Embedding ExtIPC into ExtPLL via canonical formulas

Guram† and Nick* Bezhanishvili, Julia Ilin*

*Institute of Logic, Language and Computation, Universiteit van Amsterdam, The Netherlands

†Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico

SYSMICS, 2016
Introduction/Notation

- \mathcal{L}_{IPC} denote the language of propositional logic.
- IPC denotes the intuitionistic propositional calculus.
- ExtIPC denotes the lattice of all superintuitionistic logics (si-logics).

- An intuitionistic modal logic is a collection of formulas in the language $\mathcal{L}_{\text{IPC}} \cup \{\lozenge\}$, closed under MP and substitution.
Propositional lax logic **PLL**

Definition

PLL is an intuitionistic modal logic with a peculiar modality \bigcirc that is axiomatized by

- $p \rightarrow \bigcirc p$
- $\bigcirc\bigcirc p \rightarrow \bigcirc p$
- $\bigcirc(p \land q) \leftrightarrow (\bigcirc p \land \bigcirc q)$.

The modality \bigcirc was studied in several contexts (see Fairtlough and Mendler [FM97]). Different semantics were studied by Goldblatt in [Gol81], by Dragalin in [Dra88] and in [FM97]. PLL has the finite model property and is decidable [Gol81], [FM97], [WZ98].
Propositional lax logic **PLL**

Definition

PLL is an intuitionistic modal logic with a peculiar modality \Diamond that is axiomatized by

- $p \to \Diamond p$
- $\Diamond \Diamond p \to \Diamond p$
- $\Diamond (p \land q) \iff (\Diamond p \land \Diamond q)$.

The modality \Diamond was studied in several context (see Fairtlough and Mendler [FM97]).
Propositional lax logic **PLL**

Definition

PLL is an intuitionistic modal logic with a peculiar modality \bigcirc that is axiomatized by

- $p \to \bigcirc p$
- $\bigcirc \bigcirc p \to \bigcirc p$
- $\bigcirc (p \land q) \iff (\bigcirc p \land \bigcirc q)$.

- The modality \bigcirc was studied in several context (see Fairtlough and Mendler [FM97]).
- Different semantics were studied by Goldblatt in [Gol81], by Dragalin in [Dra88] and in [FM97].
Propositional lax logic **PLL**

Definition

PLL is an intuitionistic modal logic with a peculiar modality \circ that is axiomatized by

- $p \to \circ p$
- $\circ \circ \circ p \to \circ p$
- $\circ (p \land q) \leftrightarrow (\circ p \land \circ q)$.

- The modality \circ was studied in several context (see Fairtlough and Mendler [FM97]).

- **Different semantics** were studied by Goldblatt in [Gol81], by Dragalin in [Dra88] and in [FM97].

- **PLL** has the finite model property and is decidable [Gol81], [FM97], [WZ98].
Nuclear Heyting algebras

Definition

Let A be a Heyting algebra. A *nucleus* on A is a function $j : A \rightarrow A$ such that for all $a, b \in A$

$$a \leq j(a), \quad j(j(a)) = j(a), \quad j(a \land b) = j(a) \land j(b).$$

A *nuclear Heyting algebra* is a pair $\mathfrak{A} = (A, j)$, where A is a Heyting algebra and j is a nucleus on A.

Theorem (Gol81)

Every $M \in \text{ExtPLL}$ is sound and complete with respect to its corresponding variety of nuclear Heyting algebras.
Nuclear Heyting algebras

Definition

Let A be a Heyting algebra. A *nucleus* on A is a function $j : A \to A$ such that for all $a, b \in A$

$$a \leq j(a), \quad j(j(a)) = j(a), \quad j(a \land b) = j(a) \land j(b).$$

A *nuclear Heyting algebra* is a pair $\mathcal{A} = (A, j)$, where A is a Heyting algebra and j is a nucleus on A.

