Adjunctions as translations between relative equational consequences

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences
September 5, 2016

Aim of the talk

We will try to relate the following concepts:

Aim of the talk

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.

Aim of the talk

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Aim of the talk

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Kolmogorov's translations of $\mathcal{C P C}$ into $\mathcal{I P C}$ Gödel's translation of $\mathcal{I P C}$ into $\mathcal{S} 4$.

Aim of the talk

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Kolmogorov's translations of $\mathcal{C P C}$ into $\mathcal{I P C}$ Gödel's translation of $\mathcal{I P C}$ into $\mathcal{S} 4$.

- Twist constructions:

Aim of the talk

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

> Kolmogorov's translations of $\mathcal{C P C}$ into $\mathcal{I P C}$ Gödel's translation of $\mathcal{I P C}$ into $\mathcal{S} 4$.

- Twist constructions:

$$
\begin{aligned}
\text { Distributive lattices } & \longmapsto \text { Kleene lattices } \\
\text { Lattices } & \longmapsto \text { Bilattices }
\end{aligned}
$$

Adjoint Functors

Definition

A pair of functors $\mathcal{F}: \mathrm{X} \longleftrightarrow \mathrm{Y}: \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta: 1_{\mathrm{X}} \rightarrow \mathcal{G} \mathcal{F}$ and $\epsilon: \mathcal{F G} \rightarrow 1_{\mathrm{Y}}$ such that

$$
1_{\mathcal{G}(\boldsymbol{B})}=\mathcal{G}\left(\epsilon_{\boldsymbol{B}}\right) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text { and } 1_{\mathcal{F}(\boldsymbol{A})}=\epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}\left(\eta_{\boldsymbol{A}}\right) \text {. }
$$

for every $\boldsymbol{A} \in \mathrm{X}$ and $\boldsymbol{B} \in \mathrm{Y}$.

Adjoint Functors

Definition

A pair of functors $\mathcal{F}: \mathrm{X} \longleftrightarrow \mathrm{Y}: \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta: 1_{\mathrm{X}} \rightarrow \mathcal{G} \mathcal{F}$ and $\epsilon: \mathcal{F G} \rightarrow 1_{\mathrm{Y}}$ such that

$$
1_{\mathcal{G}(\boldsymbol{B})}=\mathcal{G}\left(\epsilon_{\boldsymbol{B}}\right) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text { and } 1_{\mathcal{F}(\boldsymbol{A})}=\epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}\left(\eta_{\boldsymbol{A}}\right) \text {. }
$$

for every $\boldsymbol{A} \in \mathrm{X}$ and $\boldsymbol{B} \in \mathrm{Y}$.

- In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F}.

Adjoint Functors

Definition

A pair of functors $\mathcal{F}: \mathrm{X} \longleftrightarrow \mathrm{Y}: \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta: 1_{\mathrm{X}} \rightarrow \mathcal{G \mathcal { F }}$ and $\epsilon: \mathcal{F G} \rightarrow 1_{\mathrm{Y}}$ such that

$$
1_{\mathcal{G}(\boldsymbol{B})}=\mathcal{G}\left(\epsilon_{\boldsymbol{B}}\right) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text { and } 1_{\mathcal{F}(\boldsymbol{A})}=\epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}\left(\eta_{\boldsymbol{A}}\right)
$$

for every $\boldsymbol{A} \in \mathrm{X}$ and $\boldsymbol{B} \in \mathrm{Y}$.

- In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F}.
- Our first goal is to give an algebraic characterization of adjunctions between quasi-varieties:

Adjoint Functors

Definition

A pair of functors $\mathcal{F}: \mathrm{X} \longleftrightarrow \mathrm{Y}: \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta: 1_{\mathrm{X}} \rightarrow \mathcal{G \mathcal { F }}$ and $\epsilon: \mathcal{F G} \rightarrow 1_{\mathrm{Y}}$ such that

$$
1_{\mathcal{G}(\boldsymbol{B})}=\mathcal{G}\left(\epsilon_{\boldsymbol{B}}\right) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text { and } 1_{\mathcal{F}(\boldsymbol{A})}=\epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}\left(\eta_{\boldsymbol{A}}\right)
$$

for every $\boldsymbol{A} \in \mathrm{X}$ and $\boldsymbol{B} \in \mathrm{Y}$.

