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Introduction

An ubiquitous phenomena: many propositional logics come in pairs.

Examples:

Modal Logic: Given a class of Kripke models we have the local
consequence relation and the global consequence relation. The first is
equivalential and the second algebraizable.

Substructural logics: Given a variety of commutative integral
residuated lattices, we have the 1-assertional logic and the logic
preserving degrees of truth (defined by the order of the lattices). The
first is algebraizable, and the second can be non-protoalgebraic.

Subintuitionistic logics: Like in modal logic, given a class of Kripke
models we have the local and the global consequence relation.
Depending on the class of Kripke models they are protoalgebraic or not.
If we take the class of all Kripke models both are non-protoalgebraic.
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In

J.M. Font and R. J. The strong version of a protoalgebraic
logic, Arch. Math. Logic 40 (2001),

we developed

a framework to account for the mentioned phenomena,

in the setting of abstract algebraic logic, but only for protoalgebraic
logics.

The main tool to introduce the concept of the strong version of a
protoalgebraic logic S was the notion of Leibniz S-filter.
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Now we have extended the theory to any logic and we have the concept
of the strong version of an arbitrary given logic.

The main tool is a new notion of Leibniz S-filter, this time defined for
every logic S. It is introduced in

H. Albuquerque, J.M. Font and R. J. Compatibility
operators in abstract algebraic logic, JSL 81 (2016).

The notion, although different from the one given for protoalgebraic
logics, coincides in extension with it, when restricted to the logics of this
type.
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Preliminary basic concepts

Let S be a logic, understood as a consequence relation `S (invariant
under substitutions) over the formula algebra with denumerably many
variables (x , y , z , . . .) and in a propositional language LS .

Let A be an algebra of type LS .

A set F ⊆ A is an S-filter if it is closed under the interpretations of the
pairs (Γ, ϕ) such that Γ `S ϕ. The set (complete lattice) of the
S-filters of A is denoted by F iSA.

Let F ⊆ A. The Leibniz congruence of F is the largest congruence θ of
A compatible with F (i.e. such that F is a union of equivalence classes
of θ). It is denoted by ΩA(F ).
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The Suszko S-congruence of F , denoted
∼
ΩA
S(F ), is the intersection of

the Leibniz congruences of all the S-filters of A that include F .

The algebraic counterpart of S is the class of algebras

AlgS = {A : ∃F ∈ F iSA s.t.
∼
ΩA
S(F ) is the identity}

The class of algebras

Alg∗S = {A : ∃F ∈ F iSA s.t. ΩA(F ) is the identity}

is also important in abstract algebraic logic.
It turns out that AlgS is the closure of AlgS under subdirect products.
For protoalgebraic logics, Alg∗S = AlgS.
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Let A be an algebra of type LS . Let F ∈ F iSA. The set

[[F ]]∗S := {G ∈ F iSA : ΩA(F ) ⊆ ΩA(G )}

has a least element, that we denote by F∗.

Definition

F is a Leibniz S-filter if it is the least element of its set [[F ]]∗S , that is, if
F∗ = F .

• F i∗SA denotes the set of the Leibniz S-filters of A.

• Let F ∈ F iSA. The following are equivalent:

F is a Leibniz S-filter of A,

F/ΩA(F ) is the least S-filter of A/ΩA(F ).

• Let F ∈ F iSA, then (F∗)∗ = F∗ and therefore F∗ is Leibniz.
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The strong version of a logic

Definition

The strong version of a logic S is the logic S+ given by the class of
matrices

{〈A,F 〉 : A is an LS -algebra and F ∈ F i∗SA}.

It turns out that S+ is the logic of the class of matrices

{〈A,F 〉 : A is an LS -algebra and F is the least S-filter of A}.

Both, in the definition and in the characterization we can restrict the
algebras to the members of AlgS (and also of Alg∗S).
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Some facts

• S+ is an extension of S.

• If S does not have theorems, then S+ is the almost inconsistent logic
(whose only theories are ∅ and Fm).

• The Leibniz S-filters are S+-filters. Hence, F i∗SA ⊆ F iS+A ⊆ F iSA,
for every A.

• S and S+ have the same theorems. More generally, for every A the
least S-filter and the least S+-filter coincide.

• S+ is the largest of all the logics S ′ with the property that for every
algebra the Leibniz S-filters are S ′-filters.
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• If S ≤ S ′ ≤ S+, then F i∗SA = F i∗S′A, for every A and hence
(S ′)+ = S+.

In particular, F i∗SA = F i∗S+A and (S+)+ = S+.

In between S and S+ there can be many logics S ′. In fact, in some
cases a continuum of them.

• All the S-filters of S are Leibniz if and only if for every A, ΩA(.) is
order reflection on F iSA.

• If S is truth-equational, then all is S-filters are Leibniz and therefore
S = S+.
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• It is not always the case that F i∗SA = F iS+A.

