NPc-lattices and Gödel hoops

Miguel Andrés Marcos
joint work with S. Aguzzoli, M. Busaniche and B. Gerla
Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ
\section*{SYSMICS2016 - Barcelona}

Algebraic Semantics for Nelson's Logics

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.

曷
Busaniche, M., Cignoli, R.: Constructive logic with strong negation as a substructural logic. J. Log. Comput. 20, 761-793 (2010).

Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. I, Stud. Log., 88 (2008), 325-348.

Spinks, M., Veroff, R.: Constructive logic with strong negation is a substructural logic. II, Stud. Log., 89 (2008), 401-425.

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).

囯 Odintsov, S. P.: Algebraic semantics for paraconsistent Nelson's logic. J. Log. Comput. 13, 453-468 (2003).
囯 Odintsov, S. P.: On the representation of N4-lattices. Stud. Log. 76, 385-405 (2004).

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant efulfilling certain equations.

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant efulfilling certain equations.
- eN4-lattices are termwise equivalent to certain residuated lattices, NPC-lattices.

Algebraic Semantics for Nelson's Logics

- Nelson Algebras are the algebraic models for constructive logic with strong negation (Nelson's system N3).
- Nelson Algebras are termwise equivalent to certain residuated lattices, Nelson residuated lattices.
- N4-lattices are the algebraic models for paraconsistent Nelson logic (Nelson's system N4).
- eN4-lattices are expansions of N4-lattices by a constant efulfilling certain equations.
- eN4-lattices are termwise equivalent to certain residuated lattices, NPC-lattices.

荀
Busaniche, M., Cignoli, R.: Residuated lattices as an algebraic semantics for paraconsistent Nelson logic. J. Log. Comput. 19, 1019-1029 (2009).

Residuated lattices

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

Residuated lattices form a variety, as the residuation quasiequation can be replaced by equations.

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

If the underlying lattice is distributive, we say \mathbf{L} is a commutative distributive residuated lattice.

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

If e is the maximum element, we say \mathbf{L} is integral.

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

The negative cone of L is the set $L^{-}=\{a \in L: a \leq e\}$

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

The negative cone of L is the set $L^{-}=\{a \in L: a \leq e\}$ which is closed under $\wedge, \vee, *$ and

$$
a \rightarrow_{e} b=(a \rightarrow b) \wedge e
$$

Residuated lattices

A (commutative) residuated lattice is an algebra $\mathbf{L}=(L, \wedge, \vee, *, \rightarrow, e)$ of type $(2,2,2,2,0)$ such that

- (L, \wedge, \vee) is a lattice
- $(L, *, e)$ is a commutative monoid
- (residuation) $a \rightarrow b \geq c$ if and only if $a * c \leq b$.

The negative cone of L is the set $L^{-}=\{a \in L: a \leq e\}$ which is closed under $\wedge, \vee, *$ and

$$
a \rightarrow_{e} b=(a \rightarrow b) \wedge e
$$

$\mathbf{L}^{-}=\left(L^{-}, \wedge, \vee, *, \rightarrow_{e}, e\right)$ is an integral commutative residuated lattice.

Twist structures

By a full twist-product of an integral commutative residuated lattice \mathbf{L} we mean the algebra

$$
\mathbf{K}(\mathbf{L})=(L \times L, \sqcap, \sqcup, \bullet, \Rightarrow,(e, e))
$$

with the operations $\sqcup, \sqcap, *, \Rightarrow$ given by

Twist structures

By a full twist-product of an integral commutative residuated lattice \mathbf{L} we mean the algebra

$$
\mathbf{K}(\mathbf{L})=(L \times L, \sqcap, \sqcup, \bullet, \Rightarrow,(e, e))
$$

with the operations $\sqcup, \sqcap, *, \Rightarrow$ given by

$$
\begin{aligned}
(x, y) \sqcap\left(x^{\prime}, y^{\prime}\right) & =\left(x \wedge x^{\prime}, y \vee y^{\prime}\right) \\
(x, y) \sqcup\left(x^{\prime}, y^{\prime}\right) & =\left(x \vee x^{\prime}, y \wedge y^{\prime}\right) \\
(x, y) \bullet\left(x^{\prime}, y^{\prime}\right) & =\left(x * x^{\prime},\left(x \rightarrow y^{\prime}\right) \wedge\left(x^{\prime} \rightarrow y\right)\right) \\
(x, y) \Rightarrow\left(x^{\prime}, y^{\prime}\right) & =\left(\left(x \rightarrow x^{\prime}\right) \wedge\left(y^{\prime} \rightarrow y\right), x * y^{\prime}\right)
\end{aligned}
$$

