A representation for the n-generated free algebra in the subvariety of BL-algebras generated by

$$
[0,1]_{\mathrm{MV}} \oplus[0,1]_{\mathbf{G}}
$$

M. Busaniche, J. L. Castiglioni and N. Lubomirsky
CONICET - IMAL - UNLP

SYSMICS - September 2016

Examples of standard algebras

Standard MV-algebra $[0,1]_{\mathrm{MV}}$:

$$
\left\langle[0,1],\left\{\begin{array}{ll}
0 & \text { if } x+y \leq 1 \\
x+y-1 & \text { oherwise }
\end{array},\left\{\begin{array}{ll}
1 & \text { if } x \leq y \\
1-x+y & \text { otherwise }
\end{array}, 0\right\rangle\right.\right.
$$

Standard Gödel-algebra $[0,1]_{\text {Gödel }}$:

$$
\left\langle[0,1],\left\{\begin{array}{ll}
x & \text { if } x \leq y \\
y & \text { oherwise }
\end{array},\left\{\begin{array}{ll}
1 & \text { if } x \leq y \\
y & \text { otherwise }
\end{array}, 0\right\rangle\right.\right.
$$

Examples of free algebras: the case of MV-algebras

Chang's Algebraic Completeness Theorem

The standard MV-algebra
$\langle[0,1], \max (0, x+y-1), \min (1,1-x+y), 0\rangle$ is generic for the variety of $M V$-algebras ($B L$ algebras with $\neg \neg x=x$).

Consider the MV-algebra \mathcal{M}_{n} of all functions $f:[0,1]^{n} \rightarrow[0,1]$ endowed with the pointwise standard MV-operations:

$$
\begin{aligned}
& (f \cdot g)(x)=\max (0, f(x)+g(x)-1), \\
& (f \rightarrow g)(x)=\min (1,1-f(x)+g(x)), \perp(x)=0 .
\end{aligned}
$$

McNaughton's Representation Theorem

The free n-generated MV-algebra is the subalgebra of \mathcal{M}_{n} of all continuous piecewise linear functions $f:[0,1]^{n} \rightarrow[0,1]$ where each one of the finitely many linear pieces has integer coefficients.

Examples of free algebras: the case of Gödel hoops

Gödel hoops are the \perp-free subreducts of Gödel algebras.
Gödel hoop form a variety \mathbf{G}.
We will call $[0,1]_{\mathbf{G}}$ to the standard Gödel hoop.

Definition

Let \mathcal{R} be the set which contains all the subsets of $[0,1]^{n}$ given by:

$$
R \in \mathcal{R} \text { iff } R=\left\{\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right): x_{\sigma(1)} \square \ldots \square x_{\sigma(n)}\right\}
$$

for $\square \in\{=,<\}$ and σ a permutation of $\{1, \ldots, n\}$.

Free n-generated Gödel hoops

Theorem: The case for Gödel algebras

The algebra of functions $f:[0,1]^{n} \rightarrow[0,1]$ such that for every $R \in \mathcal{R}$

$$
\begin{gathered}
\left.f\right|_{R}=1, \text { or }\left.f\right|_{R}=0, \text { or } \\
\left.f\right|_{R}=x_{i} \text { with } i \in\{1, \ldots, n\}
\end{gathered}
$$

equipped with the pointwise operations • and \rightarrow is the free Gödel algebra over n-generators. ${ }^{1}$

For the case of the free Gödel hoops algebra $\operatorname{Free}_{\mathcal{G}}(n)$ it also holds: $f>0$ and if $\left.f\right|_{R}=x_{i}$ where R is the region defined by $x_{\sigma(1)} \square \ldots<x_{\sigma(i)} \square \ldots \square x_{\sigma(n)}$ then $\left.f\right|_{S}=x_{i}$ for every $S \in \mathcal{R}$ where S is a region where the last $n-i$ variables are ordered as in R.

