Epimorphisms in Varieties of Residuated Structures

JAMES RAFTERY
(Univ. Pretoria, South Africa)
JOINT WORK WITH

Guram Bezhanishvili (New Mexico State Univ., USA)
Tommaso Moraschini (Acad. Sci., Czech Republic)

In a concrete category \mathcal{K}, a morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called a $(\mathcal{K}$-) epimorphism when, for any \mathcal{K}-morphisms $f, g: \boldsymbol{B} \rightarrow \boldsymbol{C}$,

$$
\text { if } f \circ h=g \circ h \text {, then } f=g \text {. }
$$

Note: (1) Surjective \mathcal{K}-morphisms are \mathcal{K}-epimorphisms.

(2) We say that $\mathcal{X C}$ has the ES property if all \mathcal{C}-opimorphisms are surjective.
(3) A variety \mathcal{K} has the ES property iff no $B \in \mathcal{K}$ has a ($\mathcal{K}-$) epic (proper) subalgebra D, i.e., one such that ary \mathcal{K}-morphism $f: B \rightarrow C$ is determined by $\left.f\right|_{D}$.

In a concrete category \mathcal{K}, a morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called a (\mathcal{K}-) epimorphism when, for any \mathcal{K}-morphisms $f, g: \boldsymbol{B} \rightarrow \boldsymbol{C}$,

$$
\text { if } f \circ h=g \circ h \text {, then } f=g \text {. }
$$

Note: (1) Surjective \mathcal{K}-morphisms are \mathcal{K}-epimorphisms.
(2) We say that \mathcal{K} has the ES property if all \mathcal{K}-epimorphisms are surjective.
(3) A variety \mathcal{K} has the $E S$ property iff no $B \in \mathcal{K}$ has a (\mathcal{K}-) epic (proper) subalgebra D, i.e., one such that any \mathcal{K}-morphism $f: B \rightarrow C$ is determined by $\left.f\right|_{D}$.

In a concrete category \mathcal{K}, a morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called a $(\mathcal{K}$-) epimorphism when, for any \mathcal{K}-morphisms $f, g: \boldsymbol{B} \rightarrow \boldsymbol{C}$,

$$
\text { if } f \circ h=g \circ h \text {, then } f=g \text {. }
$$

Note: (1) Surjective \mathcal{K}-morphisms are \mathcal{K}-epimorphisms.

In a concrete category \mathcal{K}, a morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called a $(\mathcal{K}$-) epimorphism when, for any \mathcal{K}-morphisms $f, g: \boldsymbol{B} \rightarrow \boldsymbol{C}$,

$$
\text { if } f \circ h=g \circ h \text {, then } f=g \text {. }
$$

Note: (1) Surjective \mathcal{K}-morphisms are \mathcal{K}-epimorphisms.
(2) We say that \mathcal{K} has the ES property if all \mathcal{K}-epimorphisms are surjective.
(3) A variety \mathbb{K} has the $E S$ property iff no $B \in \mathbb{C}$ has a

In a concrete category \mathcal{K}, a morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called a $(\mathcal{K}-$-) epimorphism when, for any \mathcal{K}-morphisms $f, g: \boldsymbol{B} \rightarrow \boldsymbol{C}$,

$$
\text { if } f \circ h=g \circ h \text {, then } f=g \text {. }
$$

Note: (1) Surjective \mathcal{K}-morphisms are \mathcal{K}-epimorphisms.
(2) We say that \mathcal{K} has the ES property if all \mathcal{K}-epimorphisms are surjective.
(3) A variety \mathcal{K} has the ES property iff no $B \in \mathcal{K}$ has a (\mathcal{K}-) epic (proper) subalgebra D, i.e., one such that any \mathcal{K}-morphism $f: B \rightarrow \boldsymbol{C}$ is determined by $\left.f\right|_{D}$.
(4) $\{$ Groups $\}$, \{R-modules $\},\{$ Lattices $\}$, \{Semilattices $\}$ and \{Boolean algebras\} are varieties with the ES property.
> (5) The variety \{Rings\} lacks ES, as \mathbb{Z} is epic in \mathbb{Q}.

> This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely
> determined or non-existent.
(6) The ES property needn't persist in subvarieties:
it holds in \{Lattices\}, but not in \{Distributive Lattices\}, where

This is due to the uniqueness of existent complements in distributive lattices.
(4) \{Groups\}, \{R-modules\}, \{Lattices \}, \{Semilattices\} and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.
(6) The ES property needn't persist in subvarieties: it holds in \{Lattices\}, but not in \{Distributive Lattices\}, where

This is due to the uniqueness of existent complements in distributive lattices.
(4) \{Groups\}, \{R-modules\}, \{Lattices \}, \{Semilattices\} and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.

