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Embedding ExtIPC into ExtPLL via canonical formulas

Introduction/Notation

Lipc denote the language of propositional logic.

m IPC denotes the intuitionistic propositional calculus.

m ExtIPC denotes the lattice of all superintuitionistic logics (si-logics).

m An intuitionistic modal logic is a collection of formulas in the
language Lipc U {O}, closed under MP and substitution.
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Propositional lax logic PLL

PLL is an intuitionistic modal logic with a peculiar modality O that is
axiomatized by

mp— Op
m OOp — Op
= O(p A gq) < (Op A Og).
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Propositional lax logic PLL

PLL is an intuitionistic modal logic with a peculiar modality O that is
axiomatized by

mp—Op
m OOp — Op
= O(p A gq) < (Op A Og).

m The modality O was studied in several context (see Fairtlough and
Mendler [FM97]).

m Different semantics were studied by Goldblatt in [Gol81], by Dragalin
in [Dra88] and in [FM97].

m PLL has the finite model property and is decidable [Gol81], [FM97],
[WZ98].
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Nuclear Heyting algebras

Definition
Let A be a Heyting algebra. A nucleus on A is a function j : A — A such
that for all a,b € A

a<j(a), JjU(a))=J(a), J(anb)=j(a)rj(b)

A nuclear Heyting algebra is a pair 20 = (A, j), where A is a Heyting
algebra and j is a nucleus on A.
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Nuclear Heyting algebras

Definition
Let A be a Heyting algebra. A nucleus on A is a function j : A — A such
that for all a,b € A

a<j(a), Jjl(a))=Ja), Jjlanb)=j(a)njb).

A nuclear Heyting algebra is a pair 20 = (A, j), where A is a Heyting
algebra and j is a nucleus on A.

Theorem (Gol81)

Every M € ExtPLL is sound and complete with respect to its
corresponding variety of nuclear Heyting algebras.
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Goal of the talk

m Let I C Lipc. Then

m IPC + I denotes the smallest si-logic that contains T,
m PLL + I denotes the smallest extension of PLL that contains I'.

m This gives rise to an embedding ExtIPC — ExtPLL.

Let X € {fmp, Kripke completeness, tabularity, decidability}.

Suppose the si-logic IPC + I has property X,
does PLL + I have property X, too?

m Wolter and Zakharyaschev studied such preservation results by
embedding intuitionistic modal logics into classical bi-modal logics.
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m Algebraic generalizations were studied by Bez?, Citkin, Tomaszewski.

m Like Jankov-de Jongh formulas (aka splitting formulas ), they
encode the structure of finite algebras.

m Let A be a finite s.i. Heyting algebra, D C A2. Then the canonical
formula (A, D) encodes

m the (A, —,0)- structure of A fully and
m the behavior of Vv partially on the set D.

m Every formula in Lipc is equivalent to a finite conjunction of
canonical formulas.

m Thus, all si-logics are axiomatizable by canonical formulas.
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iff A has a second largest element.
m Let A = (A, /) be finite and s.i., DV C A? and D© C A.

For a € A let p, be a propositional letter, let s be the second largest
element of A.

B(A, DY, D) i= N{pass > (Pa* py) | 2, b € Ax € {A,—}} A{po < 0}
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B(A, DY, D) is called the canonical formula of (2, DY, D©).
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m Let f:2A — B bea (A, —,0)-morphism.

m If j(f(a)) < f(j(a)) for all a € A, then we call f stable.
m If in addition,

m f(aV b)=f(a)V f(b) for every (a, b) € DV and

m 7(j(a)) =j(f(a)) for every a € DO,

then f is called (DY, DO)—stab/e.

For every nuclear Heyting algebra B = (B, ), the following are
equivalent:

B [ S, DY, DO).

There is a homomorphic image € of B and a (D", DO)-stab/e
embedding from 2 into €.
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Axiomatic completeness

For every PLL-formula ¢, there is a finite collection {(2;, D;’, D,-O)}lg,-g,,

such that for each nuclear Heyting algebra B, TFAE:
B~ p.

Forall1<i<n, B B(;,DY,D°).
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Axiomatic completeness

Proposition
For every PLL-formula ¢, there is a finite collection {(2;, D;’, D,-O)}lg,-g,,
such that for each nuclear Heyting algebra B, TFAE:

B~ .

Forall1<i<n, B} B(2,DY,D°).

Corollary

Every formula in the language of PLL is equivalent to a finite
conjunction of canonical formulas.

Every M € ExtPLL can be axiomatized by canonical formulas.
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m By “deleting the parts with ©", we obtain an algebraic version of
Zakharyaschev.'s canonical formulas:
m For a finite s.i. Heyting algebra A let
BADY)i= {m 0} A
/\{pa*t7 “ (paxpp)|a,beAxe{N—=}} A

/\{pavb < (paVpp)|abe DV}
— Ps.

m For every Heyting algebra B, TFAE:

B [~ B(A,DY).

There is a homomorphic image C of B and a (A, —, 0)-embedding
from h: A — C with h(aV b) = h(a) V h(b) for all (a, b) € D".
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= Suppose PLL 4+ I/ 3(2, DY, DO).
m There is B = (B, k) with B =T and B }~ (2, DV, DO).

m There is a homomorphic image € of B and a (DY, D©)-stable
embedding h: A — €.

m So, C is a homomorphic image of Band h: A— Cis a
(A, —,0)-embedding from A into C with h(aV b) = h(a) V h(b) for
all (a,b) € DV.

m B~ B(A,DY). Since BE=L, B(A,DV) € L.
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Let L =IPC+T be a si-logic. If L has one of the properties
m tabularity,
the fmp,

Kripke completeness,

decidability and Kripke completeness,

then PLL + I also enjoys the same property.
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Sketch: fmp is preserved.

= Suppose PLL 4+ It/ 3(A,DY,D). Then L I/ 3(A,DY).
m Some finite L- Heyting algebra B refutes (A, DV).

m 3 homomorphic image C of B and a (A, —,0)-embedding
f:A— C preserving V for (a, b) € DV.

m Define a nucleus k on C so that f : 2 — &€ = (C, k) preserves its
structure.

Then f: 9 — ¢ is (DY, DV)-stable, so € refutes (2, DY, D).

m Since C is an L-algebra, € validates ' and is finite.
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Future work and open problems

m Is the (A, —, j)-fragment of nuclear Heyting algebras locally finite?

m Similarly to the Gddel-embedding, there is another natural way to
embed ExtIPC into ExtPLL. Can we prove similar preservation
results?

m Can we obtain preservation results for other intuitionistic modal
logics in this way?

m Thank you!
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