[^0]The case of one variable

The case of one variable

The case of two variables

The case of two variables

The case of two variables

Ordinal sum

Let $\mathbf{R}=\left(R, *_{\mathbf{R}}, \rightarrow_{\mathbf{R}}, \top\right)$ and $\mathbf{S}=\left(R, *_{\mathbf{s}}, \rightarrow_{\mathbf{s}}, \top\right)$ be two hoops such that $R \cap S=\{\top\}$. We define the ordinal sum $R \oplus S$ of these two hoops as the hoop given by $(R \cup S, *, \rightarrow, \top)$ where the operations ($*, \rightarrow$) are defined as follows:

$$
\begin{aligned}
& x * y \begin{cases}x * \mathbf{R} y & \text { if } x, y \in R, \\
x * \mathbf{s} y & \text { if } x, y \in S, \\
x & \text { if } x \in R \backslash\{T\} \text { and } y \in S, \\
y & \text { if } y \in R \backslash\{T\} \text { and } x \in S .\end{cases} \\
& x \rightarrow y \begin{cases}T & \text { if } x \in R \backslash\{T\} \text { and } y \in S, \\
x \rightarrow_{\mathbf{R}} y & \text { if } x, y \in R, \\
x \rightarrow \mathbf{s} y & \text { if } x, y \in S, \\
y & \text { if } y \in R \backslash\{\top\} \text { and } x \in S .\end{cases}
\end{aligned}
$$

- $\operatorname{Free}_{\mathcal{B} \mathcal{L}}(n)$ is generated by the algebra $(n+1)[0,1]_{\mathrm{Mv}}$. This fact allows us to characterize the free n-generated BL-algebra $\operatorname{Free}_{\mathcal{B} \mathcal{L}}(n)$ as the algebra of functions $f:(n+1)[0,1]_{\mathrm{MV}}^{n} \rightarrow(n+1)[0,1]_{\mathrm{MV}}$ generated by the projections.
- S. Bova and S. Aguzzoli gave a representation of the free- n-generated BL-algebra. ${ }^{2},{ }^{3}$

In this work we will concentrate in the subvariety $\mathcal{V} \subseteq \mathcal{B L}$ generated by the ordinal sum of the algebra $[0,1]_{\mathrm{Mv}}$ and the Gödel hoop $[0,1]_{\mathbf{G}}$, that is, generated by $\mathbf{A}=[0,1]_{\mathbf{M v}} \oplus[0,1]_{\mathbf{G}}$.

[^1]
Some remarks...

- $[0,1]_{\mathbf{G}}$ is decomposable as an infinite ordinal sum of two-elements Boolean algebra, the idea is to treat it as a whole block (dense elements).
- The elements in $[0,1]_{\text {Mv }}$ are usually called regular elements of A.
- Advantage: The number n of generators of the free algebra does not increase the generating chain.
- That gives an idea of the role of the regular elements and the role of the dense elements.
- To give a functional representation for the free algebra $\operatorname{Free}_{\mathcal{V}}(n)$ we decompose the domain $[0,1]_{\mathbf{M V}} \oplus[0,1]_{\mathbf{G}}$ in a finite number of pieces. In each piece a function $F \in \operatorname{Free} \mathcal{V}(n)$ coincides either with McNaughton functions or functions on the free algebra in the variety of Gödel hoops.

$\operatorname{Free}_{\mathcal{L}}(1)$

Proposition

Let $\alpha(x)$ be a BL-term in one variable that we evaluate in \mathcal{V}. Then:

- If $\alpha_{\mathcal{V}}(1)=1$ then $\alpha_{\mathcal{V}}(x)$ is a function of $\operatorname{Free}_{\mathcal{G}}(1)$ for each $x \in[0,1]_{\mathbf{G}}$.
- If $\alpha_{\mathcal{V}}(1)=0$ then $\alpha_{\mathcal{V}}(x)=0$ for each $x \in[0,1]_{\mathbf{G}}$.

Proposition

Let $g \in \operatorname{Free}_{\mathcal{M V}}(1)$ and $h \in \operatorname{Free}_{\mathcal{G}}(1)$ such that $g(1)=h(1)=1$. Then the function

$$
f(x)=\left\{\begin{array}{lll}
g(x) & \text { if } & x \in[0,1]_{\mathrm{MV}} \tag{1}\\
h(x) & \text { if } & x \in[0,1]_{\mathbf{G}}
\end{array}\right.
$$

is in $\operatorname{Free}_{\mathcal{L}}(1)$.

Proposition

Let $g \in \operatorname{Free}_{\mathcal{M V}}(1)$ such that $g(1)=0$. Then the function

$$
f(x)=\left\{\begin{array}{lll}
g(x) & \text { if } & x \in[0,1]_{\mathrm{Mv}} \tag{2}\\
0 & \text { if } & x \in[0,1]_{\mathrm{G}}
\end{array}\right.
$$

is in Freev (1).