Theorem (Gol81)

Every $M \in \text{ExtPLL}$ *is sound and complete with respect to its corresponding variety of nuclear Heyting algebras.*
Goal of the talk

Let $\Gamma \subseteq \mathcal{L}_{\text{IPC}}$. Then

- $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
Goal of the talk

- Let $\Gamma \subseteq \mathcal{L}_{\text{IPC}}$. Then
 - $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
 - $\text{PLL} + \Gamma$ denotes the smallest extension of PLL that contains Γ.
Goal of the talk

- Let $\Gamma \subseteq L_{\text{IPC}}$. Then
 - $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
 - $\text{PLL} + \Gamma$ denotes the smallest extension of PLL that contains Γ.

- This gives rise to an embedding $\text{ExtIPC} \to \text{ExtPLL}$.
Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then

- $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
- $\text{PLL} + \Gamma$ denotes the smallest extension of PLL that contains Γ.

This gives rise to an embedding $\text{ExtIPC} \rightarrow \text{ExtPLL}$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$.
Goal of the talk

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
 - $\text{PLL} + \Gamma$ denotes the smallest extension of PLL that contains Γ.

- This gives rise to an embedding $\text{ExtIPC} \rightarrow \text{ExtPLL}$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$.

Suppose the si-logic $\text{IPC} + \Gamma$ has property X,

...does $\text{PLL} + \Gamma$ have property X, too?
Goal of the talk

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - $\text{IPC} + \Gamma$ denotes the smallest si-logic that contains Γ,
 - $\text{PLL} + \Gamma$ denotes the smallest extension of PLL that contains Γ.

- This gives rise to an embedding $\text{ExtIPC} \rightarrow \text{ExtPLL}$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$.

Suppose the si-logic $\text{IPC} + \Gamma$ has property X,

does $\text{PLL} + \Gamma$ have property X, too?

- Wolter and Zakharyaschev studied such preservation results by embedding intuitionistic modal logics into classical bi-modal logics.
Canonical formulas for si-logics

- **Canonical formulas** for si-logics were introduced by Zakharyaschev.
Canonical formulas for si-logics

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez\(^2\), Citkin, Tomaszewski.
Canonical formulas for si-logics

- **Canonical formulas** for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
Canonical formulas for si-logics

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez2, Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$.
Canonical formulas for si-logics

- **Canonical formulas** for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez2, Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $(\land, \to, 0)$-structure of A fully and
 - the behavior of \lor partially on the set D.
Canonical formulas for si-logics

- **Canonical formulas** for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez2, Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $\langle \wedge, \rightarrow, 0 \rangle$-structure of A fully and
 - the behavior of \vee partially on the set D.
- Every formula in \mathcal{L}_{IPC} is equivalent to a finite conjunction of canonical formulas.
Canonical formulas for si-logics

- **Canonical formulas** for si-logics were introduced by Zakharyaschev.

- Algebraic generalizations were studied by Bez2, Citkin, Tomaszewski.

- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.

- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $(\wedge, \to, 0)$-structure of A fully and
 - the behavior of \vee partially on the set D.

- Every formula in \mathcal{L}_{IPC} is equivalent to a finite conjunction of canonical formulas.

- Thus, all si-logics are axiomatizable by canonical formulas.
A nuclear Heyting algebra $\mathfrak{A} = (A,j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.
Canonical formulas for PLL

- A nuclear Heyting algebra $\mathcal{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.

- Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$ and $D^\ominus \subseteq A$.
A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^\lor \subseteq A^2$ and $D^\circ \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

$$\beta(\mathfrak{A}, D^\lor, D^\circ) := \bigwedge \{ p_a^* b \leftrightarrow (p_a^* p_b) | a, b \in A, \ast \in \{\land, \rightarrow\} \} \land \{ p_0 \leftrightarrow 0 \} \land \bigwedge \{ p_a \lor b \leftrightarrow (p_a \lor p_b) | a, b \in D^\lor \} \land \bigwedge \{ \# p_a \rightarrow p_{j(a)} | a \in D^\circ \} \rightarrow p_s.$$

$\beta(\mathfrak{A}, D^\lor, D^\circ)$ is called the canonical formula of $(\mathfrak{A}, D^\lor, D^\circ)$.

