An Abstract Approach to Consequence Relations

Francesco Paoli (joint work with P. Cintula, J. Gil Férez, T. Moraschini)

SYSMICS Kickoff

Francesco Paoli, (joint work with P. Cintula, An Abstract Approach to Consequence Relati

SYSMICS Kickoff 1 / 29

A Tarskian consequence relation (tcr) on \mathcal{L} -formulas is a relation $\vdash \subseteq \wp(Fm_{\mathcal{L}}) \times Fm_{\mathcal{L}}$ such that for all $\Gamma \cup \Delta \cup \{\varphi, \psi\} \subseteq Fm_{\mathcal{L}}$:

A tor is substitution-invariant if $\Gamma \vdash \varphi$ implies $\sigma(\Gamma) \vdash \sigma(\varphi)$ for all \mathcal{L} -substitutions σ ($\sigma(\Gamma)$ defined pointwise).

- An abstract consequence relation (acr) over the set X is a relation $\vdash \subseteq \wp(X) \times X$ such that for all $\Gamma \cup \Delta \cup \{a\} \subseteq X$:
- Ω Γ ⊢ a whenever a ∈ Γ (Reflexivity)
 ② If Γ ⊢ a and Γ ⊆ Δ, then Δ ⊢ a (Monotonicity)
 ③ If Δ ⊢ a and Γ ⊢ b for every b ∈ Δ, then Γ ⊢ a (Cut)

Acr's \vdash_1 and \vdash_2 over X_1 and X_2 resp. are *similar* if there are mappings

$$\tau \colon X_1 \to \wp \left(X_2 \right) \qquad \qquad \rho \colon X_2 \to \wp \left(X_1 \right)$$

such that for every $\Gamma \cup \{a\} \subseteq X_1$ and every $\Delta \cup \{b\} \subseteq X_2$:

Put differently, the acr's \vdash_1 and \vdash_2 are similar when:

- \vdash_1 is faithfully translatable via the mapping au into \vdash_2 (S1)
- ullet $dash_2$ is faithfully translatable via the mapping ho into $dash_1$
- ullet the two mappings ho and au are mutually inverse

(S3 and S4)

(S2)

- Algebraisability (similarity between a tcr and the equational consequence relation of some class of algebras);
- Gentzenisability (similarity between a tcr and some consequence relations on sequents);
- Same-environment similarities (e.g. algebraisable tcr's that have the same equivalent algebraic semantics with different transformers).

The set X is a "black box": it carries no inner structure, whence e.g. we can give no notion of endomorphism other than the trivial one (a permutation). Substitution-invariance cannot simply be expressed.

With respect to their Tarskian competitor, Blok and Jónsson have attained a greater level of generality at the expense of the *applicability* of the theory (Hilbert systems, matrices, etc.) The monoid $\mathbf{M} = (M, \circ, 1)$ is said to *act* on non-empty set X if there is an operation $\cdot : M \times X \to X$ such that, for all $\sigma, \sigma' \in M$ and all $a \in X$:

$$(\sigma \circ \sigma') \cdot \mathbf{a} = \sigma \cdot (\sigma' \cdot \mathbf{a})$$
 .

The operation \cdot is called *scalar product*, and the scalars in *M* are called *actions*. We write $\sigma(a)$ instead of $\sigma \cdot a$.

When **M** acts on X, an acr \vdash on X is called *action-invariant* if, for any $\sigma \in M$, for any $\Gamma \subseteq X$ and for any $a \in X$,

if
$$\Gamma \vdash a$$
, then $\sigma\left(\Gamma\right) \vdash \sigma\left(a\right)$.

- Consider symmetric (multiple-conclusion) versions of the acr's;
- "Lift" the actions and the transformers to the level of *powersets*;
- \$\varphi\$ (M) is the universe a complete residuated lattice, with complex product as the residuated operation (the *scalars*); \$\varphi\$ (X) is the universe of a complete lattice (the *vectors*); Scalar product is a biresiduated map that satisfies the usual properties of a monoid action.
- Go fully abstract: acr's on complete lattices as *preorders* on complete lattices that contain the converse of the lattice order.
- Abstractly, equivalence of such acr's can be defined by tweaking similarity in such a way as to accommodate action-invariance.

The idea of a consequence relation as a preorder on a complete lattice that contains the converse of the lattice order is not general enough: it rules out important cases where we have non-idempotent operations of premiss and conclusion aggregation.