- In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F}.
- Our first goal is to give an algebraic characterization of adjunctions between quasi-varieties:
right adjoints $=$ generalized twist constructions.

Contents

1. Adjunctions and Twist Constructions

2. Adjunctions and Translations

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

In general twist constructions involve two steps (given an algebra \boldsymbol{A}):

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

In general twist constructions involve two steps (given an algebra \boldsymbol{A}):

- Do the κ-power of A for some cardinal κ.

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

In general twist constructions involve two steps (given an algebra \boldsymbol{A}):

- Do the κ-power of A for some cardinal κ. (above $\kappa=2$).

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

In general twist constructions involve two steps (given an algebra \boldsymbol{A}):

- Do the κ-power of A for some cardinal κ. (above $\kappa=2$).
- Select in some elements $G(A) \subseteq A^{\kappa}$

Twist constructions

Well-known example

- A Kleene lattice $\boldsymbol{A}=\langle A, \sqcap, \sqcup, \neg, 0,1\rangle$ is a De Morgan algebra in which the equation $x \sqcap \neg x \leq y \sqcup \neg y$ holds.
- Given a bounded distributive lattice \boldsymbol{A}, the Kleene lattice $\mathcal{G}(\boldsymbol{A})$ has universe

$$
G(A):=\left\{\langle a, b\rangle \in A^{2}: a \wedge b=0\right\}
$$

and operations defined as

$$
\begin{aligned}
&\langle a, b\rangle \sqcap\langle c, d\rangle: \\
& \neg\langle a, b\rangle:=\langle a \wedge c, b \vee d\rangle \\
&\neg-a\rangle \quad 1:=\langle 1,0\rangle \quad 0:=\langle 0,1\rangle
\end{aligned}
$$

In general twist constructions involve two steps (given an algebra \boldsymbol{A}):

- Do the κ-power of A for some cardinal κ. (above $\kappa=2$).
- Select in some elements $G(A) \subseteq A^{\kappa}$ and define new basic operations for $G(\boldsymbol{A})$ which are κ-sequences of operations of \boldsymbol{A}.

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.
- Consider the language $\mathscr{L}_{\mathrm{X}}^{\kappa}$ whose n-ary operations are the κ-sequences

$$
\begin{gathered}
\left\langle t_{i}: i<\kappa\right\rangle \text { where each } t_{i} \text { is a term of } X \\
\text { in variables } \vec{x}_{1}, \ldots, \vec{x}_{n} .
\end{gathered}
$$

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.
- Consider the language $\mathscr{L}_{\mathrm{X}}^{\kappa}$ whose n-ary operations are the κ-sequences

$$
\begin{gathered}
\left\langle t_{i}: i<\kappa\right\rangle \text { where each } t_{i} \text { is a term of } X \\
\\
\text { in variables } \vec{x}_{1}, \ldots, \vec{x}_{n} .
\end{gathered}
$$

Definition

Consider an algebra $\boldsymbol{A} \in \mathrm{X}$.

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.
- Consider the language \mathscr{L}_{X}^{κ} whose n-ary operations are the κ-sequences

$$
\begin{gathered}
\left\langle t_{i}: i<\kappa\right\rangle \text { where each } t_{i} \text { is a term of } X \\
\text { in variables } \vec{x}_{1}, \ldots, \vec{x}_{n} .
\end{gathered}
$$

Definition

Consider an algebra $\boldsymbol{A} \in \mathrm{X}$. We let $\boldsymbol{A}^{[\kappa]}$ be the algebra of type \mathscr{L}_{X}^{κ} with universe A^{κ}

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.
- Consider the language \mathscr{L}_{X}^{κ} whose n-ary operations are the κ-sequences

$$
\begin{gathered}
\left\langle t_{i}: i<\kappa\right\rangle \text { where each } t_{i} \text { is a term of } X \\
\text { in variables } \vec{x}_{1}, \ldots, \vec{x}_{n} .
\end{gathered}
$$

