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Proof theory for intermediate logics

Question I:
For which intermediate logics can we find cut-free sequent calculi?
Say, by adding (finitely many) new sequent rules to the base calculus
LJ?

Remark
Of course decidability is a necessary requirement, but other than
that not much seems to be known.
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Structural rules

One could try to give a partial answer to Question I by requiring the
additional rules to be of a special form.

Definition
A sequent rule (r) is structural if its of the form

Γ11, . . . ,Γ1n1 ⇒ Π1 . . . Γ1m, . . . ,Γ1nm ⇒ Πm
(r)

Γ01, . . . ,Γ0n0 ⇒ Π0

where Γij ,Πi are either (possibly empty) contexts or formulas.

Examples
Γ ⇒ Π (lw)

Γ, φ⇒ Π
Γ1 ⇒ Π1 Γ2 ⇒ Π2 ( )

Γ1 ⇒ Π2

Structural rules give cut-free calculi for a number of substructural
logics. Unfortunately, …
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Structural rules

Proposition (Ciabattoni, Galatos & Terui 2008)
Any structural sequent rule is either derivable in LJ or derives every
formula in LJ.

Consequently, this approach is not helpful when trying to give an
(partial) answer to Question I.
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Hypersequent rules

A different approach would be to allow a more general version of
“sequent” where structural rules may be non-trivial.

Hypersequents [Mints 1968, Pottinger 1983, Avron 1987]

Γ1 ⇒ Π1 | . . . | Γm ⇒ Πm.

Structural hypersequent rules may be defined in the evident way.

Examples

H | Γ1,Γ2 ⇒ Π1 H | Σ1,Σ2 ⇒ Π2

H | Γ1,Σ1 ⇒ Π1 | Γ2,Σ2 ⇒ Π2

H | Γ1,Γ2 ⇒
H | Γ1 ⇒ | Γ2 ⇒
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Cut-free hypersequent calculi

Question II:
For which intermediate logics can we find cut-free hypersequent
calculi? Say, by adding (finitely many) new (structural)
hypersequent rules to the base calculus HLJ?

Theorem (Ciabattoni, Galatos & Terui 2008)
Every structural hypersequent rule (r) is equivalent to a (so-called
completed) structural hypersequent rule (r′) such that ⊢HLJ+(r′) H

implies ⊢cf
HLJ+(r′) H , for any hypersequent H .

Question III:
For which intermediate logics can we find structural hypersequent
calculi? That is, which intermediate logics are determined by
hypersequent calculi of the form HLJ+ R, for some set R of
structural hypersequent rules?
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Substructural hierarchy

A syntactic description of such intermediate logics in terms of the
so-called substructural hierarchy has already been provided:

Pn+1 ::= ⊤ | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊤ | ⊥ | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

Examples
The logics

LC,KC,BTWn,BWn & BCn, (n ≥ 2)

can all be axiomatised by formulas belonging to P3.

7



Substructural hierarchy

A syntactic description of such intermediate logics in terms of the
so-called substructural hierarchy has already been provided:

Pn+1 ::= ⊤ | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊤ | ⊥ | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

Examples
The logics

LC,KC,BTWn,BWn & BCn, (n ≥ 2)

can all be axiomatised by formulas belonging to P3.

7



Substructural hierarchy

A syntactic description of such intermediate logics in terms of the
so-called substructural hierarchy has already been provided:

Pn+1 ::= ⊤ | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊤ | ⊥ | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

Examples
The logics

LC,KC,BTWn,BWn & BCn, (n ≥ 2)

can all be axiomatised by formulas belonging to P3.

7



Substructural hierarchy

A syntactic description of such intermediate logics in terms of the
so-called substructural hierarchy has already been provided:

Pn+1 ::= ⊤ | ⊥ | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊤ | ⊥ | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

Examples
The logics

LC,KC,BTWn,BWn & BCn, (n ≥ 2)

can all be axiomatised by formulas belonging to P3.

7



The level P3 of the substructural hierarchy

Theorem (Ciabattoni, Galatos & Terui 2008)
Every P3-formula is equivalent (over HLJ) to a finite set of structural
hypersequent rules.

