A representation for the *n*-generated free algebra in the subvariety of BL-algebras generated by $[0,1]_{MV} \oplus [0,1]_{G}$

M. Busaniche, J. L. Castiglioni and N. Lubomirsky

CONICET - IMAL - UNLP

SYSMICS - September 2016

Examples of standard algebras

Standard MV-algebra $[0, 1]_{MV}$:

$$\left< [0,1], \left\{ \begin{array}{ll} 0 & \text{if } x+y \leq 1 \\ x+y-1 & \text{oherwise} \end{array} \right., \left\{ \begin{array}{ll} 1 & \text{if } x \leq y \\ 1-x+y & \text{otherwise} \end{array} \right., 0 \right>$$

Standard Gödel-algebra $[0,1]_{Godel}$:

$$\left< [0,1], \left\{ egin{array}{cc} x & ext{if } x \leq y \\ y & ext{oherwise} \end{array}, \left\{ egin{array}{cc} 1 & ext{if } x \leq y \\ y & ext{otherwise} \end{array}, 0
ight>$$

Examples of free algebras: the case of MV-algebras

Chang's Algebraic Completeness Theorem

The standard MV-algebra $\langle [0,1], max(0, x + y - 1), min(1, 1 - x + y), 0 \rangle$ is generic for the variety of MV-algebras (BL algebras with $\neg \neg x = x$).

Consider the MV-algebra \mathcal{M}_n of all functions $f : [0, 1]^n \to [0, 1]$ endowed with the pointwise standard MV-operations: $(f \cdot g)(x) = max(0, f(x) + g(x) - 1),$ $(f \to g)(x) = min(1, 1 - f(x) + g(x)), \perp(x) = 0.$

McNaughton's Representation Theorem

The free n-generated MV-algebra is the subalgebra of \mathcal{M}_n of all continuous piecewise linear functions $f : [0,1]^n \to [0,1]$ where each one of the finitely many linear pieces has integer coefficients.

Examples of free algebras: the case of Gödel hoops

Gödel hoops are the \perp -free subreducts of Gödel algebras. Gödel hoop form a variety **G**.

We will call $[0,1]_{\mathbf{G}}$ to the standard Gödel hoop.

Definition

Let \mathcal{R} be the set which contains all the subsets of $[0,1]^n$ given by:

$$R \in \mathcal{R}$$
 iff $R = \{(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) : x_{\sigma(1)} \Box \ldots \Box x_{\sigma(n)}\}$

for $\Box \in \{=, <\}$ and σ a permutation of $\{1, \ldots, n\}$.

Free *n*-generated Gödel hoops

Theorem: The case for Gödel algebras

The algebra of functions $f:[0,1]^n\to [0,1]$ such that for every $R\in \mathcal{R}$

$$f|_R = 1$$
, or $f|_R = 0$, or
 $f|_R = x_i$ with $i \in \{1, ..., n\}$

equipped with the pointwise operations \cdot and \rightarrow is the free Gödel algebra over n-generators. 1

For the case of the free Gödel hoops algebra $Free_{\mathcal{G}}(n)$ it also holds: f > 0 and if $f|_R = x_i$ where R is the region defined by $x_{\sigma(1)} \Box \ldots < x_{\sigma(i)} \Box \ldots \Box x_{\sigma(n)}$ then $f|_S = x_i$ for every $S \in \mathcal{R}$ where S is a region where the last n - i variables are ordered as in R.

¹B. Gerla, Many valued Logics of Continuous t-norms and their Functional Representation, PhD thesis, Università di Milano, 2000/2001 \rightarrow (\pm) (

The case of one variable

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The case of one variable

The case of two variables

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ○ ○ ○

The case of two variables

The case of two variables

Ordinal sum

Let $\mathbf{R} = (R, *_{\mathbf{R}}, \rightarrow_{\mathbf{R}}, \top)$ and $\mathbf{S} = (R, *_{\mathbf{S}}, \rightarrow_{\mathbf{S}}, \top)$ be two hoops such that $R \cap S = \{\top\}$. We define the ordinal sum $R \oplus S$ of these two hoops as the hoop given by $(R \cup S, *, \rightarrow, \top)$ where the operations $(*, \rightarrow)$ are defined as follows:

$$x * y \begin{cases} x *_{\mathbf{R}} y & \text{if } x, y \in R, \\ x *_{\mathbf{S}} y & \text{if } x, y \in S, \\ x & \text{if } x \in R \setminus \{\top\} \text{ and } y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$
$$x \to y \begin{cases} \top & \text{if } x \in R \setminus \{\top\} \text{ and } x \in S, \\ x \to_{\mathbf{R}} y & \text{if } x, y \in R, \\ x \to_{\mathbf{S}} y & \text{if } x, y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$