Definition

Consider an algebra $\boldsymbol{A} \in \mathrm{X}$. We let $\boldsymbol{A}^{[\kappa]}$ be the algebra of type $\mathscr{L}_{\mathrm{X}}^{\kappa}$ with universe A^{κ} where

$$
\left\langle t_{i}: i<\kappa\right\rangle^{\boldsymbol{A}^{[\kappa]}}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right)=\left\langle t_{i}^{\boldsymbol{A}}\left(\vec{a}_{1} / \vec{x}_{1}, \ldots, \vec{a}_{n} / \vec{x}_{n}\right): i<\kappa\right\rangle
$$

Matrix Powers with Infinite Exponent

- Let X be a class of similar algebras and $\kappa>0$ be a cardinal.
- Consider the language \mathscr{L}_{X}^{κ} whose n-ary operations are the κ-sequences

$$
\begin{gathered}
\left\langle t_{i}: i<\kappa\right\rangle \text { where each } t_{i} \text { is a term of } X \\
\text { in variables } \vec{x}_{1}, \ldots, \vec{x}_{n} .
\end{gathered}
$$

Definition

Consider an algebra $\boldsymbol{A} \in \mathrm{X}$. We let $\boldsymbol{A}^{[\kappa]}$ be the algebra of type \mathscr{L}_{X}^{κ} with universe A^{κ} where

$$
\left\langle t_{i}: i<\kappa\right\rangle^{\boldsymbol{A}^{[\kappa]}}\left(\vec{a}_{1}, \ldots, \vec{a}_{n}\right)=\left\langle t_{i}^{\boldsymbol{A}}\left(\vec{a}_{1} / \vec{x}_{1}, \ldots, \vec{a}_{n} / \vec{x}_{n}\right): i<\kappa\right\rangle .
$$

The κ-th matrix power of X is the class

$$
X^{[k]}:=\mathbb{I}\left\{\boldsymbol{A}^{[k]}: \boldsymbol{A} \in \mathrm{X}\right\} .
$$

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_{X} and $\mathscr{L} \subseteq \mathscr{L}_{\mathrm{X}}$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every n-ary operation $\varphi \in \mathscr{L}$ we have that:

$$
\theta\left(x_{1}\right) \cup \cdots \cup \theta\left(x_{n}\right) \vDash_{\mathrm{X}} \theta\left(\varphi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_{X} and $\mathscr{L} \subseteq \mathscr{L}_{\mathrm{X}}$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every n-ary operation $\varphi \in \mathscr{L}$ we have that:

$$
\theta\left(x_{1}\right) \cup \cdots \cup \theta\left(x_{n}\right) \vDash_{X} \theta\left(\varphi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

- For every $\boldsymbol{A} \in \mathrm{X}$, we let $\boldsymbol{A}(\theta, \mathscr{L})$ be the algebra of type \mathscr{L} with universe

$$
A(\theta, \mathscr{L})=\{a \in A: \boldsymbol{A} \vDash \theta(a)\}
$$

equipped with the restriction of the operations in \mathscr{L}.

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_{X} and $\mathscr{L} \subseteq \mathscr{L}_{\mathrm{X}}$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every n-ary operation $\varphi \in \mathscr{L}$ we have that:

$$
\theta\left(x_{1}\right) \cup \cdots \cup \theta\left(x_{n}\right) \vDash_{X} \theta\left(\varphi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

- For every $\boldsymbol{A} \in \mathrm{X}$, we let $\boldsymbol{A}(\theta, \mathscr{L})$ be the algebra of type \mathscr{L} with universe

$$
A(\theta, \mathscr{L})=\{a \in A: \boldsymbol{A} \vDash \theta(a)\}
$$

equipped with the restriction of the operations in \mathscr{L}.