Twist structures

$\mathrm{K}(\mathrm{L})$ is a residuated lattice.

Twist structures

$\mathrm{K}(\mathrm{L})$ is a residuated lattice.
The correspondence $(a, e) \mapsto a$ defines an isomorphism from $K(L)^{-}$onto \mathbf{L}.

Twist structures

$\mathrm{K}(\mathrm{L})$ is a residuated lattice.
The correspondence $(a, e) \mapsto a$ defines an isomorphism from $K(L)^{-}$onto \mathbf{L}.
Every subalgebra \mathbf{A} of $\mathrm{K}(\mathrm{L})$ containing the set $\{(a, e): a \in L\}$ is called a twist-product obtained from L.

K-lattices

Every twist-product satisfies

K-lattices

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow(e, e)) \Rightarrow(e, e)=(x, y)$
(then we define $\sim(x, y)=(x, y) \Rightarrow(e, e)=(y, x))$

K-lattices

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow(e, e)) \Rightarrow(e, e)=(x, y)$
(then we define $\sim(x, y)=(x, y) \Rightarrow(e, e)=(y, x))$
- (distributivity at (e, e))
$(x, y) \sqcup\left(\left(x^{\prime}, y^{\prime}\right) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcup\left(x^{\prime}, y^{\prime}\right)\right) \sqcap\left((x, y) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
$(x, y) \sqcap\left(\left(x^{\prime}, y^{\prime}\right) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcap\left(x^{\prime}, y^{\prime}\right)\right) \sqcup\left((x, y) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
whenever one of the three $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is replaced with (e, e)

K-lattices

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow(e, e)) \Rightarrow(e, e)=(x, y)$
(then we define $\sim(x, y)=(x, y) \Rightarrow(e, e)=(y, x))$
- (distributivity at (e, e))
$(x, y) \sqcup\left(\left(x^{\prime}, y^{\prime}\right) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcup\left(x^{\prime}, y^{\prime}\right)\right) \sqcap\left((x, y) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
$(x, y) \sqcap\left(\left(x^{\prime}, y^{\prime}\right) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcap\left(x^{\prime}, y^{\prime}\right)\right) \sqcup\left((x, y) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
whenever one of the three $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is replaced with (e, e)
- $\left((x, y) \bullet\left(x^{\prime}, y^{\prime}\right)\right) \sqcap(e, e)=((x, y) \sqcap(e, e)) \bullet\left(\left(x^{\prime}, y^{\prime}\right) \sqcap(e, e)\right)$

K-lattices

Every twist-product satisfies

- (e-involution) $((x, y) \Rightarrow(e, e)) \Rightarrow(e, e)=(x, y)$
(then we define $\sim(x, y)=(x, y) \Rightarrow(e, e)=(y, x))$
- (distributivity at (e, e))
$(x, y) \sqcup\left(\left(x^{\prime}, y^{\prime}\right) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcup\left(x^{\prime}, y^{\prime}\right)\right) \sqcap\left((x, y) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
$(x, y) \sqcap\left(\left(x^{\prime}, y^{\prime}\right) \sqcup\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=\left((x, y) \sqcap\left(x^{\prime}, y^{\prime}\right)\right) \sqcup\left((x, y) \sqcap\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)$
whenever one of the three $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)$ is replaced with (e, e)
- $\left((x, y) \bullet\left(x^{\prime}, y^{\prime}\right)\right) \sqcap(e, e)=((x, y) \sqcap(e, e)) \bullet\left(\left(x^{\prime}, y^{\prime}\right) \sqcap(e, e)\right)$
- $\left(((x, y) \sqcap(e, e)) \Rightarrow\left(x^{\prime}, y^{\prime}\right)\right) \sqcap\left(\left(\sim\left(x^{\prime}, y^{\prime}\right) \sqcap(e, e)\right) \Rightarrow \sim(x, y)\right)=$ $(x, y) \Rightarrow\left(x^{\prime}, y^{\prime}\right)$

