Adjunctions as translations between relative equational consequences

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

September 5, 2016

We will try to relate the following concepts:

We will try to relate the following concepts:

Adjunctions between quasi-varieties.

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Kolmogorov's translations of CPC into IPCGödel's translation of IPC into S4.

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Kolmogorov's translations of CPC into IPCGödel's translation of IPC into S4.

Twist constructions:

We will try to relate the following concepts:

- Adjunctions between quasi-varieties.
- Translations between logics:

Kolmogorov's translations of CPC into IPCGödel's translation of IPC into S4.

Twist constructions:

 $\begin{array}{rcl} \mbox{Distributive lattices} & \longmapsto & \mbox{Kleene lattices} \\ & \mbox{Lattices} & \longmapsto & \mbox{Bilattices} \end{array}$

Definition

A pair of functors $\mathcal{F} \colon X \longleftrightarrow Y \colon \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta \colon 1_X \to \mathcal{GF}$ and $\epsilon \colon \mathcal{FG} \to 1_Y$ such that

$$1_{\mathcal{G}(\boldsymbol{B})} = \mathcal{G}(\epsilon_{\boldsymbol{B}}) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text{ and } 1_{\mathcal{F}(\boldsymbol{A})} = \epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}(\eta_{\boldsymbol{A}}).$$

for every $\boldsymbol{A} \in X$ and $\boldsymbol{B} \in Y$.

Definition

A pair of functors $\mathcal{F} \colon X \longleftrightarrow Y \colon \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta \colon 1_X \to \mathcal{GF}$ and $\epsilon \colon \mathcal{FG} \to 1_Y$ such that

$$1_{\mathcal{G}(\boldsymbol{B})} = \mathcal{G}(\epsilon_{\boldsymbol{B}}) \circ \eta_{\mathcal{G}(\boldsymbol{B})} \text{ and } 1_{\mathcal{F}(\boldsymbol{A})} = \epsilon_{\mathcal{F}(\boldsymbol{A})} \circ \mathcal{F}(\eta_{\boldsymbol{A}}).$$

for every $\boldsymbol{A} \in X$ and $\boldsymbol{B} \in Y$.

• In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F} .

Definition

A pair of functors $\mathcal{F} \colon X \longleftrightarrow Y \colon \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta \colon 1_X \to \mathcal{GF}$ and $\epsilon \colon \mathcal{FG} \to 1_Y$ such that

$$1_{\mathcal{G}(\mathbf{B})} = \mathcal{G}(\epsilon_{\mathbf{B}}) \circ \eta_{\mathcal{G}(\mathbf{B})} \text{ and } 1_{\mathcal{F}(\mathbf{A})} = \epsilon_{\mathcal{F}(\mathbf{A})} \circ \mathcal{F}(\eta_{\mathbf{A}}).$$

for every $\boldsymbol{A} \in X$ and $\boldsymbol{B} \in Y$.

- In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F} .
- Our first goal is to give an algebraic characterization of adjunctions between quasi-varieties:

Definition

A pair of functors $\mathcal{F} \colon X \longleftrightarrow Y \colon \mathcal{G}$ is an adjunction if there is a pair of natural transformation $\eta \colon 1_X \to \mathcal{GF}$ and $\epsilon \colon \mathcal{FG} \to 1_Y$ such that

$$1_{\mathcal{G}(\mathbf{B})} = \mathcal{G}(\epsilon_{\mathbf{B}}) \circ \eta_{\mathcal{G}(\mathbf{B})} \text{ and } 1_{\mathcal{F}(\mathbf{A})} = \epsilon_{\mathcal{F}(\mathbf{A})} \circ \mathcal{F}(\eta_{\mathbf{A}}).$$

for every $\boldsymbol{A} \in X$ and $\boldsymbol{B} \in Y$.

- In this case \mathcal{F} is left adjoint to \mathcal{G} and \mathcal{G} right adjoint to \mathcal{F} .
- Our first goal is to give an algebraic characterization of adjunctions between quasi-varieties:

right adjoints = generalized twist constructions.