(4) $\{$ Groups $\}$, \{R-modules $\},\{$ Lattices $\}$, \{Semilattices $\}$ and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.
(6) The ES property needn't persist in subvarieties:

This is due to the uniqueness of existent complements in distributive lattices.
(4) $\{$ Groups $\}$, \{R-modules $\},\{$ Lattices $\}$, \{Semilattices $\}$ and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.
(6) The ES property needn't persist in subvarieties: it holds in \{Lattices\}, but not in \{Distributive Lattices\},

This is due to the uniqueness of existent complements in distributive lattices.
(4) $\{$ Groups $\}$, \{R-modules $\},\{$ Lattices $\}$, \{Semilattices $\}$ and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.
(6) The ES property needn't persist in subvarieties:
it holds in \{Lattices\}, but not in \{Distributive Lattices\}, where

is epic in

This is due to the uniqueness of existent complements in distributive lattices.
(4) $\{$ Groups $\}$, \{R-modules $\},\{$ Lattices $\}$, \{Semilattices $\}$ and \{Boolean algebras\} are varieties with the ES property.
(5) The variety $\{$ Rings $\}$ lacks $E S$, as \mathbb{Z} is epic in \mathbb{Q}.

This is because, although multiplicative inverses needn't exist, they are implicitly definable in rings-i.e., uniquely determined or non-existent.
(6) The ES property needn't persist in subvarieties:
it holds in \{Lattices\}, but not in \{Distributive Lattices\}, where

is epic in

This is due to the uniqueness of existent complements in distributive lattices.

Why study ES? Let \mathcal{K} be a variety algebraizing a logic + ,
e.g., $\{$ Boolean algebras $\} \longleftrightarrow$ classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) K has the ES property IIf \vdash has the infinite Beth (definability) property, which means:
whenever $\boldsymbol{\Gamma} \subseteq \operatorname{Form}(X \dot{\cup} Z)$ and

$$
\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash>\leftrightarrow h(z)
$$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,

THEN
for each $z \in Z$, there's a formula $\varphi_{z} \in \operatorname{Form}(X)$ such that

$$
\Gamma \vdash z \leftrightarrow \varphi_{z} .
$$

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash, e.g., $\{$ Boolean algebras\} \longleftrightarrow classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) K has the ES property iff \vdash has the infinite Beth (definability) property, which means:
whenever $\Gamma \subseteq \operatorname{Form}(X \dot{\cup} Z)$ and

$$
\boldsymbol{\Gamma} \cup h[\boldsymbol{\Gamma}] \vdash>\leftrightarrow h(z)
$$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,

THEN
for each $z \in Z$, there's a formula $\varphi_{z} \in \operatorname{Form}(X)$ such that

$$
\Gamma \vdash z \leftrightarrow \varphi_{z} .
$$

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash, e.g., $\{$ Boolean algebras $\} \longleftrightarrow$ classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the infinite Beth (definability) property, which means:

whenever $\Gamma \subseteq$ Form $(X \cup Z)$ and

$$
\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)
$$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,

THEN
for each $z \in Z$, there's a formula $\varphi_{z} \in \operatorname{Form}(X)$ such that

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash, e.g., $\{$ Boolean algebras $\} \longleftrightarrow$ classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the infinite Beth (definability) property,
whenever $\Gamma \subseteq \operatorname{Form}(X \cup \mathcal{U})$ and

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,

THEN
for each $z \in Z$, there's a formula $\varphi_{z} \in \operatorname{Form}(X)$ such that

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash, e.g., $\{$ Boolean algebras $\} \longleftrightarrow$ classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the infinite Beth (definability) property, which means:
whenever $\boldsymbol{\Gamma} \subseteq \operatorname{Form}(X \dot{\cup} Z)$ and

$$
\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)
$$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,
for each $z \in Z$, there's a formula $\varphi_{z} \in$ Form (X) such that

Why study ES? Let \mathcal{K} be a variety algebraizing a logic \vdash, e.g., $\{$ Boolean algebras $\} \longleftrightarrow$ classical propositional logic, or $\{$ Heyting algebras $\} \longleftrightarrow$ intuitionistic propositional logic.

Theorem. (Blok \& Hoogland, 2006) \mathcal{K} has the ES property iff \vdash has the infinite Beth (definability) property, which means:
whenever $\boldsymbol{\Gamma} \subseteq \operatorname{Form}(X \dot{\cup} Z)$ and

$$
\mathbf{\Gamma} \cup h[\mathbf{\Gamma}] \vdash z \leftrightarrow h(z)
$$

for all $z \in Z$ and all substitutions h (of formulas for variables) such that $h(x)=x$ for all $x \in X$,

THEN

for each $z \in Z$, there's a formula $\varphi_{z} \in \operatorname{Form}(X)$ such that

$$
\Gamma \vdash z \leftrightarrow \varphi_{z}
$$

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:

every 'almost onto’ \mathcal{K}-epimorphism is onto,

\square $h[A] \cup\{b\}$ for some $b \in B$.

> Problem. Does the finite Beth property imply the infinite one?

Blok-Hoogland Conjecture: No.

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:
every 'almost onto' \mathcal{K}-epimorphism is onto,
where ' $h: A \rightarrow B$ is almost onto' means that B is generated by
$h[A] \cup\{b\}$ for some $b \in B$.

Problem. Does the finite Beth property imply the infinite one?
Blok-Hoogland Conjecture: No.

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:
every 'almost onto’ \mathcal{K}-epimorphism is onto,
\square

Problem. Does the finite Beth property imply the infinite one?
Blok-Hoogland Conjecture: No.

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:
every ‘almost onto’ \mathcal{K}-epimorphism is onto,
where ' $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is almost onto' means that B is generated by $h[A] \cup\{b\}$ for some $b \in B$.

Problem. Does the finite Beth property imply the infinite one?
Blok-Hoogland Conjecture: No.