In fact it is not very difficult to show that any intermediate logic
admitting a structural hypersequent calculus can be axiomatised by
P3-formulas.

8



The level P3 of the substructural hierarchy

Theorem (Ciabattoni, Galatos & Terui 2008)
Every P3-formula is equivalent (over HLJ) to a finite set of structural
hypersequent rules.

In fact it is not very difficult to show that any intermediate logic
admitting a structural hypersequent calculus can be axiomatised by
P3-formulas.

8



A difficulty with the substructural hierarchy

Given an intermediate logic L := IPC+ φ with φ ̸∈ P3 there might
exists ψ ∈ P3 such that L = IPC+ ψ. For example:

BTWn = IPC+
∧

0≤i<j≤n

¬(¬pi ∧ ¬pj) →
n∨

i=0

(¬pi →
∨
j ̸=i

¬pj)


= IPC+

n∨
i=0

∧
j<i

pj → ¬¬pi

 .

What we need are semantic criteria determining whether or not an
intermediate logic can be axiomatised by P3-formulas. We provide
such criteria, both in terms of the algebraic and the Kripke
semantics.
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Stable intermediate logics

It turns out that we need to consider a subclass of the so-called
stable intermediate logics studied by Bezhanishvili et ali.

Definition
We say that an intermediate logic L is (0,∧, 1)-stable if whenever
h : A ↪→ B is an (0,∧, 1)-embedding of Heyting algebras with
B ∈ V(L)si then A ∈ V(L).

Key lemma
An intermediate logic L is (0,∧, 1)-stable iff V(L) is generated by a
universal class of Heyting algebras closed under
(0,∧, 1)-subalgebras.
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Semantic characterisation: Heyting algebras

Theorem
Let L be an intermediate logic. Then the following are equivalent:

1. L admits a structural hypersequent calculus;

2. L is (0,∧, 1)-stable.

Corollary
For n ≥ 2 the logic BDn does not admit any structural hypersequent
calculus, i.e., a calculus of the form HLJ+ R, with R a set of
structural rules.
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Semantic characterisation: Kripke frames

Definition
A first-order formula is a geometric implication if it a conjunction of
formulas the form

∀w⃗(φ(w⃗) =⇒ ∃v⃗(ψ1(w⃗, v⃗) or . . . or ψn(w⃗, v⃗))),

where φ and ψk are conjunctions of atomic formulas and the
variables v⃗ do not occur (free) in φ.

Geometric implications can be used to construct labeled sequent
calculi for intermediate and modal logics.
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Semantic characterisation: Kripke frames

Definition (Lahav 2013)
A geometric implication

∀w⃗(φ(w⃗) =⇒ ∃v⃗(ψ1(w⃗, v⃗) or . . . or ψn(w⃗, v⃗)))

(in the language of partial orders) is said to be simple if
1. there is w0 ∈ w⃗ such that every atomic subformula of φ is of

the form w0 ≤ wl;
2. each atomic subformula in ψk is of the form w ≤ w′ or w ≤ v

for w,w′ ∈ w⃗ and v ∈ v⃗.

Examples
∀w1, . . . , wn+1(ANDn

i=1(wi ≤ wi+1) =⇒ ORi̸=j(wi = wj)) & 
∀w0, w1, w2((w0 ≤ w1 and w0 ≤ w1) =⇒ ∃v (w1 ≤ v and  w2 ≤ v)).
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Theorem
Let L be an intermediate logic. Then the following are equivalent:
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In conclusion

Theorem
Let L be an intermediate logic. Then the following are equivalent:

1. L admits a structural hypersequent calculus;

2. L admits a cut-free structural hypersequent calculus;

3. L is axiomatisable by P3-formulas;
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Future work

1. Cardinality of (0,∧, 1)-stable logics;
2. Substructural logics: Semantic characterisation of P3-formulas

(P ′
3-formulas) over FLew and FLe;

3. Hypersequent calculi for modal logics and stable modal logics.
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Thank you for your attention.