Example: multiset consequence (internal consequence relations of substructural sequent calculi, resource-conscious versions of logics from commutative integral residuated lattices, etc.) can be *only* treated as consequence relation on *sequents* but not as consequence relation on *formulas*

So we could use the theory of algebraization of Gentzen systems but this would add an unnecessary level of complexity ...

A deductive relation (dr) \vdash on a dually integral Abelian po-monoid $\mathbf{R} = \langle R, \leq, +, 0 \rangle$ is a preorder on R such that for every $a, b, c \in R$:

SYSMICS Kickoff

10 / 29

• If
$$a \leq b$$
, then $b \vdash a$.

2 If
$$a \vdash b$$
, then $a + c \vdash b + c$.

Example (Tarski)

Any tcr \vdash on the language $\mathcal L$ canonically gives rise to a dr on the Abelian po-monoid

$$\mathbf{R} = \langle \wp(Fm_{\mathcal{L}}), \subseteq, \cup, \emptyset \rangle.$$

Example (Blok–Jónsson)

Any acr \vdash over the set X canonically gives rise to a dr on the Abelian po-monoid

$$\mathbf{R} = \langle \wp(X), \subseteq, \cup, \emptyset \rangle$$
.

SYSMICS Kickoff 11 / 29

Example (Multiset consequence)

Let \mathcal{L} be a language, and let $Fm_{\mathcal{L}}^{\flat}$ be the set of finite multisets of \mathcal{L} -formulas. A *multiset deductive relation* (mdr) on \mathcal{L} is a preorder \vdash on $Fm_{\mathcal{L}}^{\flat}$ that satisfies the following additional postulates:

• If $\lceil \varphi_1, \ldots, \varphi_n \rceil \leq \lceil \psi_1, \ldots, \psi_m \rceil$, then $\lceil \psi_1, \ldots, \psi_m \rceil \vdash \lceil \varphi_1, \ldots, \varphi_n \rceil$. • If $\lceil \psi_1, \ldots, \psi_m \rceil \vdash \lceil \varphi_1, \ldots, \varphi_n \rceil$, then

$$\lceil \gamma_1, \ldots, \gamma_m \rceil \uplus \lceil \psi_1, \ldots, \psi_m \rceil \vdash \lceil \gamma_1, \ldots, \gamma_m \rceil \uplus \lceil \varphi_1, \ldots, \varphi_n \rceil.$$

So, any mdr \vdash on the language \mathcal{L} is a dr on

$$\mathsf{R} = \left\langle \mathsf{Fm}_{\mathcal{L}}^{\flat}, \leq, \uplus, \emptyset
ight
angle.$$

 $(\mathfrak{X} \uplus \mathfrak{Y}\left(\varphi\right) = \mathfrak{X}\left(\varphi\right) + \mathfrak{Y}\left(\varphi\right); \, \mathfrak{X} \leq \mathfrak{Y} \text{ iff for all } \phi, \, \mathfrak{X}\left(\varphi\right) \leq \mathfrak{Y}\left(\varphi\right)).$

Example (Fuzzy consequence)

Let $Fm_{\mathcal{L}}$ be the set of formulas of Pavelka's logic \vdash^{Evl} (a.k.a. logic with evaluated syntax). Then the relation \vdash on fuzzy sets of formulas defined as:

$$\Gamma \vdash \Delta$$
 iff for each φ we have: $\Gamma \vdash^{\operatorname{Evl}}_{\alpha} \langle \varphi, \beta \rangle$ and $\Delta(\varphi) = \alpha \otimes \beta$

is a dr over

$$\mathbf{R} = \left\langle [0,1]^{Fm_{\mathcal{L}}}, \leq, \lor, \varnothing \right\rangle.$$

where $\emptyset(\varphi) = 0$ and \lor is pointwise supremum.

A *deductive operator* (do) on a dually integral Abelian po-monoid $\mathbf{R} = \langle R, \leq, +, 0 \rangle$ is a map $\delta \colon R \to \mathcal{P}(R)$ such that for every *a*, *b*, *c* $\in R$:

- $a \in \delta(a)$.
- 2 If $a \leq b$, then $\delta(a) \subseteq \delta(b)$.
- If $a \in \delta(b)$, then $\delta(a) \subseteq \delta(b)$.
- If $a \in \delta(b)$, then $a + c \in \delta(b + c)$.