Proposition

Let $f \in \operatorname{Free} \mathcal{V}(1)$.

- If $f(1)=1$ then there are functions $g \in \operatorname{Free}_{\mathcal{M V}}(1)$ and $h \in \operatorname{Free}_{\mathcal{G}}(1)$ such that satisfy (1).
- If $f(1)=0$ then there is a function $g \in \operatorname{Free}_{\mathcal{M V}}(1)$ such that satisfies (2).

Problem in two variables

As before, if $\alpha(x, y)$ is a BL-term and we evaluate it in \mathcal{V} we have:

- If $\alpha_{\mathcal{V}}(1,1)=1$ then there is a function $g \in \operatorname{Free}_{\text {Freeg }_{G}}(2)$ such that $\alpha_{\mathcal{V}}(x, y)=g(x, y)$ for every $(x, y) \in[0,1]_{G}^{2}$.
- If $\alpha_{\mathcal{V}}(1,1)=0$ then $\alpha_{\mathcal{V}}(x, y)=0$ for every $(x, y) \in[0,1]_{G}^{2}$.

Proposition

Let $\alpha(x, y)$ and $a \in[0,1]_{M V} \backslash\{1\}$. Then, if we evaluate α on \mathcal{V}, it holds:

- If $\alpha_{\mathcal{V}}(a, 1)=c \in[0,1]_{M V} \backslash\{1\}$ then $\alpha_{\mathcal{V}}(a, b)=c$ for every $b \in[0,1]_{G}$,
- If $\alpha_{\mathcal{V}}(a, 1)=1$ then there is a function $g \in \operatorname{Free}_{\mathcal{V}}(1)$ such that $\alpha_{\mathcal{V}}(a, b)=g(b)$ for every $b \in[0,1]_{G}$.

Definition

Let $f \in \operatorname{Free}_{\mathcal{M V}}(2)$. If $A=\left\{x \in[0,1]_{M V}: f(x, 1)=1\right\}$ and $B=[0,1]_{M V} \backslash A$, we will say that $g:[0,1]_{M V} \times(0,1]_{G} \rightarrow \mathcal{V}$ is an f - y-G-McNaughton function if:

1. For each $x_{0} \in B, g\left(x_{0}, y\right)=f\left(x_{0}, 1\right)$, for every $y \in(0,1]_{G}$.
2. There is a regular triangulation Δ of A which determines the simplexes $\sigma_{1}, \ldots, \sigma_{n}$ and functions $g_{1}, \ldots, g_{n} \in \operatorname{Free}_{\mathcal{G}}(1)$ such that $g(x, y)=g_{i}(y)$, for every x in the interior of σ_{i}.

Open intervals

Lemma

If $g \in \operatorname{Free}_{\mathcal{G}}(1)$ and $S \subseteq[0,1]_{M V}$ is an open interval with rational borders, then there is a term γ_{S} in two variables such that the interpretation of the term on \mathcal{V} satisfies:

$$
\gamma_{S}(x, y)=\left\{\begin{array}{lc}
g(y) & \text { if }(x, y) \in S \times[0,1]_{G} \tag{3}\\
1 & \text { otherwise }
\end{array}\right.
$$

Geometrical idea of the proof

Corollary

Let $f \in \operatorname{Free}_{\mathcal{M \nu}}(2)$ and h_{x} an $f-x-G-M c N a u g h t o n$ function. If Δ is the triangulation of $[0,1]_{M V} \times\{1\} \cap f^{-1}(\{1\})$ given in the definition of h_{x} and for every simplex $\sigma_{i} \in \Delta$ we denote σ_{i}^{0} to the relative interior of the simplex, and $g_{i} \in \operatorname{Free}_{\mathcal{G}}(1)$ also are de functions given in the definition of h_{x}, then there is a function $F_{x} \in \operatorname{Free}_{\mathcal{V}}(2)$ which satisfies:

$$
F_{x}(x, y)=\left\{\begin{array}{lc}
g_{i}(y) & \text { if }(x, y) \in \sigma_{i}^{0} \times[0,1]_{G} \\
1 & \text { otherwise }
\end{array}\right.
$$