- We obtain a functor

$$
\theta_{\mathscr{L}}: X \rightarrow \mathbb{I}\{\boldsymbol{A}(\theta, \mathscr{L}): \boldsymbol{A} \in \mathrm{X}\}
$$

Generalized twist constructions

- According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$
\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{K} \rightarrow \mathrm{~V}
$$

where θ is compatible with \mathscr{L} in $\mathrm{Y}^{[\kappa]}$.

Generalized twist constructions

- According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$
\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{K} \rightarrow \mathrm{~V}
$$

where θ is compatible with \mathscr{L} in $\mathrm{Y}^{[\kappa]}$. The idea is that:

Generalized twist constructions

- According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$
\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{K} \rightarrow \mathrm{~V}
$$

where θ is compatible with \mathscr{L} in $\mathrm{Y}^{[\kappa]}$. The idea is that:

1. [κ] produce powers \boldsymbol{A}^{κ} of algebras in $\boldsymbol{A} \in \mathrm{K}$.

Generalized twist constructions

- According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$
\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{K} \rightarrow \mathrm{~V}
$$

where θ is compatible with \mathscr{L} in $\mathrm{Y}^{[k]}$. The idea is that:

1. [κ] produce powers \boldsymbol{A}^{κ} of algebras in $\boldsymbol{A} \in \mathrm{K}$.
2. $\theta_{\mathscr{L}}$ selects elements of A^{κ} and defined new basic operations.

Canonical form

- It turns out that among quasi-varieties
right adjoints $=$ generalized twist constructions.

Canonical form

- It turns out that among quasi-varieties
right adjoints $=$ generalized twist constructions.
- More precisely, we have the following:

Canonical form

- It turns out that among quasi-varieties
right adjoints $=$ generalized twist constructions.
- More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

Canonical form

- It turns out that among quasi-varieties
right adjoints $=$ generalized twist constructions.
- More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

$$
\mathcal{G}: Y \rightarrow X
$$

there is a (generalized) quasi-variety K and functors

$$
[\kappa]: \mathrm{Y} \rightarrow \mathrm{~K} \text { and } \theta_{\mathscr{L}}: \mathrm{K} \rightarrow \mathrm{X}
$$

such that \mathcal{G} is naturally isomorphic to $\theta_{\mathscr{L}} \circ[\kappa]$.

Canonical form

- It turns out that among quasi-varieties
right adjoints $=$ generalized twist constructions.
- More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

$$
\mathcal{G}: Y \rightarrow X
$$

there is a (generalized) quasi-variety K and functors

$$
[\kappa]: \mathrm{Y} \rightarrow \mathrm{~K} \text { and } \theta_{\mathscr{L}}: \mathrm{K} \rightarrow \mathrm{X}
$$

such that \mathcal{G} is naturally isomorphic to $\theta_{\mathscr{L}} \circ[\kappa]$.
2. Every functor of the form $\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{Y} \rightarrow \mathrm{X}$ is a right adjoint.

Contents

1. Adjunctions and Twist Constructions
2. Adjunctions and Translations

Translations Between Languages

Definition

Consider a cardinal $\kappa>0$. A κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} is a map $\tau: \mathscr{L}_{X} \rightarrow \mathscr{L}_{Y}^{\kappa}$ that preserves arities.

Translations Between Languages

Definition

Consider a cardinal $\kappa>0$. A κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} is a map $\tau: \mathscr{L}_{X} \rightarrow \mathscr{L}_{Y}^{\kappa}$ that preserves arities.

- $\boldsymbol{\tau}$ extends to a map from formulas of X to formulas of $\mathrm{Y}^{[k]}$

Translations Between Languages

Definition

Consider a cardinal $\kappa>0$. A κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} is a map $\boldsymbol{\tau}: \mathscr{L}_{\mathrm{X}} \rightarrow \mathscr{L}_{\mathrm{Y}}^{\kappa}$ that preserves arities.

- $\boldsymbol{\tau}$ extends to a map from formulas of X to formulas of $Y^{[k]}$
- and lifts to a map from sets of equations of X to sets of equations of Y as follows:

Translations Between Languages

Definition

Consider a cardinal $\kappa>0$. A κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} is a map $\tau: \mathscr{L}_{X} \rightarrow \mathscr{L}_{Y}^{\kappa}$ that preserves arities.