A *deductive system* (ds) on a dually integral Abelian po-monoid $\mathbf{R} = \langle R, \leq, +, 0 \rangle$ is a family $\{X_a : a \in R\} \subseteq \mathcal{P}(R)$ of down-sets of $\langle R, \leq \rangle$ such that for every $a, b, c \in R$:

•
$$a \in X_b$$
 if and only if $X_a \subseteq X_b$.

$$If X_a \subseteq X_b, then X_{a+c} \subseteq X_{b+c}.$$

Given a dually integral Abelian po-monoid $\mathbf{R} = \langle R, \leq, +, 0 \rangle$, we denote by $Rel(\mathbf{R})$, $Oper(\mathbf{R})$ and $Sys(\mathbf{R})$ the sets of drs, dos, and dss on \mathbf{R} , respectively.

The structures $\langle Rel(\mathbf{R}), \subseteq \rangle$, $\langle Oper(\mathbf{R}), \preccurlyeq \rangle$ and $\langle Sys(\mathbf{R}), \lessdot \rangle$, where $\delta \preccurlyeq \gamma \iff \delta(a) \subseteq \gamma(a)$ for every $a \in R$ $\{X_a : a \in R\} \lessdot \{Y_a : a \in R\} \iff X_a \subseteq Y_a$ for every $a \in R$,

are complete lattices.

Theorem

If $\mathbf{R} = \langle R, \leq, +, 0 \rangle$ is a dually integral Abelian po-monoid, then the lattices $\langle Rel(\mathbf{R}), \subseteq \rangle$, $\langle Oper(\mathbf{R}), \preccurlyeq \rangle$ and $\langle Sys(\mathbf{R}), \preccurlyeq \rangle$ are isomorphic.

The isomorphisms are implemented by the maps $f: Oper(\mathbf{R}) \rightarrow Sys(\mathbf{R})$ and $g: Oper(\mathbf{R}) \rightarrow Rel(\mathbf{R})$ defined by:

$$f(\delta) = \{\delta(a) : a \in R\};$$

$$g(\delta) = \{\langle a, b \rangle : b \in \delta(a)\}$$

A partially ordered semiring (po-semiring) is a structure $\mathbf{A} = \langle A, \leq, +, \cdot, 0, 1 \rangle$ where:

- $\langle A, \cdot, 1 \rangle$ is a monoid;
- 2 $\langle A, \leq, +, 0 \rangle$ is an Abelian po-monoid;

3)
$$\sigma \cdot 0 = 0 \cdot \sigma = 0$$
 for all $\sigma \in A$;

• for every σ , π , $\varepsilon \in A$ we have

 $\pi \cdot (\sigma + \varepsilon) = (\pi \cdot \sigma) + (\pi \cdot \varepsilon) \text{ and } (\sigma + \varepsilon) \cdot \pi = (\sigma \cdot \pi) + (\varepsilon \cdot \pi).$

5 if $\sigma \leq \pi$ and $0 \leq \varepsilon$, then $\sigma \cdot \varepsilon \leq \pi \cdot \varepsilon$ and $\varepsilon \cdot \sigma \leq \varepsilon \cdot \pi$.

A po-semiring $\mathbf{A} = \langle A, \leq, +, \cdot, 0, 1 \rangle$ is dually integral iff $\langle A, \leq, +, 0 \rangle$ is dually integral as a po-monoid.

Example

Let $Subst(Fm_{\mathcal{L}})$ be the set of *substitutions* of $Fm_{\mathcal{L}}$. The structure

$$\mathbf{\Sigma} = \langle \mathsf{Subst}(\mathbf{Fm}_\mathcal{L})^{lat}, \leq,
ot \exists, \cdot, 0, 1
angle,$$

where, for $\mathfrak{X} = \lceil \sigma_1, \dots, \sigma_n \rceil$, $\mathfrak{Y} = \lceil \pi_1, \dots, \pi_m \rceil$, $\sigma \in \text{Subst}(Fm_{\mathcal{L}})$,

$$\begin{split} \mathfrak{X} \cdot \mathfrak{Y} &= \lceil \sigma_1 \circ \pi_1, \dots, \sigma_1 \circ \pi_m, \dots, \sigma_n \circ \pi_1, \dots, \sigma_n \circ \pi_m \rceil, \\ \mathbf{1} \left(\sigma \right) &= \begin{cases} 1, \text{ if } \sigma = id_{Fm_{\mathcal{L}}} \\ 0, \text{ otherwise,} \end{cases} \\ \mathbf{0} \left(\sigma \right) &= \mathbf{0}, \end{split}$$

is a dually integral po-semiring.