Contents

1. Adjunctions and Twist Constructions

2. Adjunctions and Translations

Well-known example

A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle \coloneqq \langle a\wedge c,b\lor d
angle \
eglines \langle a,b
angle \coloneqq \langle b,a
angle \quad 1\coloneqq \langle 1,0
angle \quad 0\coloneqq \langle 0,1
angle \end{aligned}$$

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\lor d
angle \
eg \langle a,b
angle &\coloneqq \langle b,a
angle \quad 1 \coloneqq \langle 1,0
angle \quad 0 \coloneqq \langle 0,1
angle \end{aligned}$$

In general twist constructions involve two steps (given an algebra A):

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\lor d
angle \
eg \langle a,b
angle &\coloneqq \langle b,a
angle \quad 1 \coloneqq \langle 1,0
angle \quad 0 \coloneqq \langle 0,1
angle \end{aligned}$$

In general twist constructions involve two steps (given an algebra A):

• Do the κ -power of A for some cardinal κ .

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\lor d
angle \
eg \langle a,b
angle &\coloneqq \langle b,a
angle \quad 1 \coloneqq \langle 1,0
angle \quad 0 \coloneqq \langle 0,1
angle \end{aligned}$$

In general twist constructions involve two steps (given an algebra **A**):

• Do the κ -power of A for some cardinal κ . (above $\kappa = 2$).

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\lor d
angle \
eg \langle a,b
angle &\coloneqq \langle b,a
angle \quad 1 \coloneqq \langle 1,0
angle \quad 0 \coloneqq \langle 0,1
angle \end{aligned}$$

In general twist constructions involve two steps (given an algebra **A**):

- Do the κ -power of A for some cardinal κ . (above $\kappa = 2$).
- Select in some elements $G(A) \subseteq A^{\kappa}$

Well-known example

- A Kleene lattice A = ⟨A, □, □, ¬, 0, 1⟩ is a De Morgan algebra in which the equation x □ ¬x ≤ y □ ¬y holds.
- ► Given a bounded distributive lattice A, the Kleene lattice G(A) has universe

$$G(A) \coloneqq \{ \langle a, b \rangle \in A^2 : a \land b = 0 \}$$

and operations defined as

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\lor d
angle \
eg \langle a,b
angle &\coloneqq \langle b,a
angle \quad 1 \coloneqq \langle 1,0
angle \quad 0 \coloneqq \langle 0,1
angle \end{aligned}$$

In general twist constructions involve two steps (given an algebra **A**):

- Do the κ -power of A for some cardinal κ . (above $\kappa = 2$).
- Select in some elements G(A) ⊆ A^κ and define new basic operations for G(A) which are κ-sequences of operations of A.

• Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

 $\langle t_i : i < \kappa \rangle$ where each t_i is a term of X in variables $\vec{x_1}, \ldots, \vec{x_n}$.

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

 $\langle t_i : i < \kappa \rangle$ where each t_i is a term of X in variables $\vec{x_1}, \ldots, \vec{x_n}$.

Definition

Consider an algebra $\boldsymbol{A} \in X$.

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

$$\langle t_i : i < \kappa \rangle$$
 where each t_i is a term of X
in variables $\vec{x_1}, \dots, \vec{x_n}$.

Definition

Consider an algebra $A \in X$. We let $A^{[\kappa]}$ be the algebra of type \mathscr{L}_X^{κ} with universe A^{κ}

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

$$\langle t_i : i < \kappa \rangle$$
 where each t_i is a term of X
in variables $\vec{x_1}, \dots, \vec{x_n}$.

Definition

Consider an algebra $A \in X$. We let $A^{[\kappa]}$ be the algebra of type \mathscr{L}_X^{κ} with universe A^{κ} where

$$\langle t_i : i < \kappa \rangle^{\mathbf{A}^{[\kappa]}}(\vec{a}_1, \ldots, \vec{a}_n) = \langle t_i^{\mathbf{A}}(\vec{a}_1/\vec{x}_1, \ldots, \vec{a}_n/\vec{x}_n) : i < \kappa \rangle.$$

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

$$\langle t_i : i < \kappa \rangle$$
 where each t_i is a term of X
in variables $\vec{x_1}, \dots, \vec{x_n}$.