For example, if S does not have theorems, then F i∗SA ( F iS+A.

In J.M. Font and R. J. The strong version of a protoalgebraic logic,
Arch. Math. Logic 40 (2001) there is an ad hoc example of a
protoalgebraic logic with theorems where the equality does not hold.

• We will study conditions that imply that F i∗SA = F iS+A.

The following conditions are equivalent.

F i∗SA = F iS+A, for every A,

ΩA is order reflecting over F iS+A, for every A.

Thus, when S+ is truth-equational, F i∗SA = F iS+A, for every A.
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Equational definability

Definition
We say that S has its Leibniz filters equationally definable if there exists
a set of equations τ(x) in one variable such that for every A and every
F ∈ F iSA,

F∗ = {a ∈ A : τA(a) ⊆ ΩA(F )},

where τA(a) = {〈εA(a), δA(a)〉 : ε ≈ δ ∈ τ(x)}.

• If S has its Leibniz filters equationally definable by τ(x), then for every
A and every F ∈ F iSA,

F is a Leibniz S-filter iff F = {a ∈ A : τA(a) ⊆ ΩA(F )}.

• The following are equivalent:

S has its Leibniz filters equationally definable by τ(x).

τA := {a ∈ A : A |= τ(x)[a]} is the least S-filter of A,
for every A ∈ AlgS.
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• If S has its Leibniz filters equationally definable by τ(x), then

S+ is the τ -assertional logic of AlgS.

S+ is truth-equational (with τ as a set of defining equations).

F iS+A = F i∗SA, for every A.
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Logical definability

Definition
We say that S has its Leibniz filters logically definable if there exists a
set of rules H = {Γi ` ϕi : i ∈ I} such that for every A and every
F ∈ F iSA, F is a Leibniz S-filter if and only if it is closed under the
interpretation of every rule in H.

If S has its Leibniz filters logically definable, then for every A,
F iS+A = F i∗SA.

If S has its Leibniz filters logically definable by a set of rules H, then S+
is the extension of S given by the rules in H.
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Explicit definability

Definition
A logic S has its Leibniz filters explicitly definable if there exists a set of
formulas Γ (x) in one variable x such that for every A and every
F ∈ F iSA,

F∗ = {a ∈ A : ΓA(a) ⊆ F}.

If S has its Leibniz filters explicitly definable by Γ (x), then for every A
and every F ∈ F iSA,

F is a Leibniz S-filter iff F = {a ∈ A : ΓA(a) ⊆ F}.

If S has its Leibniz filters explicitly definable by Γ (x), then

S has its Leibniz filters logically definable by the set of rules
{x ` ϕ : ϕ ∈ Γ (x)},
for every A, F iS+A = F i∗SA,

S+ is the extension of S given by the rules in {x ` ϕ : ϕ ∈ Γ (x)}.
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Let S have its Leibniz filters explicitly definable by Γ (x). Then for all
∆ ∪ {ϕ} ⊆ Fm,

∆ `S+ ϕ ⇐⇒ Γ (∆) `S ϕ.

Moreover,

1 Γ (x) `S x .

2 Γ (x) a`S+ x .

3 Γ
(
Γ (x)

)
a`S Γ (x).

4 If ∆ `S ϕ, then Γ (∆) `S Γ (ϕ), for all ∆ ∪ {ϕ} ⊆ Fm.

Like the behaviour of the set {�nx : n ∈ ω} in the local consequence of
the class of all Kripke models.
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A logic S has its Leibniz filters explicitly definable if and only if
there is a set of formulas Γ (x) such that

1 S has its Leibniz filters logically definable by the set of rules
x ` Γ (x),

2 for all ∆ ∪ {ϕ} ⊆ Fm such that ∆ `S ϕ it holds that
Γ (∆) `S Γ (ϕ)

and moreover for every A and all F ∈ F iSA, F∗ is the largest Leibniz
S-filter included in F .
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Positive modal logic PML.

It is the negation-less and implication-less fragment of the local
consequence relation of the class of all Kripke frames (with
♦,�,∧,∨,>, and ⊥ as its language primitive symbols).

The class AlgPML is the variety PMA of positive modal algebras (M.
Dunn). And PML is the logic of the order of PMA.

A positive modal algebra is an algebra A = 〈A,∧A,∨A,�A,♦A,>A,⊥A〉
where 〈A,∧A,∨A, 1, 0〉 is a bounded distributive lattice and for every
a, b ∈ A:

1. �A(a ∧A b) = �Aa ∧A �Ab 4. �A(a ∨A b) ≤ �Aa ∨A ♦Ab

2. ♦A(a ∨A b) = ♦Aa ∨A ♦Ab 5. �A>A = >A

3. �Aa ∧A ♦Ab ≤ ♦A(a ∧A b) 6. ♦A⊥A = ⊥A

AlgPML and is different from Alg∗PML.
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Belnap-Dunn logic B.