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:
every 'almost onto’ \mathcal{K}-epimorphism is onto,
where ' $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is almost onto' means that B is generated by $h[A] \cup\{b\}$ for some $b \in B$.

Problem. Does the finite Beth property imply the infinite one?

The finite Beth property makes the same demand, but only when Z is finite.

Theorem. (Németi, 1984) \vdash has the finite Beth property iff \mathcal{K} has the weak ES property, which means:
every 'almost onto' \mathcal{K}-epimorphism is onto,
where ' $h: A \rightarrow B$ is almost onto' means that B is generated by $h[A] \cup\{b\}$ for some $b \in B$.

Problem. Does the finite Beth property imply the infinite one?
Blok-Hoogland Conjecture: No.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?

Yes, for amalgamable varieties (known), so we eschew these.

Where to look?

Although \{Doolean algebras\} have ES, the $2^{\$_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s). $\mathcal{H} \mathcal{A}:=$ \{all Heyting algebras $\}$ has ES

Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but on/y finitely many of them are amalgamable (Maksimova, 1970s). $\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.

Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?

Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Ânswer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although $\left\{\right.$ Boolean algebras\} have ES, the $2^{\$_{0}}$ varieties of
finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H A}:=\{$ all Heyting algebras $\}$ has ES

Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960),
finitely many of them are amalgamable
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.
Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).

Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.

Question.
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.
Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?

Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.
Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all.
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.
Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

In algebraic terms:
Question. Does weak ES imply ES (at least for varieties)?
Yes, for amalgamable varieties (known), so we eschew these.
Where to look?
Although \{Boolean algebras\} have ES, the $2^{\aleph_{0}}$ varieties of Heyting algebras ALL have weak ES (Kreisel, 1960), but only finitely many of them are amalgamable (Maksimova, 1970s).
$\mathcal{H} \mathcal{A}:=\{$ all Heyting algebras $\}$ has ES.
Question. Which subvarieties of $\mathcal{H} \mathcal{A}$ have ES?
Answer. Not all. (Blok-Hoogland Conjecture confirmed.)
Some of the counter-examples are locally finite.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property: whenever $A \leqslant B \in \mathcal{K}$ and $b \in B \backslash A$, there are two \mathcal{K}-morphisms $f, g: B \rightarrow C$ that agree on A but not at b (Maksimova, 2000).]

Corollary. Every variety of Gödel algebras (i.e., of subdirect products of totally ordered Heyting algebras) has ES.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. examples.)

[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property: whenever $A \leqslant B \in \mathcal{K}$ and $b \in B \backslash A$, there are two \mathcal{K}-morphisms $f, g: B \rightarrow C$ that agree on A but not at b (Maksimova, 2000).]

Corollary. Every variety of Gödel algebras (i.e., of subdirect products of totally ordered Heyting algebras) has ES.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property: whenever $A \leqslant B \in \mathcal{C}$ and $b \in B \backslash A$, there are two \mathcal{K}-morphisms $f, g: B \rightarrow C$ that agree on A but not at b (Maksimova, 2000).]

Corollary. Every variety of Gödel algebras (i.e., of subdirect products of totally ordered Heyting algebras) has ES.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]

Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.

\square
Corollary. Every variety of Gödel algebras (i.e., of subdirect products of totally ordered Heyting algebras) has ES.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property:

\square

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property: whenever $A \leqslant B \in \mathcal{K}$ and $b \in B \backslash A$, there are two \mathcal{K}-morphisms $f, g: B \rightarrow \boldsymbol{C}$ that agree on A but not at b (Maksimova, 2000).]
products of totally ordered Heyting algebras) has ES.

NEW POSITIVE RESULTS

Theorem. If a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. ($2^{\aleph_{0}}$ examples.)
[Known: finitely generated \Rightarrow finite depth \Rightarrow locally finite.]
Corollary. Every finitely generated variety of Heyting algebras has surjective epimorphisms.
[In contrast, it's known that only finitely many subvarieties of $\mathcal{H} \mathcal{A}$ have the so-called strong ES property: whenever $A \leqslant B \in \mathcal{K}$ and $b \in B \backslash A$, there are two \mathcal{K}-morphisms $f, g: B \rightarrow \boldsymbol{C}$ that agree on A but not at b (Maksimova, 2000).]

Corollary. Every variety of Gödel algebras (i.e., of subdirect products of totally ordered Heyting algebras) has ES.

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular generally if its theorems include a formula
from the sequence
then it has the infinite Beth property. Likewise all Gödel logics.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics [Montagna, 2006]. Likewise many relevance logics [Urquhart, 1999], but new exceptions emerge here.

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega)
$$

then it has the infinite Beth property. Likewise all Gödel logics.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics [Montagna, 2006]. Likewise many relevance logics [Urquhart, 1999], but new exceptions emerge here.

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega),
$$

then it has the infinite Beth property.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega)
$$

then it has the infinite Beth property. Likewise all Gödel logics.

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega)
$$

then it has the infinite Beth property. Likewise all Gödel logics.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics [Montagna, 2006].

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega)
$$

then it has the infinite Beth property. Likewise all Gödel logics.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics [Montagna, 2006]. Likewise many relevance logics [Urquhart, 1999],

Everything said thus far applies equally to Brouwerian algebras, i.e., to possibly unbounded Heyting algebras.