Definition

Consider an algebra $\mathbf{A} \in X$. We let $\mathbf{A}^{[\kappa]}$ be the algebra of type \mathscr{L}_X^{κ} with universe A^{κ} where

$$\langle t_i : i < \kappa \rangle^{\mathbf{A}^{[\kappa]}}(\vec{a}_1, \ldots, \vec{a}_n) = \langle t_i^{\mathbf{A}}(\vec{a}_1/\vec{x}_1, \ldots, \vec{a}_n/\vec{x}_n) : i < \kappa \rangle.$$

The κ -th matrix power of X is the class

$$\mathsf{X}^{[\kappa]} \coloneqq \mathbb{I}\{\boldsymbol{A}^{[\kappa]} : \boldsymbol{A} \in \mathsf{X}\}.$$

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_X and $\mathscr{L} \subseteq \mathscr{L}_X$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every *n*-ary operation $\varphi \in \mathscr{L}$ we have that:

 $\theta(x_1) \cup \cdots \cup \theta(x_n) \vDash_{\mathsf{X}} \theta(\varphi(x_1,\ldots,x_n)).$

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_X and $\mathscr{L} \subseteq \mathscr{L}_X$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every *n*-ary operation $\varphi \in \mathscr{L}$ we have that:

$$\theta(x_1)\cup\cdots\cup\theta(x_n)\vDash_{\mathsf{X}}\theta(\varphi(x_1,\ldots,x_n)).$$

For every A ∈ X, we let A(θ, ℒ) be the algebra of type ℒ with universe

$$A(heta,\mathscr{L}) = \{ a \in A : A \vDash \theta(a) \}$$

equipped with the restriction of the operations in \mathscr{L} .

Compatible Equations

Definition

Let X be a class of algebras of language \mathscr{L}_X and $\mathscr{L} \subseteq \mathscr{L}_X$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every *n*-ary operation $\varphi \in \mathscr{L}$ we have that:

$$\theta(x_1)\cup\cdots\cup\theta(x_n)\vDash_{\mathsf{X}}\theta(\varphi(x_1,\ldots,x_n)).$$

For every A ∈ X, we let A(θ, ℒ) be the algebra of type ℒ with universe

$$A(\theta, \mathscr{L}) = \{ a \in A : A \vDash \theta(a) \}$$

equipped with the restriction of the operations in \mathscr{L} .

We obtain a functor

$$\theta_{\mathscr{L}} \colon \mathsf{X} \to \mathbb{I}\{\mathbf{A}(\theta, \mathscr{L}) : \mathbf{A} \in \mathsf{X}\}.$$

 According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{K} \to \mathsf{V}$$

where θ is compatible with \mathscr{L} in $Y^{[\kappa]}$.

 According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{K} \to \mathsf{V}$$

where θ is compatible with \mathscr{L} in $Y^{[\kappa]}$. The idea is that:

 According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{K} \to \mathsf{V}$$

where θ is compatible with \mathscr{L} in $Y^{[\kappa]}$. The idea is that:

1. [κ] produce powers \mathbf{A}^{κ} of algebras in $\mathbf{A} \in K$.

 According to the previous abstractions, a generalized twist construction between two quasi-varieties K and V is a functor of the form

$$\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{K} \to \mathsf{V}$$

where θ is compatible with \mathscr{L} in $Y^{[\kappa]}$. The idea is that:

- 1. [κ] produce powers \mathbf{A}^{κ} of algebras in $\mathbf{A} \in K$.
- 2. $\theta_{\mathscr{L}}$ selects elements of A^{κ} and defined new basic operations.

Canonical form

It turns out that among quasi-varieties

right adjoints = generalized twist constructions.

Canonical form

It turns out that among quasi-varieties

right adjoints = generalized twist constructions.

More precisely, we have the following:

Canonical form

It turns out that among quasi-varieties

right adjoints = generalized twist constructions.

More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

Canonical form

It turns out that among quasi-varieties

right adjoints = generalized twist constructions.

More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

 $\mathcal{G}\colon Y\to X$

there is a (generalized) quasi-variety K and functors $[\kappa] \colon \mathsf{Y} \to \mathsf{K} \text{ and } \theta_{\mathscr{L}} \colon \mathsf{K} \to \mathsf{X}$

such that \mathcal{G} is naturally isomorphic to $\theta_{\mathscr{L}} \circ [\kappa]$.

Canonical form

It turns out that among quasi-varieties

right adjoints = generalized twist constructions.

