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Embedding ExtIPC into ExtPLL via canonical formulas

Introduction/Notation

LIPC denote the language of propositional logic.

IPC denotes the intuitionistic propositional calculus.

ExtIPC denotes the lattice of all superintuitionistic logics (si-logics).

An intuitionistic modal logic is a collection of formulas in the
language LIPC ∪ {#}, closed under MP and substitution.
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Propositional lax logic PLL

Definition
PLL is an intuitionistic modal logic with a peculiar modality # that is
axiomatized by

p → #p
##p → #p
#(p ∧ q)↔ (#p ∧#q).

The modality # was studied in several context (see Fairtlough and
Mendler [FM97]).

Different semantics were studied by Goldblatt in [Gol81], by Dragalin
in [Dra88] and in [FM97].

PLL has the finite model property and is decidable [Gol81], [FM97],
[WZ98].
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Nuclear Heyting algebras

Definition
Let A be a Heyting algebra. A nucleus on A is a function j : A→ A such
that for all a, b ∈ A

a ≤ j(a), j(j(a)) = j(a), j(a ∧ b) = j(a) ∧ j(b).

A nuclear Heyting algebra is a pair A = (A, j), where A is a Heyting
algebra and j is a nucleus on A.

Theorem (Gol81)

Every M ∈ ExtPLL is sound and complete with respect to its
corresponding variety of nuclear Heyting algebras.
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Embedding ExtIPC into ExtPLL via canonical formulas

Goal of the talk

Let Γ ⊆ LIPC. Then

IPC + Γ denotes the smallest si-logic that contains Γ,

PLL + Γ denotes the smallest extension of PLL that contains Γ.

This gives rise to an embedding ExtIPC→ ExtPLL.

Let X ∈ {fmp, Kripke completeness, tabularity, decidability}.

Suppose the si-logic IPC + Γ has property X ,

does PLL + Γ have property X , too?

Wolter and Zakharyaschev studied such preservation results by
embedding intuitionistic modal logics into classical bi-modal logics.
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Embedding ExtIPC into ExtPLL via canonical formulas

Canonical formulas for si-logics

Canonical formulas for si-logics were introduced by Zakharyaschev.

Algebraic generalizations were studied by Bez2, Citkin, Tomaszewski.

Like Jankov-de Jongh formulas (aka splitting formulas ), they
encode the structure of finite algebras.

Let A be a finite s.i. Heyting algebra, D ⊆ A2. Then the canonical
formula β(A,D) encodes

the (∧,→, 0)- structure of A fully and
the behavior of ∨ partially on the set D.

Every formula in LIPC is equivalent to a finite conjunction of
canonical formulas.

Thus, all si-logics are axiomatizable by canonical formulas.
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Canonical formulas for PLL

A nuclear Heyting algebra A = (A, j) is subdirectly irreducible (s.i.)
iff A has a second largest element.

Let A = (A, j) be finite and s.i., D∨ ⊆ A2 and D# ⊆ A.

For a ∈ A let pa be a propositional letter, let s be the second largest
element of A.

β(A,D∨,D#) :=
∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧ {p0 ↔ 0} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨} ∧∧
{#pa → pj(a) | a ∈ A} ∧∧
{pj(a) → #pa | a ∈ D#}

−→ ps .

β(A,D∨,D#) is called the canonical formula of (A,D∨,D#).

7 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Canonical formulas for PLL

A nuclear Heyting algebra A = (A, j) is subdirectly irreducible (s.i.)
iff A has a second largest element.

Let A = (A, j) be finite and s.i., D∨ ⊆ A2 and D# ⊆ A.

For a ∈ A let pa be a propositional letter, let s be the second largest
element of A.

β(A,D∨,D#) :=
∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧ {p0 ↔ 0} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨} ∧∧
{#pa → pj(a) | a ∈ A} ∧∧
{pj(a) → #pa | a ∈ D#}

−→ ps .

β(A,D∨,D#) is called the canonical formula of (A,D∨,D#).

7 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Canonical formulas for PLL

A nuclear Heyting algebra A = (A, j) is subdirectly irreducible (s.i.)
iff A has a second largest element.

Let A = (A, j) be finite and s.i., D∨ ⊆ A2 and D# ⊆ A.

For a ∈ A let pa be a propositional letter, let s be the second largest
element of A.

β(A,D∨,D#) :=
∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧ {p0 ↔ 0} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨} ∧∧
{#pa → pj(a) | a ∈ A} ∧∧
{pj(a) → #pa | a ∈ D#}

−→ ps .

β(A,D∨,D#) is called the canonical formula of (A,D∨,D#).

7 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Canonical formulas for PLL

A nuclear Heyting algebra A = (A, j) is subdirectly irreducible (s.i.)
iff A has a second largest element.

Let A = (A, j) be finite and s.i., D∨ ⊆ A2 and D# ⊆ A.

For a ∈ A let pa be a propositional letter, let s be the second largest
element of A.