Logical Interpretation:

Theorem. If a super-intuitionistic [or positive] logic is tabular-or more generally if its theorems include a formula from the sequence

$$
h_{0}:=y ; \quad h_{n}:=x_{n} \vee\left(x_{n} \rightarrow h_{n-1}\right) \quad(0<n \in \omega)
$$

then it has the infinite Beth property. Likewise all Gödel logics.
Even the finite Beth property fails in all axiomatic extensions of Hajek's Basic Logic (BL), excepting the Gödel logics [Montagna, 2006]. Likewise many relevance logics [Urquhart, 1999], but new exceptions emerge here.

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$[\langle A ; \wedge, \vee\rangle$ is a lattice and $\langle A ; \cdot, e\rangle$ a commutative monoid with $x \cdot y \leqslant z \Longleftrightarrow y \leqslant x \rightarrow z \quad$ (law of residuation)] $]$

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos \& R, 2012/15].

The ES property is categorical, so it transfers.
With more work, we obtain:

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$$
\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, e\rangle
$$

The ES property is categorical, so it transfers.
Witith more work, we obtain:

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$$
\boldsymbol{A}=\left\langle A_{;} \cdot, \rightarrow, \wedge, \vee, e\right\rangle .
$$

$[\langle A ; \wedge, \vee\rangle$ is a lattice and $\langle A ; \cdot, e\rangle$ a commutative monoid with

$$
x \cdot y \leqslant z \Longleftrightarrow y \leqslant x \rightarrow z \quad \text { (law of residuation).] }
$$

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos \& R, 2012/15].

The ES property is categorical, so it transfers.
With more work, we obtain:

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$$
\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, e\rangle
$$

[$\langle A ; \wedge, \vee\rangle$ is a lattice and $\langle A ; \cdot, e\rangle$ a commutative monoid with

$$
x \cdot y \leqslant z \Longleftrightarrow y \leqslant x \rightarrow z \quad \text { (law of residuation).] }
$$

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos \& R, 2012/15].

The ES property is categorical, so it transfers.
With more work, we obtain:

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$$
\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, e\rangle
$$

[$\langle A ; \wedge, \vee\rangle$ is a lattice and $\langle A ; \cdot, e\rangle$ a commutative monoid with

$$
x \cdot y \leqslant z \Longleftrightarrow y \leqslant x \rightarrow z \quad \text { (law of residuation).] }
$$

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos \& R, 2012/15].

The ES property is categorical, so it transfers.
With more work, we obtain:

Beyond Heyting/Brouwerian/BL algebras

More general than Heyting/BL algebras are residuated lattices

$$
\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, e\rangle
$$

[$\langle A ; \wedge, \vee\rangle$ is a lattice and $\langle A ; \cdot, e\rangle$ a commutative monoid with

$$
x \cdot y \leqslant z \Longleftrightarrow y \leqslant x \rightarrow z \quad \text { (law of residuation).] }
$$

Several varieties of these are categorically equivalent to varieties of (enriched) Gödel algebras [Galatos \& R, 2012/15].

The ES property is categorical, so it transfers.
With more work, we obtain:

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $A=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its ton element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM $^{\text {t }}$ has the infinite Beth property.

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM $^{\text {t }}$ has the infinite Beth property.

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM $^{\text {t }}$ has the infinite Beth property.

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM^{t} has the infinite Beth property.

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $A=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.
It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM $^{\text {t }}$ has the infinite Beth property.

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.

It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic RM^{t} has the infinite Beth property

Theorem. Every variety of Sugihara monoids has ES.
[A Sugihara monoid $\boldsymbol{A}=\langle A ; \cdot, \rightarrow, \wedge, \vee, \neg, e\rangle$ is a residuated distributive lattice with an involution \neg, where \cdot is idempotent.
It needn't be integral, i.e., e needn't be its top element.]
The lattice of varieties of Sugihara monoids is denumerable, but not a chain.

Corollary. Every axiomatic extension of the relevance logic $\mathbf{R M}^{t}$ has the infinite Beth property.

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From A, we construct an Esakia space $A_{*}:=\langle\operatorname{Pr} A ; \subseteq, \tau\rangle$.
$\operatorname{Pr} A$ is the set of all prime filters of A (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on Pr A.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and $\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\}$.
A sub-basis for τ is then $\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\}$
For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$, define $h_{*}: \boldsymbol{B}_{*} \rightarrow \boldsymbol{A}_{*}$ by $F \mapsto h^{-1}[F]$.

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} A$ is the set of all prime filters of A (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} \boldsymbol{A}$.

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under V), and τ is a
certain topology on $\operatorname{Pr} A$.
For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\} .
$$ $\begin{aligned} & \text { A sub-basis for } \tau \text { is then }\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\} .\end{aligned}$

\square For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$, define $h_{*}: \boldsymbol{B}_{*} \rightarrow \boldsymbol{A}_{*}$ by

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), certain topology on $\operatorname{Pr} A$.

For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$, define $h_{*}: \boldsymbol{B}_{*} \rightarrow \boldsymbol{A}_{*}$ by

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\} .
$$

A sub-basis for τ is then $\{\varphi(a)$
\qquad

The proof of $E S$ for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\} .
$$

A sub-basis for τ is then $\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\}$.

