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Modalities meet Degrees

“Eat before shopping. If you go to the store hungry,
you are likely to make unnecessary purchases.”

American Heart Association Cookbook
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Many-Valued Modal Logics

Many-valued modal logics with values in R fall loosely into two families:

Order-based modal logics (e.g., Gödel modal logics)

Continuous modal logics (e.g.,  Lukasiewicz modal logics)

Key problems include finding axiomatizations and algebraic semantics,
and establishing decidability and complexity results.
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Order-Based Algebras

Let us say that an algebra A = 〈A,∧,∨, 0, 1, . . .〉 is order-based if

(a) 〈A,∧,∨, 0, 1〉 is a complete sublattice of 〈[0, 1],min,max, 0, 1〉.

(b) Each operation of A is definable by a quantifier-free first-order
formula in a language with operations ∧, ∨, and constants of A.
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A Definable Operation

The Gödel implication

a→ b =

{
1 if a ≤ b

b otherwise

can always be defined by the quantifier-free first-order formula

F→(x , y , z) = ((x ≤ y)⇒ (z ≈ 1)) & ((y < x)⇒ (z ≈ y)).

That is, for all a, b, c ∈ A,

A |= F→(a, b, c) ⇔ a→ b = c .

Note also that we can also define ¬a := a→ 0.
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Frames and Formulas

An A-frame F = 〈W ,R〉 consists of

a non-empty set of states W

an A-valued accessibility relation R : W ×W → A.

F is called crisp if also Rxy ∈ {0, 1} for all x , y ∈W .

We extend the language of A with unary (modal) connectives �,♦
and define the set of formulas Fm inductively as usual.
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Models

An A-model M = 〈W ,R,V 〉 adds a map V : Fm×W → A satisfying

V (?(ϕ1, . . . , ϕn), x) = ?A(V (ϕ1, x), . . . ,V (ϕn, x))

for each operation symbol ? of A, and

V (�ϕ, x) =
∧
{Rxy → V (ϕ, y) : y ∈W }

V (♦ϕ, x) =
∨
{Rxy ∧ V (ϕ, y) : y ∈W }.

M is called crisp if 〈W ,R〉 is crisp, in which case,

V (�ϕ, x) =
∧
{V (ϕ, y) : Rxy}

V (♦ϕ, x) =
∨
{V (ϕ, y) : Rxy}.
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Validity

A formula ϕ is called

valid in an A-model 〈W ,R,V 〉 if V (ϕ, x) = 1 for all x ∈W

K(A)-valid if it is valid in all A-models

K(A)C-valid if it is valid in all crisp A-models.
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Standard Gödel Modal Logics

Consider the standard algebra for Gödel logic

G = 〈[0, 1],∧,∨,→, 0, 1〉.

An axiomatization for K(G) is obtained by adding the prelinearity axiom
schema (ϕ→ ψ) ∨ (ψ → ϕ) to the intuitionistic modal logic IK.

X. Caicedo and R. Rodŕıguez.
Bi-modal Gödel logic over [0,1]-valued Kripke frames.
Journal of Logic and Computation, 25(1) (2015), 37–55.

However, no axiomatization has yet been found for K(G)C.
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Other Gödel Modal Logics

More generally, we may consider (expansions of) Gödel modal logics
K(A) and K(A)C where A is any complete subalgebra of G; e.g.,

A = {0} ∪ { 1
n+1 | n ∈ N} or A = {1− 1

n+1 | n ∈ N} ∪ {1}.

Indeed, there are countably infinitely many different infinite-valued Gödel
modal logics (considered as sets of valid formulas).
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Other Gödel Modal Logics

More generally, we may consider (expansions of) Gödel modal logics
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Failure of the Finite Model Property

The following formula is valid in all finite K(G)-models

�¬¬p → ¬¬�p

but not in the infinite K(G)-model 〈N,N2,V 〉 where V (p, x) = 1
x+1 .

(
V (�¬¬p → ¬¬�p, 0) = (

∧
x∈N

V (¬¬p, x))→ (¬¬
∧
x∈N

V (p, x))

= (
∧
x∈N

1)→ (¬¬
∧
x∈N

1
x+1 )

= 1→ 0 = 0.
)
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Towards Decidability

We prove decidability (indeed PSPACE-completeness) for order-based
modal logics satisfying a certain topological property by providing new
semantics that admit the finite model property.

X. Caicedo, G. Metcalfe, R. Rodŕıguez, and J. Rogger.
Decidability of Order-Based Modal Logics.
Journal of Computer System Sciences, to appear.