K-lattices

A K-lattice is a commutative residuated lattice satisfying

- (e-involution) $(a \rightarrow e) \rightarrow e=a$
(then we define $\sim a=a \rightarrow e$)
- (distributivity at e)

$$
\begin{aligned}
& a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \\
& a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
\end{aligned}
$$

whenever one of the three a, b, c is replaced with e

- $(a * b) \wedge e=(a \wedge e) *(b \wedge e)$
- $((a \wedge e) \rightarrow b) \wedge((\sim b \wedge e) \rightarrow \sim a)=a \rightarrow b$

K-lattices

Theorem

Let A be a K-lattice. The map

$$
\phi_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{K}\left(\mathbf{A}^{-}\right)
$$

given by

$$
a \mapsto(a \wedge e, \sim a \wedge e)
$$

is an injective homomorphism.

R
Busaniche, M., Cignoli, R.: Commutative residuated lattices represented by twist-products, Algebra Universalis 71, 5-22 (2014).

NPc-lattices

NPc-lattices

An NPc-lattice is K-lattice $\mathbf{A}=(A, \wedge, \vee, *, \rightarrow, e)$ that additionally satisfies

NPc-lattices

An NPc-lattice is K-lattice $\mathbf{A}=(A, \wedge, \vee, *, \rightarrow, e)$ that additionally satisfies

- the lattice (A, \wedge, \vee) is distributive

NPc-lattices

An NPc-lattice is K-lattice $\mathbf{A}=(A, \wedge, \vee, *, \rightarrow, e)$ that additionally satisfies

- the lattice (A, \wedge, \vee) is distributive
- $(a \wedge e)^{2}=a \wedge e$

NPc-lattices

An NPc-lattice is K-lattice $\mathbf{A}=(A, \wedge, \vee, *, \rightarrow, e)$ that additionally satisfies

- the lattice (A, \wedge, \vee) is distributive
- $(a \wedge e)^{2}=a \wedge e$

The negative cone of an NPc-lattice is a Brouwerian algebra: an integral residuated lattice with $a * b=a \wedge b$ (also called generalized Heyting algebra or implicative lattice).

Odintsov's approach

Odintsov, S. P.: Constructive Negations and Paraconsistency. Trends in Logic-Studia Logica Library 26. Springer. Dordrecht (2008).

Odintsov's approach

\mathbf{L} a Brouwerian algebra, Odintsov defines a weak implication over $\mathbf{L} \times \mathbf{L}^{\partial}$

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)=\left(x \rightarrow x^{\prime}, x \wedge y^{\prime}\right)
$$

Odintsov's approach

\mathbf{L} a Brouwerian algebra, Odintsov defines a weak implication over $\mathbf{L} \times \mathbf{L}^{\partial}$

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)=\left(x \rightarrow x^{\prime}, x \wedge y^{\prime}\right)
$$

- Δ ideal, ∇ filter containing all elements of the form $x \vee(x \rightarrow y)$ (we call them regular filters).

Odintsov's approach

\mathbf{L} a Brouwerian algebra, Odintsov defines a weak implication over $\mathbf{L} \times \mathbf{L}^{\partial}$

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)=\left(x \rightarrow x^{\prime}, x \wedge y^{\prime}\right)
$$

- Δ ideal, ∇ filter containing all elements of the form $x \vee(x \rightarrow y)$ (we call them regular filters). Then

$$
T w(L, \nabla, \Delta)=\{(x, y): x \vee y \in \nabla, x \wedge y \in \Delta\}
$$

is the universe of a "twist-product" over \mathbf{L} (with this weak implication).