- $\boldsymbol{\tau}$ extends to a map from formulas of X to formulas of $Y^{[\kappa]}$
- and lifts to a map from sets of equations of X to sets of equations of Y as follows:

$$
\Phi \longmapsto\{\boldsymbol{\tau}(\epsilon)(i) \approx \boldsymbol{\tau}(\delta)(i): i<\kappa \text { and } \epsilon \approx \delta \in \Phi\} .
$$

Translations Between Relative Equational Consequences

Definition

A translation of F_{X} into F_{Y} is a pair $\langle\boldsymbol{\tau}, \Theta\rangle$ where $\boldsymbol{\tau}$ is a κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} and a set of equations Θ of Y in κ-many variables that satisfies the following conditions:

Translations Between Relative Equational Consequences

Definition

A translation of F_{X} into F_{Y} is a pair $\langle\boldsymbol{\tau}, \Theta\rangle$ where $\boldsymbol{\tau}$ is a κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} and a set of equations Θ of Y in κ-many variables that satisfies the following conditions:

1. For every set of equations $\Phi \cup\{\epsilon \approx \delta\}$:

$$
\text { If } \Phi \vDash_{\mathrm{X}} \epsilon \approx \delta \text {, then } \tau(\Phi) \cup \bigcup_{x \in \operatorname{Var}} \Theta(\vec{x}) \vDash_{\mathrm{Y}} \tau(\epsilon \approx \delta) \text {. }
$$

Translations Between Relative Equational Consequences

Definition

A translation of F_{X} into F_{Y} is a pair $\langle\boldsymbol{\tau}, \Theta\rangle$ where $\boldsymbol{\tau}$ is a κ-translation of \mathscr{L}_{X} into \mathscr{L}_{Y} and a set of equations Θ of Y in κ-many variables that satisfies the following conditions:

1. For every set of equations $\Phi \cup\{\epsilon \approx \delta\}$:

$$
\text { If } \phi \vDash_{\mathrm{X}} \epsilon \approx \delta \text {, then } \tau(\Phi) \cup \bigcup_{x \in \operatorname{Var}} \Theta(\vec{x}) \vDash_{\mathrm{Y}} \tau(\epsilon \approx \delta) \text {. }
$$

2. For every n-ary operation $\psi \in \mathscr{L}_{\mathrm{X}}$:

$$
\Theta\left(\boldsymbol{\tau}\left(x_{1}\right)\right) \cup \cdots \cup \Theta\left(\boldsymbol{\tau}\left(x_{n}\right)\right) \vDash_{\mathrm{Y}} \Theta\left(\boldsymbol{\tau} \psi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let $\boldsymbol{\tau}$ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{\text {1A }}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let $\boldsymbol{\tau}$ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{\text {IA }}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

- Let σ be the substitution sending x to $\square x$ for every $x \in$ Var.

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let $\boldsymbol{\tau}$ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{\text {1A }}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

- Let σ be the substitution sending x to $\square x$ for every $x \in$ Var.
- Then we have:

$$
\Gamma \vdash_{\mathcal{I P C}} \varphi \Longleftrightarrow \sigma \boldsymbol{\tau}(\Gamma) \vdash_{\mathcal{S} 4} \sigma \boldsymbol{\tau}(\varphi)
$$

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let $\boldsymbol{\tau}$ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{\text {IA }}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

- Let σ be the substitution sending x to $\square x$ for every $x \in$ Var.
- Then we have:

$$
\Gamma \vdash_{\mathcal{I P C}} \varphi \Longleftrightarrow \sigma \boldsymbol{\tau}(\Gamma) \vdash_{\mathcal{S} 4} \sigma \boldsymbol{\tau}(\varphi)
$$

- Define $\Theta(x)=\{x \approx \square x\}$.