The idea is to restrict the values at each state that can be taken by box
and diamond formulas; �ϕ and ♦ϕ can then be “witnessed” at states
where the value of ϕ is “sufficiently close” to the value of �ϕ or ♦ϕ.
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A New Semantics

We augment G-frames with a map T from states to finite subsets of [0, 1]
containing 0 and 1, and G-models are defined as before except that

V (�ϕ, x) = max{r ∈ T (x) : r ≤
∧

y∈W
(Rxy → V (ϕ, y))}

V (♦ϕ, x) = min{r ∈ T (x) : r ≥
∨

y∈W
min(Rxy ,V (ϕ, y))}.
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A Finite Counter Model

We find a finite counter-model for �¬¬p → ¬¬�p:

〈{a}, {(a, a)},T ,V 〉 where V (p, a) = 1
2 and T (a) = {0, 1}.(

V (�¬¬p, a) = max{r ∈ T (a) : r ≤ V (¬¬p, a)} = 1

V (¬¬�p, a) = ¬¬max{r ∈ T (a) : r ≤ V (p, a)} = 0

V (�¬¬p → ¬¬�p, a) = 1→ 0 = 0.
)
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More Generally. . .

We consider an order-based algebra A that is “locally homogeneous”;
roughly, for any right (or left) accumulation point a of A, there is an
interval [a, c) (or (c , a]) that can be squeezed without changing the order.

We augment an A-frame 〈W ,R〉 with maps

T� : W → P(A) and T♦ : W → P(A)

such that for each x ∈W ,

the constants of A are contained in both T�(x) and T♦(x)

T�(x) = A \
⋃

i∈I (ai , ci ) for some finite I , where each ci ∈ A
witnesses homogeneity at a right accumulation point ai of A

T♦(x) = A \
⋃

j∈J(dj , bj) for some finite J, where each dj ∈ A
witnesses homogeneity at a left accumulation point bj of A.
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Decidability and Complexity

For any locally homogeneous order-based algebra A:

K(A) and K(A)C are sound and complete with respect to the new
semantics.

The new semantics has the finite model property.

If there is an oracle for checking consistency with finite models, then
validity in K(A) and K(A)C are both decidable.

In particular, validity in K(G) and K(G)C are both PSPACE-complete.
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Beyond the Basic Modal Logics

We have also obtained decidability (indeed, co-NP completeness) for
order-based modal logics S5(A)C based on crisp K(A)-models where
R is an equivalence relation.

This provides co-NP completeness also for one-variable fragments of
first-order order-based logics (in particular, first-order Gödel logic).

Extending these results to a general theory seems to be difficult. . .
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Continuous Modal Logics

 Lukasiewicz modal logics are defined with connectives on [0, 1]

x → y = min(1, 1− x + y) ¬x = 1− x

x ⊕ y = min(1, x + y) x � y = max(0, x + y − 1).

 Lukasiewicz (multi-)modal logics can also be viewed as fragments of
continuous logic and studied as fuzzy description logics.

Using the fact that  Lukasiewicz modal logics enjoy the finite model
property, it can be shown that validity in these logics is in 2EXPTIME .
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An Axiomatization Problem

Hansoul and Teheux (2013) axiomatize  Lukasiewicz modal logic over crisp
Kripke frames by adding to an axiomatization of  Lukasiewicz logic

�(ϕ→ ψ)→ (�ϕ→ �ψ)

�(ϕ⊕ ϕ)→ (�ϕ⊕�ϕ)

�(ϕ� ϕ)→ (�ϕ��ϕ)

ϕ

�ϕ

and a rule with infinitely many premises

ϕ⊕ ϕ ϕ⊕ ϕ2 ϕ⊕ ϕ3 . . .
ϕ

But is this infinitary rule really necessary?
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Towards a Solution. . .

We have axiomatized a modal logic over R with abelian group operations
(extending the multiplicative fragment of Abelian logic), whose validity
problem is in EXPTIME.

D. Diaconescu, G. Metcalfe, and L. Schnüriger.
Axiomatizing a Real-Valued Modal Logic.
Proceedings of AiML 2016, King’s College Publications (2016), 236–251.

Extending this system with the additive (lattice) connectives would provide
the basis for a finitary axiomatization for  Lukasiewicz modal logic.
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Challenges

Find an axiomatization of crisp Gödel modal logic.

Develop a robust algebraic theory for order-based modal logics.

Prove decidability for guarded fragments of order-based modal logics.

Prove (un)decidability of two-variable fragments of first-order
order-based modal logics.

Find an axiomatization of crisp  Lukasiewicz modal logic and
investigate its algebraic semantics.

Establish the complexity of validity in  Lukasiewicz modal logics.
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