Odintsov's approach

\mathbf{L} a Brouwerian algebra, Odintsov defines a weak implication over $\mathbf{L} \times \mathbf{L}^{\partial}$

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)=\left(x \rightarrow x^{\prime}, x \wedge y^{\prime}\right)
$$

- Δ ideal, ∇ filter containing all elements of the form $x \vee(x \rightarrow y)$ (we call them regular filters). Then

$$
T w(L, \nabla, \Delta)=\{(x, y): x \vee y \in \nabla, x \wedge y \in \Delta\}
$$

is the universe of a "twist-product" over L (with this weak implication).

- B a "twist-product" over L. Define

$$
\nabla=\left\{\pi_{1}(b \sqcup \sim b): b \in B\right\}, \quad \Delta=\left\{\pi_{2}(b \sqcup \sim b): b \in B\right\} .
$$

Then ∇ is a regular filter, Δ an ideal and $B=\operatorname{Tw}(L, \nabla, \Delta)$.

Our approach

Theorem

Let \mathbf{L} be a Brouwerian algebra and ∇ a regular filter of \mathbf{L}. Then the subset

$$
T w(L, \nabla)=\{(x, y) \in L \times L: x \vee y \in \nabla\}
$$

of the NPc-lattice $\mathbf{K}(\mathbf{L})$ is a twist-product obtained from \mathbf{L}.

Our approach

Theorem

Let \mathbf{L} be a Brouwerian algebra and ∇ a regular filter of \mathbf{L}. Then the subset

$$
T w(L, \nabla)=\{(x, y) \in L \times L: x \vee y \in \nabla\}
$$

of the NPc-lattice $\mathbf{K}(\mathbf{L})$ is a twist-product obtained from \mathbf{L}.
Moreover, if \mathbf{L}^{\prime} is another Brouwerian algebra and ∇^{\prime} a regular filter in \mathbf{L}^{\prime}, for each morphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ satisfying $f(\nabla) \subseteq \nabla^{\prime}$ we obtain an NPc-lattice morphism

$$
\mathbf{f}: \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathrm{L}^{\prime}, \nabla^{\prime}\right)
$$

given by $\mathbf{f}((x, y))=(f(x), f(y))$.

Our approach

Theorem

Let \mathbf{B} be an NPc-lattice. Then the set $\nabla=\{(b \vee \sim b) \wedge e: b \in B\}$ is a regular filter in \mathbf{B}^{-}, and

$$
\mathbf{B} \cong \operatorname{Tw}\left(\mathbf{B}^{-}, \nabla\right)
$$

Our approach

Theorem

Let \mathbf{B} be an NPc-lattice. Then the set $\nabla=\{(b \vee \sim b) \wedge e: b \in B\}$ is a regular filter in \mathbf{B}^{-}, and

$$
\mathbf{B} \cong \mathbf{T w}\left(\mathbf{B}^{-}, \nabla\right)
$$

Moreover, if \mathbf{B}^{\prime} is another NPc-lattice, for each NPc-lattice morphism $\mathbf{f}: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ we obtain a Brouwerian morphism $f: \mathbf{B}^{-} \rightarrow\left(\mathbf{B}^{\prime}\right)^{-}$given by $f=\left.\mathbf{f}\right|_{\mathbf{B}^{-}}$, that satisfies $f(\nabla) \subseteq \nabla^{\prime}$, where $\nabla^{\prime}=\left\{(c \vee \sim c) \wedge e: c \in B^{\prime}\right\}$.

Categorical equivalence

Category $\mathbb{B F}$

- objects: pairs $(\mathbf{L}, \nabla), \mathbf{L}$ a Brouwerian algebra and $\nabla \subset L$ a regular filter

Categorical equivalence

Category $\mathbb{B F}$

- objects: pairs $(\mathbf{L}, \nabla), \mathbf{L}$ a Brouwerian algebra and $\nabla \subset L$ a regular filter
- arrows: $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right), f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ a Brouwerian morphism and $f(\nabla) \subset \nabla^{\prime}$

Categorical equivalence

Category $\mathbb{B} \mathbb{F}$

- objects: pairs $(\mathbf{L}, \nabla), \mathbf{L}$ a Brouwerian algebra and $\nabla \subset L$ a regular filter
- arrows: $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right), f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ a Brouwerian morphism and $f(\nabla) \subset \nabla^{\prime}$
Category $\mathbb{N P} \mathbb{C}$ of NPc-lattices and NPc-lattice morphisms.