Canonical formulas for PLL
A nuclear Heyting algebra $\mathcal{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\lor \subseteq A^2$ and $D^\circ \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

$\beta(\mathcal{A}, D^\lor, D^\circ) := \bigwedge \{p_{a \ast b} \leftrightarrow (p_a \ast p_b) \mid a, b \in A, \ast \in \{\land, \rightarrow\}\} \land \{p_0 \leftrightarrow 0\} \land \{p_a \lor b \leftrightarrow (p_a \lor p_b) \mid a, b \in D^\lor\} \land \{\circ p_a \rightarrow p_{j(a)} \mid a \in A\} \land \{p_{j(a)} \rightarrow \circ p_a \mid a \in D^\circ\} \rightarrow p_s$.

$\beta(\mathcal{A}, D^\lor, D^\circ)$ is called the canonical formula of $(\mathcal{A}, D^\lor, D^\circ)$.
A nuclear Heyting algebra $\mathcal{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$ and $D^\odot \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

$$\beta(\mathcal{A}, D^\vee, D^\odot) := \bigwedge \{ p_{a \ast b} \leftrightarrow (p_a \ast p_b) \mid a, b \in A, \ast \in \{\land, \to\} \} \land \{ p_0 \leftrightarrow 0 \}$$

$$\bigwedge \{ p_{a \lor b} \leftrightarrow (p_a \lor p_b) \mid a, b \in D^\vee \} \land$$

$$\bigwedge \{ \triangledown p_a \to p_{j(a)} \mid a \in A \} \land$$

$$\bigwedge \{ p_{j(a)} \to \triangledown p_a \mid a \in D^\odot \}$$

$\to p_s$.

$\beta(\mathcal{A}, D^\vee, D^\odot)$ is called the canonical formula of $(\mathcal{A}, D^\vee, D^\odot)$.
Refutation criterion

- Let $f : \mathcal{A} \rightarrow \mathcal{B}$ be a $(\land, \rightarrow, 0)$-morphism.
Refutation criterion

- Let $f : \mathcal{A} \rightarrow \mathcal{B}$ be a $(\land, \rightarrow, 0)$-morphism.
 - If $j(f(a)) \leq f(j(a))$ for all $a \in A$, then we call f stable.
Refutation criterion

- Let \(f : \mathcal{A} \to \mathcal{B} \) be a \((\land, \to, 0)\)-morphism.
 - If \(j(f(a)) \leq f(j(a)) \) for all \(a \in A \), then we call \(f \) stable.
 - If in addition,
 - \(f(a \lor b) = f(a) \lor f(b) \) for every \((a, b) \in D^\lor \) and
 - \(f(j(a)) = j(f(a)) \) for every \(a \in D^\circ \),
 then \(f \) is called \((D^\lor, D^\circ)\)-stable.
Refutation criterion

- Let \(f : \mathcal{A} \to \mathcal{B} \) be a \((\land, \to, 0)\)-morphism.
 - If \(j(f(a)) \leq f(j(a)) \) for all \(a \in A \), then we call \(f \) **stable**.
 - If in addition,
 - \(f(a \lor b) = f(a) \lor f(b) \) for every \((a, b) \in D^\lor \) and
 - \(f(j(a)) = j(f(a)) \) for every \(a \in D^\bigcirc \),
 then \(f \) is called \((D^\lor, D^\bigcirc)\)-**stable**.

Theorem

For every nuclear Heyting algebra \(\mathcal{B} = (B, j) \), the following are equivalent:

1. \(\mathcal{B} \not\models \beta(\mathcal{A}, D^\lor, D^\bigcirc) \).