The proof of $E S$ for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\} .
$$

A sub-basis for τ is then $\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\}$.
For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$,

The proof of ES for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} \boldsymbol{A}: a \notin F\} .
$$

A sub-basis for τ is then $\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\}$.
For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$, define $h_{*}: \boldsymbol{B}_{*} \rightarrow \boldsymbol{A}_{*}$

The proof of $E S$ for varieties of Heyting algebras $\boldsymbol{A}=\langle A ; \rightarrow, \wedge, \vee, \top, \perp\rangle$ of finite depth uses Esakia duality.

From \boldsymbol{A}, we construct an Esakia space $\boldsymbol{A}_{*}:=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \boldsymbol{\tau}\rangle$.
$\operatorname{Pr} \boldsymbol{A}$ is the set of all prime filters of \boldsymbol{A} (i.e., all lattice filters F with $T \in F$, such that $A \backslash F$ is closed under \vee), and τ is a certain topology on $\operatorname{Pr} A$.

For $a \in A$, we define $\varphi(a)=\{F \in \operatorname{Pr} A: a \in F\}$ and

$$
\varphi(a)^{c}=\{F \in \operatorname{Pr} A: a \notin F\} .
$$

A sub-basis for τ is then $\{\varphi(a): a \in A\} \cup\left\{\varphi(a)^{c}: a \in A\right\}$.
For a $\mathcal{H} \mathcal{A}$-morphism $h: \boldsymbol{A} \rightarrow \boldsymbol{B}$, define $h_{*}: \boldsymbol{B}_{*} \rightarrow \boldsymbol{A}_{*}$ by $F \mapsto h^{-1}[F]$.

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$.
the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S} P^{\circ p}$ are equivalent.

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}^{\mathrm{op}}$ are equivalent.

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}^{\circ \mathrm{P}}$ are equivalent.

In general, an Esakia space $\boldsymbol{X}=\langle X ; \leqslant, \boldsymbol{\tau}\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X ;$
$\downarrow W$ is clopen, for all clopen $W \subseteq X$
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.
\square

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}^{\circ \mathrm{P}}$ are equivalent.

In general, an Esakia space $\boldsymbol{X}=\langle X ; \leqslant, \boldsymbol{\tau}\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
\square
\square

Theorem. [Esakia, 1974] A duality between $\mathcal{H A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}{ }^{\text {op }}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets; $\uparrow x$ is closed, for all $x \in X$;

An Esakia morphism $h: X \rightarrow Y$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

Theorem. [Esakia, 1974] A duality between $\mathcal{H A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}{ }^{\text {op }}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.

Theorem. [Esakia, 1974] A duality between $\mathcal{H A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S P}{ }^{\mathrm{op}}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S} \mathcal{P}^{\mathrm{op}}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

The reverse functor $\boldsymbol{X} \mapsto \boldsymbol{X}^{*} \in \mathcal{H} \mathcal{A} ; h \mapsto h^{*}$

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S} \mathcal{P}^{\mathrm{op}}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

The reverse functor $\boldsymbol{X} \mapsto \boldsymbol{X}^{*} \in \mathcal{H} \mathcal{A}$; $h \mapsto h^{*}$ sends \boldsymbol{X} to its set of clopen up-sets (including X and \emptyset),

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. l.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S} \mathcal{P}^{\mathrm{op}}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

The reverse functor $\boldsymbol{X} \mapsto \boldsymbol{X}^{*} \in \mathcal{H} \mathcal{A}$; $h \mapsto h^{*}$ sends \boldsymbol{X} to its set of clopen up-sets (including X and \emptyset), equipped with operations \cap, \cup and $U \rightarrow V:=X \backslash \downarrow(U \backslash V)$,

Theorem. [Esakia, 1974] A duality between $\mathcal{H} \mathcal{A}$ and the category $\mathcal{E S P}$ of Esakia spaces (and morphisms) is established by the functor $\boldsymbol{A} \mapsto \boldsymbol{A}_{*} ; h \mapsto h_{*}$. I.e., the categories $\mathcal{H} \mathcal{A}$ and $\mathcal{E S} \mathcal{P}^{\mathrm{op}}$ are equivalent.

In general, an Esakia space $X=\langle X ; \leqslant, \tau\rangle$ comprises a po-set $\langle X ; \leqslant\rangle$ and a compact Hausdorff topology τ on X in which every open set is a union of clopen sets;
$\uparrow x$ is closed, for all $x \in X$;
$\downarrow W$ is clopen, for all clopen $W \subseteq X$.
An Esakia morphism $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ between such spaces is a continuous function such that $h[\uparrow x]=\uparrow h(x)$, for all $x \in X$.

The reverse functor $\boldsymbol{X} \mapsto \boldsymbol{X}^{*} \in \mathcal{H} \mathcal{A}$; $h \mapsto h^{*}$ sends \boldsymbol{X} to its set of clopen up-sets (including X and \emptyset), equipped with operations \cap, \cup and $U \rightarrow V:=X \backslash \downarrow(U \backslash V)$, while $h^{*}: U \mapsto h^{-1}[U]$.

If \mathcal{K} is a subvariety of $\mathcal{H A}$, then $(-)_{*}$ and (-)* restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let A be a Heyting algebra, with dual $A_{*}=\langle\operatorname{Pr} A ; \subseteq, \tau\rangle$. We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.