More precisely, we have the following:

Theorem

Let X and Y be quasi-varieties.

1. For every non-trivial right adjoint

 $\mathcal{G}\colon Y\to X$

there is a (generalized) quasi-variety K and functors $[\kappa] \colon \mathsf{Y} \to \mathsf{K} \text{ and } \theta_{\mathscr{L}} \colon \mathsf{K} \to \mathsf{X}$

such that \mathcal{G} is naturally isomorphic to $\theta_{\mathscr{L}} \circ [\kappa]$.

2. Every functor of the form $\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{Y} \to \mathsf{X}$ is a right adjoint.

1. Adjunctions and Twist Constructions

2. Adjunctions and Translations

Definition

Consider a cardinal $\kappa > 0$. A κ -translation of \mathscr{L}_X into \mathscr{L}_Y is a map $\tau \colon \mathscr{L}_X \to \mathscr{L}_Y^{\kappa}$ that preserves arities.

Definition

Consider a cardinal $\kappa > 0$. A κ -translation of \mathscr{L}_X into \mathscr{L}_Y is a map $\tau \colon \mathscr{L}_X \to \mathscr{L}_Y^{\kappa}$ that preserves arities.

• au extends to a map from formulas of X to formulas of $\mathsf{Y}^{[\kappa]}$

Definition

Consider a cardinal $\kappa > 0$. A κ -translation of \mathscr{L}_X into \mathscr{L}_Y is a map $\tau \colon \mathscr{L}_X \to \mathscr{L}_Y^{\kappa}$ that preserves arities.

- au extends to a map from formulas of X to formulas of Y^[κ]
- and lifts to a map from sets of equations of X to sets of equations of Y as follows:

Definition

Consider a cardinal $\kappa > 0$. A κ -translation of \mathscr{L}_X into \mathscr{L}_Y is a map $\tau \colon \mathscr{L}_X \to \mathscr{L}_Y^{\kappa}$ that preserves arities.

- au extends to a map from formulas of X to formulas of $\mathsf{Y}^{[\kappa]}$
- and lifts to a map from sets of equations of X to sets of equations of Y as follows:

$$\Phi \longmapsto \{ \boldsymbol{\tau}(\epsilon)(i) \approx \boldsymbol{\tau}(\delta)(i) : i < \kappa \text{ and } \epsilon \approx \delta \in \Phi \}.$$

Translations Between Relative Equational Consequences

Definition

A translation of \vDash_X into \vDash_Y is a pair $\langle \tau, \Theta \rangle$ where τ is a κ -translation of \mathscr{L}_X into \mathscr{L}_Y and a set of equations Θ of Y in κ -many variables that satisfies the following conditions:

Translations Between Relative Equational Consequences

Definition

A translation of \vDash_X into \vDash_Y is a pair $\langle \tau, \Theta \rangle$ where τ is a κ -translation of \mathscr{L}_X into \mathscr{L}_Y and a set of equations Θ of Y in κ -many variables that satisfies the following conditions:

1. For every set of equations $\Phi \cup \{\epsilon \approx \delta\}$:

If
$$\Phi \vDash_{\mathsf{X}} \epsilon \approx \delta$$
, then $\tau(\Phi) \cup \bigcup_{x \in Var} \Theta(\vec{x}) \vDash_{\mathsf{Y}} \tau(\epsilon \approx \delta)$.

Translations Between Relative Equational Consequences

Definition

A translation of \vDash_X into \vDash_Y is a pair $\langle \tau, \Theta \rangle$ where τ is a κ -translation of \mathscr{L}_X into \mathscr{L}_Y and a set of equations Θ of Y in κ -many variables that satisfies the following conditions:

1. For every set of equations $\Phi \cup \{\epsilon \approx \delta\}$:

If
$$\Phi \vDash_{\mathsf{X}} \epsilon \approx \delta$$
, then $\tau(\Phi) \cup \bigcup_{x \in Var} \Theta(\vec{x}) \vDash_{\mathsf{Y}} \tau(\epsilon \approx \delta)$.

2. For every *n*-ary operation $\psi \in \mathscr{L}_X$:

 $\Theta(\tau(x_1)) \cup \cdots \cup \Theta(\tau(x_n)) \vDash_{\mathsf{Y}} \Theta(\tau\psi(x_1,\ldots,x_n)).$

• Gödel provided an interpretation of \mathcal{IPC} into global S4.