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let τ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{1 \mathrm{~A}}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

- Let σ be the substitution sending x to $\square x$ for every $x \in$ Var.
- Then we have:

$$
\Gamma \vdash_{\mathcal{I P C}} \varphi \Longleftrightarrow \sigma \boldsymbol{\tau}(\Gamma) \vdash_{\mathcal{S} 4} \sigma \boldsymbol{\tau}(\varphi)
$$

- Define $\Theta(x)=\{x \approx \square x\}$. Then:

$$
\Phi \vDash_{\mathrm{HA}} \epsilon \approx \delta \Longleftrightarrow \tau(\Phi) \cup \bigcup_{x \in V_{a r}} \Theta(x) \vDash_{\mathrm{IA}} \tau(\epsilon \approx \delta)
$$

Gödel's Translation

- Gödel provided an interpretation of $\mathcal{I P C}$ into global $\mathcal{S} 4$.
- Let τ be the 1-translation of $\mathscr{L}_{\mathrm{HA}}$ into $\mathscr{L}_{1 \mathrm{~A}}$ defined as:

$$
x \star y \longmapsto x \star y \quad \neg x \longmapsto \square \neg x \quad x \rightarrow y \longmapsto \square(x \rightarrow y)
$$

for $\star \in\{\wedge, \vee\}$.

- Let σ be the substitution sending x to $\square x$ for every $x \in$ Var.
- Then we have:

$$
\Gamma \vdash_{\mathcal{I P C}} \varphi \Longleftrightarrow \sigma \boldsymbol{\tau}(\Gamma) \vdash_{\mathcal{S} 4} \sigma \boldsymbol{\tau}(\varphi)
$$

- Define $\Theta(x)=\{x \approx \square x\}$. Then:

$$
\Phi \vDash_{\mathrm{HA}} \epsilon \approx \delta \Longleftrightarrow \boldsymbol{\tau}(\Phi) \cup \bigcup_{x \in V_{a r}} \Theta(x) \vDash_{\mathrm{IA}} \tau(\epsilon \approx \delta)
$$

- Moreover $\langle\boldsymbol{\tau}, \Theta\rangle$ is a translation of \vDash_{HA} into \vDash_{IA}.

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.
- Consider the sublanguage of $\mathrm{Y}^{[\kappa]}$:

$$
\mathscr{L}=\{\boldsymbol{\tau}(\psi): \psi \in \mathscr{L} X\} .
$$

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.
- Consider the sublanguage of $\mathrm{Y}^{[\kappa]}$:

$$
\mathscr{L}=\{\boldsymbol{\tau}(\psi): \psi \in \mathscr{L} X\} .
$$

- Consider the set of equations of $Y^{[k]}$ in one variable:

$$
\theta=\{\vec{\epsilon} \approx \vec{\delta}: \epsilon \approx \delta \in \Theta\} .
$$

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.
- Consider the sublanguage of $\mathrm{Y}^{[\kappa]}$:

$$
\mathscr{L}=\left\{\boldsymbol{\tau}(\psi): \psi \in \mathscr{L}_{X}\right\} .
$$

- Consider the set of equations of $Y^{[k]}$ in one variable:

$$
\theta=\{\vec{\epsilon} \approx \vec{\delta}: \epsilon \approx \delta \in \Theta\}
$$

Lemma

The map $\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{Y} \rightarrow \mathrm{X}$ is a right adjoint.

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.
- Consider the sublanguage of $\mathrm{Y}^{[\kappa]}$:

$$
\mathscr{L}=\left\{\boldsymbol{\tau}(\psi): \psi \in \mathscr{L}_{X}\right\} .
$$

- Consider the set of equations of $\mathrm{Y}^{[\kappa]}$ in one variable:

$$
\theta=\{\vec{\epsilon} \approx \vec{\delta}: \epsilon \approx \delta \in \Theta\} .
$$

Lemma

The map $\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{Y} \rightarrow \mathrm{X}$ is a right adjoint.