Depths of elements of A_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{A \in \mathcal{H} \mathcal{A}: \operatorname{depth}(A) \leqslant n\}$ is a variety, $\forall n \in \omega$.
[Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\} ;$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

If \mathcal{K} is a subvariety of $\mathcal{H A}$, then $(-)_{*}$ and (-)* restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that $A\left(\right.$ and $\left.A_{*}\right)$ have depth $n \in \omega$ if, in A_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$. Depths of elements of Λ are defined similarly. We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do. Fact. $\mathcal{H} \mathcal{A}_{n}:=\{\boldsymbol{A} \in \mathcal{H} \mathcal{A}: \operatorname{depth}(\boldsymbol{A}) \leqslant n\}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\} ;$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 197.4].

If \mathcal{K} is a subvariety of $\mathcal{H A}$, then $(-)_{*}$ and (-)* restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that $\boldsymbol{A}\left(\right.$ and $\left.\boldsymbol{A}_{*}\right)$ have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$,
Depths of elements of A_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{A \in \mathcal{H} \mathcal{A}: \operatorname{denth}(A)$ [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\} ;$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and (-$)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of A_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{A \in \mathcal{H} \mathcal{A}: \operatorname{depth}(A)$ [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\}$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and $(-)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of \boldsymbol{A}_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{\boldsymbol{A} \in \mathcal{H} \mathcal{A}: \operatorname{depth}(\boldsymbol{A})$ [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\}$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and $(-)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$.
We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of \boldsymbol{A}_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $\boldsymbol{A} \in \mathcal{K}$ do.

\square $\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and $(-)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of \boldsymbol{A}_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{\boldsymbol{A} \in \mathcal{H} \mathcal{A}: \operatorname{depth}(\boldsymbol{A}) \leqslant n\}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and $(-)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of \boldsymbol{A}_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{\boldsymbol{A} \in \mathcal{H} \mathcal{A}: \operatorname{depth}(\boldsymbol{A}) \leqslant n\}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]

$$
\mathcal{H} \mathcal{A}_{0}=\{\text { trivials }\} ; \mathcal{H} \mathcal{A}_{1}=\{\text { Boolean algebras }\} ;
$$

If \mathcal{K} is a subvariety of $\mathcal{H} \mathcal{A}$, then $(-)_{*}$ and $(-)^{*}$ restrict to a duality between \mathcal{K} and $\mathcal{K}_{*}:=\mathbb{I}\left\{\boldsymbol{A}_{*}: \boldsymbol{A} \in \mathcal{K}\right\} \subseteq \mathcal{E S P}$.

Depth: Let \boldsymbol{A} be a Heyting algebra, with dual $\boldsymbol{A}_{*}=\langle\operatorname{Pr} \boldsymbol{A} ; \subseteq, \tau\rangle$. We say that \boldsymbol{A} (and \boldsymbol{A}_{*}) have depth $n \in \omega$ if, in \boldsymbol{A}_{*}, there's a chain $p_{1}<\ldots<p_{n}$, but no chain $q_{1}<\ldots<q_{n+1}$.
Depths of elements of \boldsymbol{A}_{*} are defined similarly.
We say that $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ has depth $\leqslant n$ if all $A \in \mathcal{K}$ do.
Fact. $\mathcal{H} \mathcal{A}_{n}:=\{\boldsymbol{A} \in \mathcal{H} \mathcal{A}: \operatorname{depth}(\boldsymbol{A}) \leqslant n\}$ is a variety, $\forall n \in \omega$. [Ideas from Hosoi 1967; Ono 1970; Maksimova 1972.]
$\mathcal{H} \mathcal{A}_{0}=\{$ trivials $\} ; \mathcal{H} \mathcal{A}_{1}=\{$ Boolean algebras $\} ;$
$\mathcal{H} \mathcal{A}_{3}$ already has $2^{\aleph_{0}}$ subvarieties [Kuznetsov 1974].

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.

Proof sketch. First, \mathcal{K} has ES iff all $\mathbb{K}_{*}-m o n o m o r p h i s m s h$ are injective. [Here, h○f=h○g $\Rightarrow f=g$.]

We induct on n the case $n=0$ being trivial I et $n>0$.
W.I.o.g., we can restrict to the following situation, in which
$h: X \rightarrow Y$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in X, where $X=\uparrow\{x, y\}$
and - with a view to contradiction - $h(x)=h(y)$.

Here, $P:=\{u \in X: \operatorname{depth}(u)<n\}$. By the induction
hypothesis, $\left.h\right|_{P}$ is one-to-one, so x or y has depth $=n$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.
Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which and - with a view to contradiction - $h(x)=h(y)$.

Here, $P:=\{u \in X: \operatorname{depth}(u)<n\}$. By the induction hypothesis, $\left.h\right|_{P}$ is one-to-one, so x or y has depth $=n$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which $h: X \rightarrow \boldsymbol{Y}$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in \boldsymbol{X},

Here, P :
hynothesis, h|p is one-to-one, so x or y has depth $=n$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.

Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which $h: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in \boldsymbol{X}, where $X=\uparrow\{x, y\}$

Here, P
hynothesis, h|p is one-to-one, so x or y has depth $=n$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.
Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.l.o.g., we can restrict to the following situation, in which $h: X \rightarrow Y$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in X, where $X=\uparrow\{x, y\}$ and - with a view to contradiction - $h(x)=h(y)$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.
Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which $h: X \rightarrow Y$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in X, where $X=\uparrow\{x, y\}$ and - with a view to contradiction - $h(x)=h(y)$.