We take it in the language ∧,∨,¬,⊥,>.

Belnap-Dunn’s logic B is the logic of the order of the variety DMA of De
Morgan algebras, which is generated by the four-element De Morgan
algebra

¬⊥ = > •

¬a = a • • b = ¬b

⊥ = ¬>•
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PML Belnap-Dunn: B
fully selfextensional idem
not protoalgebraic idem

not truth-equational idem
not Fregean idem

F iPMLA = lattice filters F iBA = lattice filters

Leibniz filters eq. definable by Leibniz filters eq. definable by
x ≈ > x ≈ >

Leibniz filters explicitly definable by Leibniz filters not explicitly definable
{�nx : n ∈ ω}

Leibniz filters logically definable by Leibniz filters logically definable by
(N) x ` �x (DS) x ,¬x ∨ y ` y

Leibniz filters = open filters Leibniz filters = lattice filters
closed by ¬x ∨ y

F iPML+A = F i∗PMLA F iB+A = F i∗BA
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PML Belnap-Dunn: B
AlgPML+ ( AlgPML = PMA AlgB+ = AlgB = DMA
PML+ = >-assertional logic B+ = >-assertional logic

of PMA of DMA
PML+ = PML + x ` �x B+ = B + x ,¬x ∨ y ` y
PML+ is truth-equational idem
PML+ is not protoalgebraic idem
PML+ is not selfextensional idem
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Substructural logics: the integral case

Let K be a variety of commutative and integral residuated lattices, in the
language {∨,∧,�,→, 1}. Consider the logic S≤K of degrees of truth of K
and its 1-assertional logic S1K, which is known to be BP-algebraizable.
The S1K-filters on algebras in K are the implicative filters.

S1K is the strong version of S≤K (i.e. S1K = (S≤K )+).
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Substructural logics: the non-integral case

Let K be a variety of commutative residuated lattices (not necessarily
integral). The usual substructural logic associated with K is the
{1 ≤ x}-assertional logic of K.

We denote it by SτK (for τ = {x ∧ 1 ≈ 1}).

The logic SτK is:

BP-algebraizable with AlgSτK = K.

The SτK-filters of any A ∈ K are the implicative filters (i.e. the
lattice filters closed under →) that contain 1.

The logic S≤K of degrees of truth of K may not have theorems. If this is
the case, its strong version is the almost inconsistent logic and different
from SτK.
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Let S4

K be the least logic S such that S≤K ≤ S ≤ SτK and with the same
theorems as SτK. This logic can be defined as the logic of the class of
matrices

{〈A, [1 ∧ a)〉 : A ∈ K, a ∈ A}

and as the one of the class of matrices

{〈A,F 〉 : A ∈ K,F is a lattice filter of A and 1 ∈ F}.

AlgS4

K = K = AlgSτK.
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S≤K , K ⊆ CRIL variety S4

K , K ⊆ CRL non-integral variety

fully selfextensional S4

K is not selfextensional

S≤K is (fully) Fregean iff S4

K is truth-equational iff
it is truth-equational iff it is algebraizable iff

it is algebraizable iff K |= x ∧ (x → y) ∧ 1 ≤ y iff

S≤K = (S≤K )+ S4

K = (S4

K )+

S≤K is protoalgebraic iff
there exists n ∈ ω such that ? ?

K |= x ∧ (x → y)n ≤ y
F iS≤K A = lattice filters F iS4

K
A = lattice filters with 1

Leibniz filters eq. definable by Leibniz filters eq. definable by
x ≈ > 1 ≤ x

Leibniz filters explicitly definable iff If the Leibniz filters are explicitly
it is protoalgebraic definable, then it is protoalgebraic

(definable by {xn : n ∈ ω})
Leibniz filters logically definable by Leibniz filters logically definable by

Modus Ponens Modus Ponens
Leibniz filters = implicative filters Leibniz filters = implicative filters

that contain 1
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S≤K , K ⊆ CRIL variety S4

K , K ⊆ CRL non-integral variety

F i
(S4

K )+
A = F i∗

S4
K

A F iB+A = F i∗BA

Alg(S≤K )+ = AlgS≤K = K Alg(S≤K )+ = AlgS4

K = K

(S≤K )+ = 1-assertional logic (S4

K )+ = {1 ≤ x}-assertional logic
of K of K

(S≤K )+ = S≤K + (MP) (S4

K )+ = S4

K + (MP)

(S≤K )+ is BP-algebraizable (S4

K )+ is BP-algebraizable

(S≤K )+ is selfextensional iff (S4

K )+ is not selfextensional

S≤K = (S≤K )+
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Question:

Is there an interesting propertey Φ such that

S has Φ iff for every A, F iS+A = F i∗SA ?
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