- $Free_{\mathcal{BL}}(n)$ is generated by the algebra $(n+1)[0,1]_{MV}$. This fact allows us to characterize the free *n*-generated BL-algebra $Free_{\mathcal{BL}}(n)$ as the algebra of functions $f: (n+1)[0,1]_{MV}^n \to (n+1)[0,1]_{MV}$ generated by the projections.
- S. Bova and S. Aguzzoli gave a representation of the free-*n*-generated BL-algebra. ², ³

In this work we will concentrate in the subvariety $\mathcal{V} \subseteq \mathcal{BL}$ generated by the ordinal sum of the algebra $[0,1]_{MV}$ and the Gödel hoop $[0,1]_{G}$, that is, generated by $\mathbf{A} = [0,1]_{MV} \oplus [0,1]_{G}$.

²S. Bova, PhD thesis, BL-functions and Free BL-algebra,2008
³S. Aguzzoli and S. Bova, The free *n*-generated BL-algebra, Ann. Pure Appl. Logic, Vol. 161, 9, p.1144–1170, 2010

Some remarks...

- [0,1]_G is decomposable as an infinite ordinal sum of two-elements Boolean algebra, the idea is to treat it as a whole block (dense elements).
- The elements in [0, 1]_{MV} are usually called regular elements of A.
- **Advantage**: The number *n* of generators of the free algebra does not increase the generating chain.
- That gives an idea of the role of the regular elements and the role of the dense elements.
- To give a functional representation for the free algebra *Free*_V(n) we decompose the domain [0,1]_{MV} ⊕ [0,1]_G in a finite number of pieces. In each piece a function F ∈ Free_V(n) coincides either with McNaughton functions or functions on the free algebra in the variety of Gödel hoops.

$Free_{\mathcal{V}}(1)$

Proposition

Let $\alpha(x)$ be a BL-term in one variable that we evaluate in \mathcal{V} . Then:

• If $\alpha_{\mathcal{V}}(1) = 1$ then $\alpha_{\mathcal{V}}(x)$ is a function of $Free_{\mathcal{G}}(1)$ for each $x \in [0, 1]_{\mathbf{G}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If $\alpha_{\mathcal{V}}(1) = 0$ then $\alpha_{\mathcal{V}}(x) = 0$ for each $x \in [0, 1]_{\mathbf{G}}$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $g \in Free_{\mathcal{MV}}(1)$ and $h \in Free_{\mathcal{G}}(1)$ such that g(1) = h(1) = 1. Then the function

$$f(x) = \begin{cases} g(x) & \text{if } x \in [0, 1]_{MV} \\ \\ h(x) & \text{if } x \in [0, 1]_{G} \end{cases}$$
(1)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

is in $Free_{\mathcal{V}}(1)$.

Let $g \in Free_{\mathcal{MV}}(1)$ such that g(1) = 0. Then the function

$$f(x) = \begin{cases} g(x) & \text{if } x \in [0,1]_{\mathsf{MV}} \\ 0 & \text{if } x \in [0,1]_{\mathsf{G}} \end{cases}$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is in $Free_{\mathcal{V}}(1)$.

Let $f \in Free_{\mathcal{V}}(1)$.

- If f(1) = 1 then there are functions $g \in Free_{\mathcal{MV}}(1)$ and $h \in Free_{\mathcal{G}}(1)$ such that satisfy (1).
- If f(1) = 0 then there is a function g ∈ Free_{MV}(1) such that satisfies (2).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Problem in two variables

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

As before, if $\alpha(x, y)$ is a BL-term and we evaluate it in \mathcal{V} we have:

If α_V(1,1) = 1 then there is a function g ∈ Free_{Free_G}(2) such that α_V(x, y) = g(x, y) for every (x, y) ∈ [0, 1]²_G.

• If $\alpha_{\mathcal{V}}(1,1) = 0$ then $\alpha_{\mathcal{V}}(x,y) = 0$ for every $(x,y) \in [0,1]_G^2$.

Let $\alpha(x, y)$ and $a \in [0, 1]_{MV} \setminus \{1\}$. Then, if we evaluate α on \mathcal{V} , it holds:

- If $\alpha_{\mathcal{V}}(a, 1) = c \in [0, 1]_{MV} \setminus \{1\}$ then $\alpha_{\mathcal{V}}(a, b) = c$ for every $b \in [0, 1]_G$,
- If α_V(a, 1) = 1 then there is a function g ∈ Free_V(1) such that α_V(a, b) = g(b) for every b ∈ [0, 1]_G.