2. There is a homomorphically image \(\mathcal{C} \) of \(\mathcal{B} \) and a \((D^\lor, D^\bigcirc)\)-stable embedding from \(\mathcal{A} \) into \(\mathcal{C} \).*
Axiomatic completeness

Proposition

For every PLL-formula \(\varphi \), there is a finite collection \(\{ (A_i, D_i^\lor, D_i^\circ) \}_{1 \leq i \leq n} \) such that for each nuclear Heyting algebra \(\mathcal{B} \), TFAE:

1. \(\mathcal{B} \not\models \varphi \).
2. For all \(1 \leq i \leq n \), \(B \not\models \beta(A_i, D_i^\lor, D_i^\circ) \).
Axiomatic completeness

Proposition

For every PLL-formula \(\varphi \), there is a finite collection \(\{(\mathcal{A}_i, D_i^\vee, D_i^\odot)\}_{1\leq i\leq n} \) such that for each nuclear Heyting algebra \(\mathcal{B} \), TFAE:

1. \(\mathcal{B} \notmodels \varphi \).

2. For all \(1 \leq i \leq n \), \(B \notmodels \beta(\mathcal{A}_i, D_i^\vee, D_i^\odot) \).

Corollary

1. Every formula in the language of PLL is equivalent to a finite conjunction of canonical formulas.

2. Every \(M \in \text{ExtPLL} \) can be axiomatized by canonical formulas.
Comparison to Zakharyaschev’s canonical formulas

- By “deleting the parts with \circ”, we obtain an algebraic version of Zakharyaschev.’s canonical formulas:
Comparison to Zakharyaschev’s canonical formulas

- By “deleting the parts with \circ”, we obtain an algebraic version of Zakharyaschev.'s canonical formulas:

- For a finite s.i. Heyting algebra A let

$$\beta(A, D^\vee) := \{p_0 \leftrightarrow 0\} \land$$

$$\land \{p_{a \ast b} \leftrightarrow (p_a \ast p_b) \mid a, b \in A, \ast \in \{\land, \rightarrow\}\} \land$$

$$\land \{p_{a \lor b} \leftrightarrow (p_a \lor p_b) \mid a, b \in D^\vee\}$$

$$\rightarrow p_s.$$
Comparison to Zakharyaschev’s canonical formulas

- By “deleting the parts with \(\circ \)”, we obtain an algebraic version of Zakharyaschev.’s canonical formulas:

- For a finite s.i. Heyting algebra \(A \) let

\[
\beta(A, D^\vee) := \{p_0 \leftrightarrow 0\} \land \\
\land \{p_a \leftrightarrow (p_a \ast p_b) \mid a, b \in A, \ast \in \{\land, \rightarrow\}\} \land \\
\land \{p_a \lor b \leftrightarrow (p_a \lor p_b) \mid a, b \in D^\vee\} \\
\rightarrow p_s.
\]

- For every Heyting algebra \(\mathcal{B} \), TFAE:

1. \(B \not\models \beta(A, D^\vee) \).

2. There is a homomorphically image \(C \) of \(B \) and a \((\land, \rightarrow, 0)\)-embedding from \(h : A \to C \) with \(h(a \lor b) = h(a) \lor h(b) \) for all \((a, b) \in D^\vee\).
Lemma

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$, $D^\bigcirc \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

$$L \vdash \beta(A, D^\vee) \text{ implies } \text{PLL} + \Gamma \vdash \beta(\mathcal{A}, D^\vee, D^\bigcirc).$$
Lemma

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$, $D^\odot \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

$$L \vdash \beta(A, D^\vee) \text{ implies } \text{PLL} + \Gamma \vdash \beta(\mathcal{A}, D^\vee, D^\odot).$$

Proof.

- Suppose $\text{PLL} + \Gamma \not\vdash \beta(\mathcal{A}, D^\vee, D^\odot)$.
Lemma

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\lor \subseteq A^2$, $D^\bigcirc \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

$$L \vdash \beta(A, D^\lor) \text{ implies } \text{PLL} + \Gamma \vdash \beta(\mathcal{A}, D^\lor, D^\bigcirc).$$

Proof.

- Suppose $\text{PLL} + \Gamma \not\models \beta(\mathcal{A}, D^\lor, D^\bigcirc)$.

- There is $\mathcal{B} = (B, k)$ with $\mathcal{B} \models \Gamma$ and $\mathcal{B} \not\models \beta(\mathcal{A}, D^\lor, D^\bigcirc)$.
Lemma

Let $\mathcal{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$, $D^\bigcirc \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

\[
L \vdash \beta(A, D^\vee) \text{ implies } \text{PLL} + \Gamma \vdash \beta(\mathcal{A}, D^\vee, D^\bigcirc).
\]

Proof.