ł

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for $\star \in \{\land, \lor\}$.

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for $\star \in \{\land, \lor\}$.

• Let σ be the substitution sending x to $\Box x$ for every $x \in Var$.

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for
$$\star \in \{\land,\lor\}.$$

Let σ be the substitution sending x to □x for every x ∈ Var.
Then we have:

$$\Gamma \vdash_{\mathcal{IPC}} \varphi \Longleftrightarrow \sigma \tau(\Gamma) \vdash_{\mathcal{S}4} \sigma \tau(\varphi)$$

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for
$$\star \in \{\land,\lor\}.$$

Let σ be the substitution sending x to □x for every x ∈ Var.
Then we have:

$$\Gamma \vdash_{\mathcal{IPC}} \varphi \Longleftrightarrow \sigma \tau(\Gamma) \vdash_{\mathcal{S}4} \sigma \tau(\varphi)$$

• Define $\Theta(x) = \{x \approx \Box x\}.$

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for $\star \in \{\land, \lor\}$.

Let σ be the substitution sending x to □x for every x ∈ Var.
Then we have:

$$\Gamma \vdash_{\mathcal{IPC}} \varphi \Longleftrightarrow \sigma \boldsymbol{\tau}(\Gamma) \vdash_{\mathcal{S}4} \sigma \boldsymbol{\tau}(\varphi)$$

• Define $\Theta(x) = \{x \approx \Box x\}$. Then:

$$\Phi \vDash_{\mathsf{HA}} \epsilon \approx \delta \Longleftrightarrow \tau(\Phi) \cup \bigcup_{x \in \mathit{Var}} \Theta(x) \vDash_{\mathsf{IA}} \tau(\epsilon \approx \delta)$$

- Gödel provided an interpretation of \mathcal{IPC} into global S4.
- Let au be the 1-translation of $\mathscr{L}_{\mathsf{HA}}$ into $\mathscr{L}_{\mathsf{IA}}$ defined as:

$$x \star y \longmapsto x \star y \quad \neg x \longmapsto \Box \neg x \quad x \to y \longmapsto \Box (x \to y)$$

for $\star \in \{\land, \lor\}$.

Let σ be the substitution sending x to □x for every x ∈ Var.
Then we have:

$$\Gamma \vdash_{\mathcal{IPC}} \varphi \Longleftrightarrow \sigma \tau(\Gamma) \vdash_{\mathcal{S}4} \sigma \tau(\varphi)$$

• Define $\Theta(x) = \{x \approx \Box x\}$. Then:

$$\Phi \vDash_{\mathsf{HA}} \epsilon \approx \delta \Longleftrightarrow \tau(\Phi) \cup \bigcup_{x \in Var} \Theta(x) \vDash_{\mathsf{IA}} \tau(\epsilon \approx \delta)$$

• Moreover $\langle \boldsymbol{\tau}, \Theta \rangle$ is a translation of \vDash_{HA} into \vDash_{IA} .

• Let $\langle \boldsymbol{\tau}, \Theta \rangle$ be a κ -translation of \vDash_{X} into \vDash_{Y} .

- Let $\langle \boldsymbol{\tau}, \Theta \rangle$ be a κ -translation of \vDash_{X} into \vDash_{Y} .
- Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

- Let $\langle \tau, \Theta \rangle$ be a κ -translation of \vDash_X into \vDash_Y .
- Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

• Consider the set of equations of $Y^{[\kappa]}$ in one variable:

$$\theta = \{ \vec{\epsilon} \approx \vec{\delta} : \epsilon \approx \delta \in \Theta \}.$$

- Let $\langle \tau, \Theta \rangle$ be a κ -translation of \vDash_X into \vDash_Y .
- Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

Consider the set of equations of Y^[κ] in one variable:

$$\theta = \{ \vec{\epsilon} \approx \vec{\delta} : \epsilon \approx \delta \in \Theta \}.$$

Lemma

The map $\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{Y} \to \mathsf{X}$ is a right adjoint.