β(A,D∨,D#) :=
∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧ {p0 ↔ 0} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨} ∧∧
{#pa → pj(a) | a ∈ A} ∧∧
{pj(a) → #pa | a ∈ D#}

−→ ps .

β(A,D∨,D#) is called the canonical formula of (A,D∨,D#).

7 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Canonical formulas for PLL

A nuclear Heyting algebra A = (A, j) is subdirectly irreducible (s.i.)
iff A has a second largest element.

Let A = (A, j) be finite and s.i., D∨ ⊆ A2 and D# ⊆ A.

For a ∈ A let pa be a propositional letter, let s be the second largest
element of A.

β(A,D∨,D#) :=
∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧ {p0 ↔ 0} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨} ∧∧
{#pa → pj(a) | a ∈ A} ∧∧
{pj(a) → #pa | a ∈ D#}

−→ ps .

β(A,D∨,D#) is called the canonical formula of (A,D∨,D#).
7 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Refutation criterion

Let f : A→ B be a (∧,→, 0)-morphism.

If j(f (a)) ≤ f (j(a)) for all a ∈ A, then we call f stable.

If in addition,
f (a ∨ b) = f (a) ∨ f (b) for every (a, b) ∈ D∨ and

f (j(a)) = j(f (a)) for every a ∈ D#,

then f is called (D∨,D#)-stable.

Theorem
For every nuclear Heyting algebra B = (B, j), the following are
equivalent:

1 B 6|= β(A,D∨,D#).

2 There is a homomorphic image C of B and a (D∨,D#)-stable
embedding from A into C.
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Axiomatic completeness

Proposition

For every PLL-formula ϕ, there is a finite collection {(Ai ,D∨i ,D
#
i )}1≤i≤n

such that for each nuclear Heyting algebra B, TFAE:

1 B 6|= ϕ.

2 For all 1 ≤ i ≤ n, B 6|= β(Ai ,D∨i ,D
#
i ).

Corollary

1 Every formula in the language of PLL is equivalent to a finite
conjunction of canonical formulas.

2 Every M ∈ ExtPLL can be axiomatized by canonical formulas.
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Comparison to Zakharyschev’s canonical formulas

By “deleting the parts with #”, we obtain an algebraic version of
Zakharyaschev.’s canonical formulas:

For a finite s.i. Heyting algebra A let

β(A,D∨) := {p0 ↔ 0} ∧∧
{pa∗b ↔ (pa ∗ pb) | a, b ∈ A, ∗ ∈ {∧,→}} ∧∧
{pa∨b ↔ (pa ∨ pb) | a, b ∈ D∨}

−→ ps .

For every Heyting algebra B, TFAE:

1 B 6|= β(A,D∨).

2 There is a homomorphic image C of B and a (∧,→, 0)-embedding
from h : A→ C with h(a ∨ b) = h(a) ∨ h(b) for all (a, b) ∈ D∨.
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Embedding ExtIPC into ExtPLL via canonical formulas

Lemma
Let A = (A, j) be finite and s.i., D∨ ⊆ A2, D# ⊆ A. Let L = IPC + Γ.
Then

L ` β(A,D∨) implies PLL + Γ ` β(A,D∨,D#).

Proof.

Suppose PLL + Γ 6` β(A,D∨,D#).

There is B = (B, k) with B |= Γ and B 6|= β(A,D∨,D#).

There is a homomorphic image C of B and a (D∨,D#)-stable
embedding h : A→ C.
So, C is a homomorphic image of B and h : A→ C is a
(∧,→, 0)-embedding from A into C with h(a ∨ b) = h(a) ∨ h(b) for
all (a, b) ∈ D∨.

B 6|= β(A,D∨). Since B |= L, β(A,D∨) 6∈ L.
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Embedding ExtIPC into ExtPLL via canonical formulas

Theorem
Let L = IPC + Γ be a si-logic. If L has one of the properties

tabularity,
the fmp,
Kripke completeness,
decidability and Kripke completeness,

then PLL + Γ also enjoys the same property.
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Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Sketch: fmp is preserved.

Suppose PLL + Γ 6` β(A,D∨,D#). Then L 6` β(A,D∨).

Some finite L- Heyting algebra B refutes β(A,D∨).

∃ homomorphic image C of B and a (∧,→, 0)-embedding
f : A→ C preserving ∨ for (a, b) ∈ D∨.

Define a nucleus k on C so that f : A→ C = (C , k) preserves its
structure.

Then f : A→ C is (D∨,D#)-stable, so C refutes β(A,D∨,D#).

Since C is an L-algebra, C validates Γ and is finite.

13 / 14



Embedding ExtIPC into ExtPLL via canonical formulas

Future work and open problems

Is the (∧,→, j)-fragment of nuclear Heyting algebras locally finite?

Similarly to the Gödel-embedding, there is another natural way to
embed ExtIPC into ExtPLL. Can we prove similar preservation
results?

Can we obtain preservation results for other intuitionistic modal
logics in this way?

Thank you!
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