Here, $P:=\{u \in X: \operatorname{depth}(u)<n\}$.

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.
Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which $h: X \rightarrow Y$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in X, where $X=\uparrow\{x, y\}$ and - with a view to contradiction - $h(x)=h(y)$.

Here, $P:=\{u \in X: \operatorname{depth}(u)<n\}$. By the induction
hypothesis, $\left.h\right|_{P}$ is one-to-one,

Theorem. Let $\mathcal{K} \subseteq \mathcal{H} \mathcal{A}$ be a variety of finite depth, n say. Then \mathcal{K} has surjective epimorphisms.
Proof sketch. First, \mathcal{K} has ES iff all \mathcal{K}_{*}-monomorphisms h are injective. [Here, $h \circ f=h \circ g \Longrightarrow f=g$.]
We induct on n, the case $n=0$ being trivial. Let $n>0$.
W.I.o.g., we can restrict to the following situation, in which $h: X \rightarrow Y$ is a \mathcal{K}_{*}-mono, with $x \neq y$ in X, where $X=\uparrow\{x, y\}$ and - with a view to contradiction - $h(x)=h(y)$.

Here, $P:=\{u \in X: \operatorname{depth}(u)<n\}$. By the induction hypothesis, $\left.h\right|_{P}$ is one-to-one, so x or y has depth $=n$.

Case: x, y both have depth n. (The other case is easier.) As h is an $\mathcal{E} \mathcal{S P}$-morphism and h_{P} is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow v$ are isomorphic Esakia spaces. Let W be the disjoint union of $\uparrow x, \uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound a of x in X yields copies $a_{x}>x$, $a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we get Esakia morphisms $g_{1}, g_{2}: W \rightarrow X$ differing only in that
$g_{1}: z \mapsto x$, while $g_{2}: z \mapsto y$ (both: $x \mapsto x ; y \mapsto y$).

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and h_{p} is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Each strict upper bound a of x in X yields copies a_{x}
$a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we
get Esakia morphisms $a_{1}, a_{2}: W \rightarrow X$ differing only in that $g_{1}: z \mapsto x$, while $g_{2}: z \mapsto y \quad($ both $: x \mapsto x ; y \mapsto y)$.

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces.
Let W be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound a of x in X yields copies a_{x}
$a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we
get Esakia morohisms $a_{1}, a_{2}: W \rightarrow X$ differing only in that

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces. Let W be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound a of x in X yields copies $a_{x}>x$, $a_{y}>y$ and $a_{z}>z$ of itself in W. \qquad

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces. Let W be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.

Each strict upper bound a of x in X yields copies $a_{x}>x$, $a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we get Esakia morphisms $g_{1}, g_{2}: W \rightarrow \boldsymbol{X}$ differing only in that

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces. Let W be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.
w

Each strict upper bound a of x in X yields copies $a_{x}>x$, $a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we get Esakia morphisms $g_{1}, g_{2}: W \rightarrow \boldsymbol{X}$ differing only in that

$$
g_{1}: z \mapsto x \text {, while } g_{2}: z \mapsto y
$$

Case: x, y both have depth n. (The other case is easier.)
As h is an $\mathcal{E S P}$-morphism and $\left.h\right|_{P}$ is one-to-one, we can show that x and y have the same covers in X.
It follows that $\uparrow x$ and $\uparrow y$ are isomorphic Esakia spaces. Let W be the disjoint union of $\uparrow x$, $\uparrow y$ and a copy $\uparrow z$ of $\uparrow x$.
w

Each strict upper bound a of x in X yields copies $a_{x}>x$, $a_{y}>y$ and $a_{z}>z$ of itself in W. Sending these back to a, we get Esakia morphisms $g_{1}, g_{2}: W \rightarrow \boldsymbol{X}$ differing only in that

$$
g_{1}: z \mapsto x \text {, while } g_{2}: z \mapsto y \text { (both: } x \mapsto x ; y \mapsto y \text {). }
$$

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.

As $\uparrow x$ is a closed un-set of \boldsymbol{X}, the inclusion $i:(\uparrow X) \rightarrow X$ is an $\mathcal{E S P}$-morphism, so $i_{*}: X^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,

$$
(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K} \text { (since } \mathcal{K}_{*} \text { is a variety). }
$$

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $\Delta:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{C}$.
As it happens,

$$
\boldsymbol{A}_{*} \cong \boldsymbol{W}:=(\uparrow x) \dot{\cup}(\uparrow y) \dot{\cup}(\uparrow z)
$$

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of X, the inclusion $i:(\uparrow x) \rightarrow X$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e., $(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subset \mathbb{H}(\mathcal{K}) \subset \mathcal{K}\left(\right.$ since \mathcal{K}_{*} is a variety).

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $A:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of X, the inclusion $i:(\uparrow x) \rightarrow X$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e., $(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subset \mathbb{H}(\mathcal{K}) \subset \mathcal{K}\left(\right.$ since \mathcal{K}_{*} is a variety).

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $A:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.

