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Remark
Of course decidability is a necessary requirement, but other than
that not much seems to be known.
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Structural rules

Proposition (Ciabattoni, Galatos & Terui 2008)

Any structural sequent rule is either derivable in L] or derives every
formula in1].

Consequently, this approach is not helpful when trying to give an
(partial) answer to Question L
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Hypersequent rules

A different approach would be to allow a more general version of
“sequent” where structural rules may be non-trivial.

Hypersequents [Mints 1968, Pottinger 1983, Avron 1987]

Structural hypersequent rules may be defined in the evident way.

Examples

H|F1,F2:>H1 H|21,22:>H2 H|F1,F2:>

H|F1,21:>H1‘F2,22:>H2 H’P1:>’P2:>
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Cut-free hypersequent calculi

Question II:

For which intermediate logics can we find cut-free hypersequent
calculi? Say, by adding (finitely many) new (structural)
hypersequent rules to the base calculus HLJ?

Theorem (Ciabattoni, Galatos & Terui 2008)

Every structural hypersequent rule (1) is equivalent to a (so-called

completed) structural hypersequent rule (') such that Fyyy, oy H

cf

implies I—HLH

() H, for any hypersequent H.

Question III:

For which intermediate logics can we find structural hypersequent
calculi? That is, which intermediate logics are determined by
hypersequent calculi of the form HLJ + %, for some set # of
structural hypersequent rules?
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Substructural hierarchy

A syntactic description of such intermediate logics in terms of the
so-called substructural hierarchy has already been provided:

PnJrl = T | 1 | Nn | Pn+1 AN Pn+1 ’ PnJrl \/PnJrl
Nn+1 = T | J_ | Pn |Nn+1 /\Nn—i-l | Pn—i—l — Nn+1

Examples

The logics
LC,KC,BTW,,BW,, & BC,, (n>2)

can all be axiomatised by formulas belonging to Ps.
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The level P; of the substructural hierarchy

Theorem (Ciabattoni, Galatos & Terui 2008)

Every Ps-formula is equivalent (over HL]) to a finite set of structural
hypersequent rules.

In fact it is not very difficult to show that any intermediate logic
admitting a structural hypersequent calculus can be axiomatised by
P3-formulas.
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A difficulty with the substructural hierarchy

Given an intermediate logic L := IPC + ¢ with ¢ ¢ P3 there might
exists 1) € P3 such that L = IPC + 1. For example:

n

BTW, =1PC+ A | =(wir-p) =\ (-pi = \/ —p))
0<i<j<n i=0 J#i

n
=pC+\/ [ Ap; = i
i=0 \j<i

What we need are semantic criteria determining whether or not an
intermediate logic can be axiomatised by P3-formulas. We provide

such criteria, both in terms of the algebraic and the Kripke
semantics.
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Stable intermediate logics

It turns out that we need to consider a subclass of the so-called
stable intermediate logics studied by Bezhanishvili et ali.
Definition

We say that an intermediate logic L is (0, A, 1)-stable if whenever
h: 2 — B isan (0, A, 1)-embedding of Heyting algebras with
B € V(L)y; thenA € V(L).

Key lemma

An intermediate logic L is (0, A, 1)-stable iff V(L) is generated by a
universal class of Heyting algebras closed under
(0, A, 1)-subalgebras.

10
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Semantic characterisation: Heyting algebras

Theorem
Let L be an intermediate logic. Then the following are equivalent:

1. L admits a structural hypersequent calculus;
2. Lis(0,A,1)-stable.

Corollary

For n > 2 the logic BD,, does not admit any structural hypersequent
calculus, i.e., a calculus of the form HL] + %, with Z a set of
structural rules.
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Definition

A first-order formula is a geometric implication if it a conjunction of
formulas the form

Vi (p(w) = 30(¢1 (W, D) or ... or Py (W, V))),

where ¢ and vy, are conjunctions of atomic formulas and the
variables ¢’ do not occur (free) in .
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Definition

A first-order formula is a geometric implication if it a conjunction of
formulas the form

Vi (p(w) = 30(¢1 (W, D) or ... or Py (W, V))),

where ¢ and 1, are conjunctions of atomic formulas and the
variables ¢’ do not occur (free) in .

Geometric implications can be used to construct labeled sequent
calculi for intermediate and modal logics.
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Vi (p(i) = F1(,5) or ... o (i, 7))

(in the language of partial orders) is said to be simple if

1. there is wgy € w such that every atomic subformula of ¢ is of
the form wqy < wy;

2. each atomic subformula in 1)}, is of the form w < w’ or w < v
for w,w’ € wandv € v.

Examples
le, ey wnH(AND?:l(w?- < wi+1) = OR,¢J(U}7 = w])) &
Ywg, wi, wa((wo < wy and wy < wy) = Jv (w; < v and wy < v)).
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L be an intermediate logic. Then the following are equivalent:

. L admits a structural hypersequent calculus;
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. L is axiomatisable by P3-formulas;
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1. Cardinality of (0, A, 1)-stable logics;

2. Substructural logics: Semantic characterisation of P3-formulas
(P4-formulas) over FL.,, and FL.;

3. Hypersequent calculi for modal logics and stable modal logics.
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Thank you for your attention.