- Gödel's translation induces the functor

$$
\text { Open: IA } \rightarrow \mathrm{HA}
$$

From Translations to Right Adjoints

- Let $\langle\boldsymbol{\tau}, \Theta\rangle$ be a κ-translation of \vDash_{X} into \vDash_{Y}.
- Consider the sublanguage of $\mathrm{Y}^{[\kappa]}$:

$$
\mathscr{L}=\left\{\boldsymbol{\tau}(\psi): \psi \in \mathscr{L}_{X}\right\} .
$$

- Consider the set of equations of $\mathrm{Y}^{[\kappa]}$ in one variable:

$$
\theta=\{\vec{\epsilon} \approx \vec{\delta}: \epsilon \approx \delta \in \Theta\} .
$$

Lemma

The map $\theta_{\mathscr{L}} \circ[\kappa]: \mathrm{Y} \rightarrow \mathrm{X}$ is a right adjoint.

- Gödel's translation induces the functor

$$
\text { Open: } \mathrm{IA} \rightarrow \mathrm{HA}
$$

and Kolmogorov's translation the functor
Regular: $\mathrm{HA} \rightarrow \mathrm{BA}$.

From Adjunctions to Translations

- Consider $\mathcal{F}: \mathrm{X} \rightarrow \mathrm{Y}$ left adjoint.

From Adjunctions to Translations

- Consider $\mathcal{F}: \mathrm{X} \rightarrow \mathrm{Y}$ left adjoint.
- We have $\mathcal{F}\left(\boldsymbol{F} \boldsymbol{m}_{X}(1)\right)=\boldsymbol{F} \boldsymbol{m}_{\mathrm{Y}}(\kappa) / \theta$ for some κ and θ.

From Adjunctions to Translations

- Consider $\mathcal{F}: \mathrm{X} \rightarrow \mathrm{Y}$ left adjoint.
- We have $\mathcal{F}\left(\boldsymbol{F} \boldsymbol{m}_{X}(1)\right)=\boldsymbol{F} \boldsymbol{m}_{\mathrm{Y}}(\kappa) / \theta$ for some κ and θ.
- Consider the homomorphism $\psi: \boldsymbol{F} \boldsymbol{m}_{\mathrm{X}}(1) \rightarrow \boldsymbol{F} \boldsymbol{m}_{\mathrm{X}}(n)$.

From Adjunctions to Translations

- Consider $\mathcal{F}: \mathrm{X} \rightarrow \mathrm{Y}$ left adjoint.
- We have $\mathcal{F}\left(\boldsymbol{F} \boldsymbol{m}_{X}(1)\right)=\boldsymbol{F} \boldsymbol{m}_{\mathrm{Y}}(\kappa) / \theta$ for some κ and θ.
- Consider the homomorphism $\psi: \boldsymbol{F} \boldsymbol{m}_{\mathrm{X}}(1) \rightarrow \boldsymbol{F} \boldsymbol{m}_{\mathrm{X}}(n)$.

From Adjunctions to Translations

- Consider $\mathcal{F}: \mathrm{X} \rightarrow \mathrm{Y}$ left adjoint.
- We have $\mathcal{F}\left(\boldsymbol{F} \boldsymbol{m}_{X}(1)\right)=\boldsymbol{F} \boldsymbol{m}_{\mathrm{Y}}(\kappa) / \theta$ for some κ and θ.
- Consider the homomorphism $\psi: \boldsymbol{F} \boldsymbol{m}_{X}(1) \rightarrow \boldsymbol{F} \boldsymbol{m}_{X}(n)$.

Lemma

The pair $\langle\boldsymbol{\tau}, \Theta\rangle$ is a translation of F_{x} into F_{γ}.

Miscellanea

Some applications of these tools:

Miscellanea

Some applications of these tools:

- Universal Algebra: congruence regularity is not a linear Maltsev condition.

Miscellanea

Some applications of these tools:

- Universal Algebra: congruence regularity is not a linear Maltsev condition.
- Abstract Algebraic Logic: every prevariety is categorically equivalent to the equivalent algebraic semantics of an algebraizable logic.

Miscellanea

Some applications of these tools:

- Universal Algebra: congruence regularity is not a linear Maltsev condition.
- Abstract Algebraic Logic: every prevariety is categorically equivalent to the equivalent algebraic semantics of an algebraizable logic.
- Computational aspects: the problem of determining whether two finite algebras are related by an adjunction is decidable.

Finally...

...thank you for coming!