Categorical equivalence

Category $\mathbb{B F}$

- objects: pairs $(\mathbf{L}, \nabla), \mathbf{L}$ a Brouwerian algebra and $\nabla \subset L$ a regular filter
- arrows: $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right), f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ a Brouwerian morphism and $f(\nabla) \subset \nabla^{\prime}$
Category $\mathbb{N P} \mathbb{C}$ of NPc-lattices and NPc-lattice morphisms.

Theorem

The functor $T w: \mathbb{B} \mathbb{F} \rightarrow \mathbb{N P} \mathbb{C}$ that acts on objects as $\operatorname{Tw}(\mathbf{L}, \nabla)$ and on arrows $f:(\mathbf{L}, \nabla) \rightarrow\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ as $\operatorname{Tw}(f): \mathbf{T w}(\mathbf{L}, \nabla) \rightarrow \mathbf{T w}\left(\mathbf{L}^{\prime}, \nabla^{\prime}\right)$ given by

$$
T w(f)(x, y)=(f(x), f(y))
$$

gives an equivalence of categories.

GNPc-lattices

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$
(((x \wedge e) \rightarrow y) \vee((y \wedge e) \rightarrow x)) \wedge e=e
$$

GNPc-lattices

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$
(((x \wedge e) \rightarrow y) \vee((y \wedge e) \rightarrow x)) \wedge e=e
$$

Then, as the negative cone of a GNPc-lattice is a Gödel hoop, we have

GNPc-lattices

A Gödel NPc-lattice (GNPc-lattice for short) is a NPc-lattice satisfying the equation

$$
(((x \wedge e) \rightarrow y) \vee((y \wedge e) \rightarrow x)) \wedge e=e
$$

Then, as the negative cone of a GNPc-lattice is a Gödel hoop, we have

Theorem

The restriction of the functor $T w$ to the category $\mathbb{G H I I F}$ of pairs consisting of Gödel hoops and regular filters, gives an equivalence of categories between $\mathbb{G H I F}$ and the full subcategory $\mathbb{G N P C}$ of $\mathbb{N P P}$ having Gödel NPc-lattices as objects.

Free algebras

Recall that if a variety of algebras is generated by an algebra \mathbf{A}, then the free algebra with n generators is isomorphic to the subalgebra of functions $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$ generated by the projection functions.

Free algebras

Recall that if a variety of algebras is generated by an algebra \mathbf{A}, then the free algebra with n generators is isomorphic to the subalgebra of functions $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$ generated by the projection functions.

Theorem

Let $[0,1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval $[0,1]$.

Free algebras

Recall that if a variety of algebras is generated by an algebra \mathbf{A}, then the free algebra with n generators is isomorphic to the subalgebra of functions $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$ generated by the projection functions.

Theorem

Let $[0,1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval $[0,1]$. The variety $\mathbb{G N P C}$ of Gödel NPc-lattices is generated by the full twist product $\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$.

Free algebras

Recall that if a variety of algebras is generated by an algebra \mathbf{A}, then the free algebra with n generators is isomorphic to the subalgebra of functions $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$ generated by the projection functions.

Theorem

Let $[0,1]_{\mathbf{G}}$ denote the standard Gödel hoop over the real interval $[0,1]$. The variety $\mathbb{G N P C}$ of Gödel NPc-lattices is generated by the full twist product $\mathbf{K}\left([0,1]_{\mathbf{G}}\right)$.

Idea of the proof.

This follows from the fact that $[0,1]_{\mathbf{G}}$ generates the variety $\mathbb{G H H}$ of Gödel hoops.