As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $/:(\uparrow x) \rightarrow X$ is an

Now $h \circ g_{1}=h \circ g_{2}: W \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $i:(\uparrow x) \rightarrow \boldsymbol{X}$ is an $\mathcal{E S P}$-morphism,

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $A:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: W \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $i:(\uparrow x) \rightarrow \boldsymbol{X}$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: W \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $i:(\uparrow x) \rightarrow \boldsymbol{X}$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,
$(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_{*} is a variety).
So,
So, $A:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: W \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $i:(\uparrow x) \rightarrow \boldsymbol{X}$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,

$$
(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K} \text { (since } \mathcal{K}_{*} \text { is a variety). }
$$

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $A:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.
As $\uparrow x$ is a closed up-set of \boldsymbol{X}, the inclusion $i:(\uparrow x) \rightarrow \boldsymbol{X}$ is an $\mathcal{E S P}$-morphism, so $i_{*}: \boldsymbol{X}^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,

$$
(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K} \text { (since } \mathcal{K}_{*} \text { is a variety). }
$$

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $\boldsymbol{A}:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,
so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i:(\uparrow x) \rightarrow X$ is an $\mathcal{E S P}$-morphism, so $i_{*}: X^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,

$$
\left.(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K} \text { (since } \mathcal{K}_{*} \text { is a variety }\right)
$$

So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $\boldsymbol{A}:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

$$
\boldsymbol{A}_{*} \cong W:=(\uparrow x) \dot{\cup}(\uparrow y) \dot{\cup}(\uparrow z),
$$

so $W \in \mathcal{K}_{*}$, as required.

Now $h \circ g_{1}=h \circ g_{2}: \boldsymbol{W} \rightarrow \boldsymbol{Y} \in \mathcal{K}_{*}($ as $h(x)=h(y))$.
Since $g_{1} \neq g_{2}$, this will contradict the fact that h is a \mathcal{K}_{*}-monomorphism, provided that $W \in \mathcal{K}_{*}$.

As $\uparrow x$ is a closed up-set of X, the inclusion $i:(\uparrow x) \rightarrow X$ is an $\mathcal{E S P}$-morphism, so $i_{*}: X^{*} \rightarrow(\uparrow x)^{*}$ is onto, i.e.,
$(\uparrow x)^{*} \in \mathbb{H}\left(\boldsymbol{X}^{*}\right) \subseteq \mathbb{H}(\mathcal{K}) \subseteq \mathcal{K}$ (since \mathcal{K}_{*} is a variety).
So, $(\uparrow x)^{*},(\uparrow y)^{*},(\uparrow z)^{*} \in \mathcal{K}$.
So, $\boldsymbol{A}:=(\uparrow x)^{*} \times(\uparrow y)^{*} \times(\uparrow z)^{*} \in \mathbb{P}(\mathcal{K}) \subseteq \mathcal{K}$.
As it happens,

$$
\boldsymbol{A}_{*} \cong W:=(\uparrow x) \dot{\cup}(\uparrow y) \dot{\cup}(\uparrow z),
$$

so $W \in \mathcal{K}_{*}$, as required.

A proper epic subalgebra in a Heyting algebra variety

```
The variety }\mathbb{V}(\boldsymbol{A})\mathrm{ generated by the Heyting
algebra A on the left lacks the ES property,
confirming the Blok-Hoogland conjecture.
red elements form a }\mathbb{V}(\boldsymbol{A})\mathrm{ -epic subalgebra.
#}(A)\mathrm{ is locally finite and has a fairly simple
finite axiomatization.
An explicit failure of the infinite Beth property
can be extracted from this example.
In the finitely subdirectly irreducible (but not all)
members of \mathbb{V}(\boldsymbol{A})\mathrm{ , the 'incomparable companion'}
of an element is implicitly definable, but not
explicitly.
```

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra. $\mathbb{V}(\boldsymbol{\Delta})$ is Iocally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion'
of an element is implicitly definable, but not
explicitly.

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra \boldsymbol{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. red elements form a $\mathbb{V}(\mathbb{A})$-epic subalgebra. $\mathbb{V}(A)$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion'
of an element is imnlicitly definable, but not
explicitly.

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture.
red elements form a $\mathbb{V}(A)$-epic subalgebra.
$\mathbb{V}(\boldsymbol{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property
can be extracted from this example.
In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(A)$, the 'incomparable companion
of an element is implicitly definable, but not
explicitly.

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra \boldsymbol{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra.
$\mathbb{V}(A)$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion
of an element is imnlicitly definable, but not
explicitly.

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra \boldsymbol{A} on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra.
$\mathbb{V}(\boldsymbol{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property
can be extracted from this example.
In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(A)$, the 'incomparable companion
of an element is implicitly definable, but not
explicitly.

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra.
$\mathbb{V}(A)$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all)
members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion'
of an element is implicitly definable, but not

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra.
$\mathbb{V}(\boldsymbol{A})$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all) members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion' of an element is implicitly definable,

A proper epic subalgebra in a Heyting algebra variety

The variety $\mathbb{V}(\boldsymbol{A})$ generated by the Heyting algebra A on the left lacks the ES property, confirming the Blok-Hoogland conjecture. The red elements form a $\mathbb{V}(\boldsymbol{A})$-epic subalgebra.
$\mathbb{V}(A)$ is locally finite and has a fairly simple finite axiomatization.

An explicit failure of the infinite Beth property can be extracted from this example.

In the finitely subdirectly irreducible (but not all) members of $\mathbb{V}(\boldsymbol{A})$, the 'incomparable companion' of an element is implicitly definable, but not explicitly.