- Let $\langle \tau, \Theta \rangle$ be a κ -translation of \vDash_X into \vDash_Y .
- Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

Consider the set of equations of Υ^[κ] in one variable:

$$\theta = \{ \vec{\epsilon} \approx \vec{\delta} : \epsilon \approx \delta \in \Theta \}.$$

Lemma

The map $\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{Y} \to \mathsf{X}$ is a right adjoint.

Gödel's translation induces the functor

 $\textbf{Open}\colon \mathsf{IA}\to\mathsf{HA}$

- Let $\langle \tau, \Theta \rangle$ be a κ -translation of \vDash_X into \vDash_Y .
- Consider the sublanguage of $Y^{[\kappa]}$:

$$\mathscr{L} = \{ \boldsymbol{\tau}(\psi) : \psi \in \mathscr{L}_{\mathsf{X}} \}.$$

Consider the set of equations of Υ^[κ] in one variable:

$$\theta = \{ \vec{\epsilon} \approx \vec{\delta} : \epsilon \approx \delta \in \Theta \}.$$

Lemma

The map $\theta_{\mathscr{L}} \circ [\kappa] \colon \mathsf{Y} \to \mathsf{X}$ is a right adjoint.

Gödel's translation induces the functor

 $\textbf{Open}\colon \mathsf{IA}\to\mathsf{HA}$

and Kolmogorov's translation the functor

Regular: $HA \rightarrow BA$.

• Consider $\mathcal{F} \colon \mathsf{X} \to \mathsf{Y}$ left adjoint.

- Consider $\mathcal{F} \colon \mathsf{X} \to \mathsf{Y}$ left adjoint.
- We have $\mathcal{F}(\boldsymbol{F}\boldsymbol{m}_{X}(1)) = \boldsymbol{F}\boldsymbol{m}_{Y}(\kappa)/\theta$ for some κ and θ .

- Consider $\mathcal{F} \colon \mathsf{X} \to \mathsf{Y}$ left adjoint.
- We have $\mathcal{F}(\boldsymbol{F}\boldsymbol{m}_{\mathsf{X}}(1)) = \boldsymbol{F}\boldsymbol{m}_{\mathsf{Y}}(\kappa)/\theta$ for some κ and θ .
- Consider the homomorphism $\psi : \mathbf{Fm}_{\mathsf{X}}(1) \to \mathbf{Fm}_{\mathsf{X}}(n)$.

- Consider $\mathcal{F} \colon \mathsf{X} \to \mathsf{Y}$ left adjoint.
- We have $\mathcal{F}(\boldsymbol{F}\boldsymbol{m}_{\mathsf{X}}(1)) = \boldsymbol{F}\boldsymbol{m}_{\mathsf{Y}}(\kappa)/\theta$ for some κ and θ .
- Consider the homomorphism $\psi : \mathbf{Fm}_{\mathsf{X}}(1) \to \mathbf{Fm}_{\mathsf{X}}(n)$.

- Consider $\mathcal{F} \colon \mathsf{X} \to \mathsf{Y}$ left adjoint.
- We have $\mathcal{F}(\boldsymbol{F}\boldsymbol{m}_{\mathsf{X}}(1)) = \boldsymbol{F}\boldsymbol{m}_{\mathsf{Y}}(\kappa)/\theta$ for some κ and θ .
- Consider the homomorphism $\psi : \mathbf{Fm}_{\mathsf{X}}(1) \to \mathbf{Fm}_{\mathsf{X}}(n)$.

Lemma

The pair $\langle \boldsymbol{\tau}, \boldsymbol{\Theta} \rangle$ is a translation of \vDash_{X} into \vDash_{Y} .

Some applications of these tools:

Some applications of these tools:

 Universal Algebra: congruence regularity is not a linear Maltsev condition.

Some applications of these tools:

- Universal Algebra: congruence regularity is not a linear Maltsev condition.
- Abstract Algebraic Logic: every prevariety is categorically equivalent to the equivalent algebraic semantics of an algebraizable logic.

Some applications of these tools:

- Universal Algebra: congruence regularity is not a linear Maltsev condition.
- Abstract Algebraic Logic: every prevariety is categorically equivalent to the equivalent algebraic semantics of an algebraizable logic.
- Computational aspects: the problem of determining whether two finite algebras are related by an adjunction is decidable.

...thank you for coming!