Let **A** be a dually integral po-semiring. An **A**-module is a structure $\mathbf{R} = \langle R, \leq, +, 0, * \rangle$ where $\langle R, \leq, +, 0 \rangle$ is a dually integral Abelian po-monoid and $*: A \times R \to R$ is a map that is order-preserving in both coordinates, and s.t.

Example

Consider

$$\mathbf{\Sigma} = \langle \mathsf{Subst}(\mathbf{Fm}_{\mathcal{L}})^{\flat}, \leq, \uplus, \cdot, 0, 1
angle,$$

and let
$$\mathbf{R} = \left\langle Fm_{\mathcal{L}}^{\flat}, \leq, \uplus, \emptyset, * \right\rangle$$
, where for
 $\sigma = \lceil \sigma_1, \dots, \sigma_n \rceil$ and $\varphi = \lceil \varphi_1, \dots, \varphi_m \rceil$.

we set

$$\sigma * \varphi = \lceil \sigma_1(\varphi_1), \ldots, \sigma_1(\varphi_m), \ldots, \sigma_n(\varphi_1), \ldots, \sigma_n(\varphi_m) \rceil.$$

э

21 / 29

SYSMICS Kickoff

< A >

R is a Σ -module.

An action-invariant deductive operator on an **A**-module $\mathbf{R} = \langle R, \leq, +, 0, * \rangle$ is a deductive operator δ on $\langle R, \leq, +, 0 \rangle$ such that for every $\sigma \in A$ and $a, b \in R$:

if $a \in \delta(b)$, then $\sigma * a \in \delta(\sigma * b)$.

SYSMICS Kickoff

22 / 29

A-Md is the category whose objects are A-modules and whose arrows are po-monoid homomorphisms τ that respect the monoidal action:

$$\tau(\sigma * a) = \sigma * \tau(a)$$
 for every $\sigma \in A$ and $a \in R$.

23 / 29

Lemma

Let δ be an action-invariant do on the **A**-module **R**. The structure

$$\mathbf{R}_{\delta} = \langle \delta[R], \subseteq, +^{\delta}, \delta(0), *^{\delta}
angle$$

where $\delta(a) + \delta(b) = \delta(a+b)$ and $\sigma * \delta(a) = \delta(\sigma * a)$, is an object of **A**-Md and the map $\delta : \mathbf{R} \to \mathbf{R}_{\delta}$ is an arrow of **A**-Md.

Let δ and γ be two action-invariant dos on the **A**-modules **R** and **S**, respectively. A *structural representation* of δ into γ is an injective morphism $\Phi: \mathbf{R}_{\delta} \to \mathbf{S}_{\gamma}$ that reflects the order.

The structural representation $\Phi: \mathbf{R}_{\delta} \to \mathbf{S}_{\gamma}$ is said to be *induced* if there is a morphism $\tau: \mathbf{R} \to \mathbf{S}$ that makes the following diagram commute:

An **A**-module **R** has the *representation property* (REP) if for any **A**-module **S** and action-invariant dos δ and γ on **R** and **S** respectively, every structural representation of δ into γ is induced.

Definition

An object **R** in **A**-Md is *onto-projective* if for every pair of morphisms $f: \mathbf{S} \to \mathbf{T}$ and $g: \mathbf{R} \to \mathbf{T}$ between **A**-modules with f onto, there is a morphism $h: \mathbf{R} \to \mathbf{S}$ such that $f \circ h = g$.

Theorem

An **A**-module has the REP iff it is onto-projective in **A**-Md.

- 4 同 6 4 日 6 4 日 6

An **A**-module **R** is *cyclic* if there is $v \in R$ such that $R = \{\sigma * v : \sigma \in A\}$.

Theorem

Let **R** be an **A**-module. The following conditions are equivalent:

- **0 R** is cyclic and onto-projective.
- 2 There is a retraction $f: \mathbf{A} \to \mathbf{R}$.
- So There are $\mu \in A$ and $v \in R$ such that $\mu * v = v$ and $A * \{v\} = R$ and for every $\sigma, \pi \in A$:

if
$$\sigma * v \leq \pi * v$$
, then $\sigma \cdot \mu \leq \pi \cdot \mu$.

Theorem

The Σ -module

$$\mathbf{R} = \left\langle \mathit{Fm}_{\mathcal{L}}^{\flat}, \uplus, \emptyset, \leq, * \right\rangle$$

of finite multisets of formulas of a sentential language is cyclic and onto-projective. In particular, this implies that it has the REP. ...for your attention!

Image: A mathematical states and a mathem

э