Free(1)

Theorem

The free algebra with one generator in the variety $\mathbb{G N P C}$ satisfies

$$
\begin{aligned}
\text { Free }_{\mathbb{G N P C}}(1) & \cong \operatorname{Tw}\left(G_{3}, G_{2}\right) \times K\left(G_{2}\right) \times \operatorname{Tw}\left(G_{3}, G_{2}\right) \\
& \cong \operatorname{Tw}\left(G_{3} \times G_{2} \times G_{3}, G_{2} \times G_{2} \times G_{2}\right) \\
& \cong \operatorname{Tw}\left(\text { Free }_{G H H}(2), \nabla\right),
\end{aligned}
$$

where $\nabla=\mathbf{G}_{\mathbf{2}} \times \mathbf{G}_{\mathbf{2}} \times \mathbf{G}_{\mathbf{2}}$ and $\mathbf{G}_{\mathbf{k}}$ denotes the Gödel hoop chain of k elements.

Free(1)

Free $_{\mathbb{G N P C}}(1)=T w\left(\right.$ Free $\left._{G H H}(2), \nabla\right)$

Free(1)

Idea of the proof.

Following the ideas in A note on functions associated with Gödel formulas by B. Gerla, the behaviour of the 2 -variable terms φ is independent in the following regions of $[0,1]^{2}$:

In our case, in the regions $x<y<1$ and $x<y=1$ we cannot have different behaviours. The same is true for the regions $y<x<1$ and $y<x=1$, and the regions $x=y<1$ and $x=y=1$.

A duality result

Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$.

A duality result

Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$. Category $\mathcal{T}_{t, f i n}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree;

A duality result

Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$. Category $\mathcal{T}_{t, f i n}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi:(T, t) \rightarrow\left(T^{\prime}, t^{\prime}\right)$ open maps $\phi: T \rightarrow T^{\prime}$ with $\phi(t) \subseteq t^{\prime}$.

A duality result

Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$. Category $\mathcal{T}_{t, f i n}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi:(T, t) \rightarrow\left(T^{\prime}, t^{\prime}\right)$ open maps $\phi: T \rightarrow T^{\prime}$ with $\phi(t) \subseteq t^{\prime}$.

Theorem

$\mathcal{T}_{t, \text { fin }}$ is the dual of the category $\mathbb{G N P} \mathbb{C}_{\text {fin }}$ of finite Gödel NPc-lattices.

A duality result

Given a finite tree T, a subtree t of T is an atomic upward closed subtree of T if t contains the root of T and whenever an atom a of T belongs to t and $b \in T$ with $b \geq a$, then $b \in t$. Category $\mathcal{T}_{t, f i n}$: objects are pairs (T, t) with T a finite tree and t an atomic upward closed subtree; arrows $\phi:(T, t) \rightarrow\left(T^{\prime}, t^{\prime}\right)$ open maps $\phi: T \rightarrow T^{\prime}$ with $\phi(t) \subseteq t^{\prime}$.

Theorem

$\mathcal{T}_{t, \text { fin }}$ is the dual of the category $\mathbb{G N P} \mathbb{C}_{\text {fin }}$ of finite Gödel NPc-lattices.

The dual of Free $_{\text {GNPC }}$ (1)

Free $_{G N P C}(n)$

As
$\operatorname{Free}_{\mathbb{G N P C}}(n)=\coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{G N P C}}(1)$,

Free $_{\operatorname{GNPC}}(n)$

As

$$
\operatorname{Free}_{\mathbb{G N P C}}(n)=\coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{G N P C}}(1),
$$

by duality, characterizing the product in $\mathcal{T}_{t, \text { fin }}$ we obtain

Free $_{G N P C}(n)$

As

$$
\operatorname{Free}_{\mathbb{G N P C}}(n)=\coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{G N P C}}(1)
$$

by duality, characterizing the product in $\mathcal{T}_{t, \text { fin }}$ we obtain

$$
T_{n} \cong \bigoplus_{i=0}^{2 n-1} a_{i, n}\left(\left(H_{i}\right)_{\perp}, \emptyset_{\perp}\right) \oplus \bigoplus_{i=n}^{2 n-1} b_{i, n}\left(\left(H_{i}\right)_{\perp},\left(H_{i}\right)_{\perp}\right)
$$