Lemma

Given a function $g \in \operatorname{Free}_{\mathcal{G}}(2)$ there is a function $f_{g} \in \operatorname{Free} \mathcal{V}$ (2) which satisfies:

$$
f_{g}(x, y)=\left\{\begin{array}{lc}
g(x, y) & \text { if }(x, y) \in(0,1]_{G} \times(0,1]_{G} \\
1 & \text { otherwise }
\end{array}\right.
$$

Let $F: \mathcal{V}^{2} \rightarrow V$ given as before.
Consider the terms:

1. $\gamma_{1}=\alpha$
2. γ_{2} is a term whose interpretation on A is the function F_{X} correspondent to the $f-x-\mathrm{G}-\mathrm{McNaughton}$ function h_{x}.
3. γ_{3} is a term whose interpretation on A is the function F_{y} correspondent to the $f-y$-G-McNaughton function h_{y}.
4. γ_{4} is a term whose interpretation on A is the function f_{g} correspondent to the function $g \in \operatorname{Free}_{\mathcal{G}}(2)$.
We define the two-variables term β given by

$$
\beta=\bigwedge_{i=1}^{4} \gamma_{i}
$$

Then the interpretation of β in the algebra $[0,1]_{\mathrm{Mv}} \oplus[0,1]_{\mathbf{G}}$ coincides with the function F.

$\operatorname{Free}_{\mathcal{L}}(n)$

Let $F \in \operatorname{Free}_{\mathcal{V}}(n)$. Then:

- For every $\bar{x} \in\left([0,1]_{\mathrm{Mv}}\right)^{n}$,

$$
F(\bar{x})=f(\bar{x})
$$

where f is a function of $\operatorname{Free}_{\mathcal{M V}}(n)$.
For the rest of the domain, the functions depend on this function $f:\left([0,1]_{\mathrm{Mv}}\right)^{n} \rightarrow[0,1]_{\mathrm{Mv}}:$

- On $\left([0,1]_{\mathbf{G}}\right)^{n}$:

1. If $f(\overline{1})=0$, then

$$
F(\bar{x})=0
$$

for every $\bar{x} \in\left([0,1]_{\mathbf{G}}\right)^{n}$.
2. If $f(\overline{1})=1$, then

$$
F(\bar{x})=g(\bar{x})
$$

for a function $g \in \operatorname{Free}_{\mathcal{G}}(n)$, for every $\bar{x} \in\left([0,1]_{\mathbf{G}}\right)^{n}$.

Let $B=\left\{x_{\sigma(1)}, \ldots x_{\sigma(m)}\right\} \subsetneq\left\{x_{1}, \ldots, x_{n}\right\}$ and R_{B} be the subset of $\left([0,1]_{M V} \oplus[0,1]_{G}\right)^{n}$ where $x_{i} \in B$ if and only if $x_{i} \in[0,1]_{G}$. For every $\bar{x} \in R_{B}$ we also define \tilde{x} as:

$$
\tilde{x}_{i}=\left\{\begin{array}{lll}
x_{i} & \text { if } & x_{i} \notin B \\
1 & \text { if } & x_{i} \in B
\end{array}\right.
$$

- 1. If $f(\tilde{x})<1$ then $F(\bar{x})=f(\tilde{x})$.

2. If $f(\tilde{x})=1$, then there is a regular triangulation Δ of $f^{-1}(1) \wedge R_{B}$ which determines the simplices S_{1}, \ldots, S_{k} and k Gödel functions h_{1}, \ldots, h_{n} in $n-m$ variables $x_{\sigma(m+1)}, \ldots, x_{\sigma(n)}$ such that $F(\bar{x})=h_{i}\left(x_{\sigma(m+1)}, \ldots, x_{\sigma(n)}\right)$ for each point $\left(x_{\sigma(1)}, \ldots x_{\sigma(m)}\right)$ in the interior of S_{i}.

Thank you!

[^0]: ${ }^{1}$ B. Gerla, Many valued Logics of Continuous t-norms and their Functional Representation, PhD thesis, Università di Milano, 2000/2001

[^1]: ${ }^{2}$ S. Bova, PhD thesis, BL-functions and Free BL-algebra, 2008
 ${ }^{3}$ S. Aguzzoli and S. Bova, The free n-generated BL-algebra, Ann. Pure Appl. Logic, Vol. 161, 9, p.1144-1170, 2010

