, i.e., e needn’t be its top element.]

The lattice of varieties of Sugihara monoids is denumerable, but
not a chain.

Corollary. Every axiomatic extension of the relevance logic
RMt has the infinite Beth property.
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The proof of ES for varieties of Heyting algebras
A = 〈A;→,∧,∨,>,⊥〉 of finite depth uses Esakia duality.

From A, we construct an Esakia space A∗ := 〈Pr A;⊆, τ 〉.

Pr A is the set of all prime filters of A (i.e., all lattice filters F
with > ∈ F , such that A\F is closed under ∨), and τ is a
certain topology on Pr A.

For a ∈ A, we define ϕ(a) = {F ∈ Pr A : a ∈ F} and
ϕ(a)c = {F ∈ Pr A : a /∈ F}.

A sub-basis for τ is then {ϕ(a) : a ∈ A} ∪ {ϕ(a)c : a ∈ A}.

For aHA–morphism h : A −→ B, define h∗ : B∗ −→ A∗ by
F 7→ h−1[F ].
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Theorem. [Esakia, 1974] A duality betweenHA and the
category ESP of Esakia spaces (and morphisms) is
established by the functor A 7→ A∗ ; h 7→ h∗. I.e.,

the categoriesHA and ESPop are equivalent.

In general, an Esakia space X = 〈X ;6, τ 〉 comprises a po-set
〈X ;6〉 and a compact Hausdorff topology τ on X in which

every open set is a union of clopen sets;
↑x is closed, for all x ∈ X ;
↓W is clopen, for all clopen W ⊆ X .

An Esakia morphism h : X −→ Y between such spaces is a
continuous function such that h[ ↑x ] = ↑h(x), for all x ∈ X .

The reverse functor X 7→ X ∗ ∈HA; h 7→ h∗ sends X to its set
of clopen up-sets (including X and ∅), equipped with operations
∩,∪ and U→V := X\ ↓(U\V ), while h∗ : U 7→ h−1[U].
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If K is a subvariety ofHA, then (−)∗ and (−)∗ restrict to a
duality between K and K∗ := I{A∗ : A ∈ K} ⊆ ESP .

Depth: Let A be a Heyting algebra, with dual A∗ = 〈Pr A;⊆, τ 〉.

We say that A (and A∗) have depth n ∈ ω if, in A∗, there’s a
chain p1 < . . . < pn, but no chain q1 < . . . < qn+1.

Depths of elements of A∗ are defined similarly.

We say that K ⊆HA has depth 6 n if all A ∈ K do.

Fact. HAn := {A ∈HA : depth(A) 6 n} is a variety, ∀n ∈ ω.
[Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

HA0 = {trivials}; HA1 = {Boolean algebras};
HA3 already has 2ℵ0 subvarieties [Kuznetsov 1974].
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Theorem. Let K ⊆HA be a variety of finite depth, n say.
Then K has surjective epimorphisms.

Proof sketch. First, K has ES iff all K∗-monomorphisms h
are injective. [Here, h ◦ f = h ◦ g =⇒ f = g.]
We induct on n, the case n = 0 being trivial. Let n > 0.
W.l.o.g., we can restrict to the following situation, in which
h : X −→ Y is a K∗-mono, with x 6= y in X , where X = ↑{x , y}
and — with a view to contradiction — h(x) = h(y).
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Here, P := {u ∈ X : depth(u) < n}. By the induction
hypothesis, h|P is one-to-one, so x or y has depth = n.
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Case: x , y both have depth n. (The other case is easier.)

As h is an ESP-morphism and h|P is one-to-one, we can show
that x and y have the same covers in X .
It follows that ↑x and ↑y are isomorphic Esakia spaces.
Let W be the disjoint union of ↑x , ↑y and a copy ↑z of ↑x .
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Each strict upper bound a of x in X yields copies ax > x ,
ay > y and az > z of itself in W . Sending these back to a, we
get Esakia morphisms g1,g2 : W −→ X differing only in that

g1 : z 7→ x , while g2 : z 7→ y (both : x 7→ x ; y 7→ y ).
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g1 : z 7→ x , while g2 : z 7→ y (both : x 7→ x ; y 7→ y ).
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Now h ◦ g1 = h ◦ g2 : W −→ Y ∈ K∗ (as h(x) = h(y)).

Since g1 6= g2, this will contradict the fact that h is a
K∗-monomorphism, provided that W ∈ K∗.

As ↑x is a closed up-set of X , the inclusion i : ( ↑x) −→ X is an
ESP-morphism, so i∗ : X ∗ −→ ( ↑x)∗ is onto, i.e.,

( ↑x)∗ ∈ H(X ∗) ⊆ H(K) ⊆ K (since K∗ is a variety).

So, ( ↑x)∗, ( ↑y)∗, ( ↑z)∗ ∈ K.

So, A := ( ↑x)∗× ( ↑y)∗× ( ↑z)∗ ∈ P(K) ⊆ K.

As it happens,

A∗ ∼= W := ( ↑x) ∪̇ ( ↑y) ∪̇ ( ↑z),

so W ∈ K∗, as required. �
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A proper epic subalgebra in a Heyting algebra variety
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The variety V(A) generated by the Heyting
algebra A on the left lacks the ES property,
confirming the Blok-Hoogland conjecture. The
red elements form a V(A)-epic subalgebra.

V(A) is locally finite and has a fairly simple
finite axiomatization.

An explicit failure of the infinite Beth property
can be extracted from this example.

In the finitely subdirectly irreducible (but not all)
members of V(A), the ‘incomparable companion’
of an element is implicitly definable, but not
explicitly.
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