Free $_{G N P C}(n)$

As

$$
\operatorname{Free}_{\mathbb{G N P C}}(n)=\coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{G N P C}}(1)
$$

by duality, characterizing the product in $\mathcal{T}_{t, \text { fin }}$ we obtain

$$
T_{n} \cong \bigoplus_{i=0}^{2 n-1} a_{i, n}\left(\left(H_{i}\right)_{\perp}, \emptyset_{\perp}\right) \oplus \bigoplus_{i=n}^{2 n-1} b_{i, n}\left(\left(H_{i}\right)_{\perp},\left(H_{i}\right)_{\perp}\right)
$$

where T_{n} is the dual of $\operatorname{Free}_{\mathbb{G N P C}}(n), H_{i}$ is the dual of $\operatorname{Free}_{G H H}(i)$, and

$$
a_{i, n}=\binom{2 n}{i}-c_{i, n} \quad b_{i, n}=c_{i, n}
$$

where for $i \leq n-1, c_{i, n}=0$ and for $i \geq n, c_{i, n}=2^{2 n-i}\binom{n}{2 n-i}$.

Free $_{G N P C}(n)$

As

$$
\operatorname{Free}_{\mathbb{G N P C}}(n)=\coprod_{i=1}^{n} \operatorname{Free}_{\mathbb{G N P C}}(1)
$$

by duality, characterizing the product in $\mathcal{T}_{t, \text { fin }}$ we obtain

Theorem

$$
\begin{aligned}
& \operatorname{Free}_{\mathbb{G N P C}}(n) \cong \prod_{i=0}^{2 n-1} \mathbf{K}\left(\left(\operatorname{Free}_{\mathbb{G H}}(i)\right)_{\perp}\right)^{a_{i, n}} \times \prod_{i=n}^{2 n-1} \operatorname{Tw}\left(\left(\operatorname{Free}_{\mathbb{G H}}(i)\right)_{\perp}, \operatorname{Free}_{G \mathbb{H}}(i)\right)^{b_{i, n}} \\
& \cong \mathbf{T w}\left(\operatorname{Free}_{G H H}(2 n), \nabla\right), \\
& \text { where } \nabla=\prod_{i=0}^{2 n-1}\left(\left(\operatorname{Free}_{\mathbb{G H}}(i)\right)_{\perp}\right)^{a_{i, n}} \times \prod_{i=n}^{2 n-1}\left(\operatorname{Free}_{\mathbb{G H}}(i)\right)^{b_{i, n}} .
\end{aligned}
$$

Bibliography

Busaniche，M．，Cignoli，R．：Commutative residuated lattices represented by twist－products， Algebra Universalis 71，5－22（2014）．

Busaniche，M．，Cignoli，R．：Constructive logic with strong negation as a substructural logic．J．Log．Comput．20，761－793（2010）．

Busaniche，M．，Cignoli，R．：Residuated lattices as an algebraic semantics for paraconsistent Nelson logic．J．Log．Comput．19，1019－1029（2009）．

Gerla，B．：A note on functions associated with Gödel formulas．Soft Computing．December 2000，Volume 4，Issue 4，pp 206－209．

Odintsov，S．P．：Algebraic semantics for paraconsistent Nelson＇s logic．J．Log．Comput．13， 453－468（2003）．

Odintsov，S．P．：Constructive Negations and Paraconsistency．Trends in Logic－Studia Logica Library 26．Springer．Dordrecht（2008）．

Odintsov，S．P．：On the representation of N4－lattices．Stud．Log．76，385－405（2004）．
Spinks，M．，Veroff，R．：Constructive logic with strong negation is a substructural logic．I， Stud．Log．， 88 （2008），325－348． Spinks，M．，Veroff，R．：Constructive logic with strong negation is a substructural logic．II， Stud．Log．， 89 （2008），401－425．

Thank you!!!