Definition

Let $f \in Free_{\mathcal{MV}}(2)$. If $A = \{x \in [0,1]_{\mathcal{MV}} : f(x,1) = 1\}$ and $B = [0,1]_{\mathcal{MV}} \setminus A$, we will say that $g : [0,1]_{\mathcal{MV}} \times (0,1]_{\mathcal{G}} \to \mathcal{V}$ is an *f*-*y*-G-McNaughton function if:

- 1. For each $x_0 \in B$, $g(x_0, y) = f(x_0, 1)$, for every $y \in (0, 1]_G$.
- There is a regular triangulation Δ of A which determines the simplexes σ₁,..., σ_n and functions g₁,..., g_n ∈ Free_G(1) such that g(x, y) = g_i(y), for every x in the interior of σ_i.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

くして 前 ふかく 山下 ふゆう ふしゃ

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Open intervals

Lemma

If $g \in Free_{\mathcal{G}}(1)$ and $S \subseteq [0,1]_{MV}$ is an open interval with rational borders, then there is a term γ_S in two variables such that the interpretation of the term on \mathcal{V} satisfies:

$$\gamma_{S}(x,y) = \begin{cases} g(y) & \text{if } (x,y) \in S \times [0,1]_{G} \\ 1 & \text{otherwise.} \end{cases}$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

Let $f \in Free_{\mathcal{MV}}(2)$ and h_x an f-x-G-McNaughton function. If Δ is the triangulation of $[0,1]_{\mathcal{MV}} \times \{1\} \cap f^{-1}(\{1\})$ given in the definition of h_x and for every simplex $\sigma_i \in \Delta$ we denote σ_i^0 to the relative interior of the simplex, and $g_i \in Free_{\mathcal{G}}(1)$ also are de functions given in the definition of h_x , then there is a function $F_x \in Free_{\mathcal{V}}(2)$ which satisfies:

$$F_x(x,y) = \left\{ egin{array}{cc} g_i(y) & \textit{if}\ (x,y) \in \sigma_i^0 imes [0,1]_G \ & \ 1 & \textit{otherwise} \end{array}
ight.$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Lemma

Given a function $g \in Free_{\mathcal{G}}(2)$ there is a function $f_g \in Free_{\mathcal{V}}(2)$ which satisfies:

$$f_g(x,y) = \begin{cases} g(x,y) & \text{if } (x,y) \in (0,1]_G \times (0,1]_G \\ 1 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $F : \mathcal{V}^2 \to V$ given as before. Consider the terms:

1.
$$\gamma_1 = \alpha$$

- 2. γ_2 is a term whose interpretation on A is the function F_x correspondent to the *f*-x-G-McNaughton function h_x .
- γ₃ is a term whose interpretation on A is the function F_y correspondent to the f-y-G-McNaughton function h_y.
- γ₄ is a term whose interpretation on A is the function f_g correspondent to the function g ∈ Free_G(2).

We define the two-variables term β given by

$$\beta = \bigwedge_{i=1}^{4} \gamma_i.$$

Then the interpretation of β in the algebra $[0,1]_{MV} \oplus [0,1]_{G}$ coincides with the function F.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

$Free_{\mathcal{V}}(n)$

Let $F \in Free_{\mathcal{V}}(n)$. Then:

• For every $ar{x} \in ([0,1]_{\mathsf{MV}})^n$,

$$F(\bar{x}) = f(\bar{x})$$

where f is a function of $Free_{\mathcal{MV}}(n)$.

For the rest of the domain, the functions depend on this function $f:([0,1]_{MV})^n \rightarrow [0,1]_{MV}$:

 $F(\bar{x}) = 0$

for every $\bar{x} \in ([0,1]_{\mathbf{G}})^n$. 2. If $f(\bar{1}) = 1$, then $F(\bar{x}) = g(\bar{x})$ for a function $g \in Free_{\mathcal{G}}(n)$, for every $\bar{x} \in ([0,1]_{\mathbf{G}})^n$.

・ロト・(中)・(中)・(中)・(日)

Let $B = \{x_{\sigma(1)}, \ldots, x_{\sigma(m)}\} \subsetneq \{x_1, \ldots, x_n\}$ and R_B be the subset of $([0, 1]_{MV} \oplus [0, 1]_G)^n$ where $x_i \in B$ if and only if $x_i \in [0, 1]_G$. For every $\bar{x} \in R_B$ we also define \tilde{x} as:

$$ilde{x}_i = \left\{ egin{array}{ccc} x_i & ext{if} & x_i \notin B \ & & & \ 1 & ext{if} & x_i \in B \end{array}
ight.$$

If f(x̃) < 1 then F(x̄) = f(x̃).
If f(x̃) = 1, then there is a regular triangulation Δ of f⁻¹(1) ∧ R_B which determines the simplices S₁,..., S_k and k Gödel functions h₁,..., h_n in n - m variables x_{σ(m+1)},..., x_{σ(n)} such that F(x̄) = h_i(x_{σ(m+1)},..., x_{σ(n)}) for each point (x_{σ(1)},...x_{σ(m)}) in the interior of S_i.

(日) (同) (三) (三) (三) (○) (○)

Thank you!