- Suppose $\text{PLL} + \Gamma \nvdash \beta(\mathcal{A}, D^\vee, D^\bigcirc)$.

- There is $\mathcal{B} = (B, k)$ with $\mathcal{B} \models \Gamma$ and $\mathcal{B} \nvdash \beta(\mathcal{A}, D^\vee, D^\bigcirc)$.

- There is a homomorphic image \mathcal{C} of \mathcal{B} and a (D^\vee, D^\bigcirc)-stable embedding $h : \mathcal{A} \to \mathcal{C}$.
Lemma

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$, $D^\circ \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

$$L \vdash \beta(A, D^\vee) \text{ implies } \text{PLL} + \Gamma \vdash \beta(\mathfrak{A}, D^\vee, D^\circ).$$

Proof.

- Suppose $\text{PLL} + \Gamma \nvdash \beta(\mathfrak{A}, D^\vee, D^\circ)$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \nmod \beta(\mathfrak{A}, D^\vee, D^\circ)$.
- There is a homomorphic image \mathfrak{C} of \mathfrak{B} and a (D^\vee, D°)-stable embedding $h : \mathfrak{A} \to \mathfrak{C}$.
- So, C is a homomorphic image of B and $h : A \to C$ is a $(\wedge, \to, 0)$-embedding from A into C with $h(a \vee b) = h(a) \vee h(b)$ for all $(a, b) \in D^\vee$.
Lemma

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^\vee \subseteq A^2$, $D^\circ \subseteq A$. Let $L = \text{IPC} + \Gamma$. Then

$$L \models \beta(A, D^\vee) \text{ implies } \text{PLL} + \Gamma \models \beta(\mathfrak{A}, D^\vee, D^\circ).$$

Proof.

- Suppose $\text{PLL} + \Gamma \not\models \beta(\mathfrak{A}, D^\vee, D^\circ)$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^\vee, D^\circ)$.
- There is a homomorphically image C of \mathfrak{B} and a (D^\vee, D°)-stable embedding $h : \mathfrak{A} \to C$.
- So, C is a homomorphically image of B and $h : A \to C$ is a $(\land, \to, 0)$-embedding from A into C with $h(a \lor b) = h(a) \lor h(b)$ for all $(a, b) \in D^\vee$.
- $B \not\models \beta(A, D^\vee)$. Since $B \models L$, $\beta(A, D^\vee) \not\in L$.

Theorem

Let $L = \text{IPC} + \Gamma$ be a si-logic. If L has one of the properties
- tabularity,
- the fmp,
- Kripke completeness,
- decidability and Kripke completeness,

then $\text{PLL} + \Gamma$ also enjoys the same property.
Sketch: fmp is preserved.

Suppose $PLL + \Gamma \not\vdash \beta(A, D^\vee, D^\Box)$. Then $L \not\vdash \beta(A, D^\vee)$.

Since C is an L-algebra, C validates Γ and is finite.
Sketch: fmp is preserved.

- Suppose $\text{PLL} + \Gamma \not\vdash \beta(A, D^\vee, D^\bigcirc)$. Then $L \not\vdash \beta(A, D^\vee)$.
- Some finite L- Heyting algebra B refutes $\beta(A, D^\vee)$.

Sketch: fmp is preserved.

- Suppose $\textbf{PLL} + \Gamma \not\models \beta(A, D^\lor, D^\land)$. Then $L \not\models \beta(A, D^\lor)$.
- Some finite L-Heyting algebra B refutes $\beta(A, D^\lor)$.
- \exists homomorphic image C of B and a $(\land, \rightarrow, 0)$-embedding $f : A \rightarrow C$ preserving \lor for $(a, b) \in D^\lor$.
Sketch: fmp is preserved.

- Suppose $\textbf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, D^\lor, D^\oslash)$. Then $L \not\vdash \beta(A, D^\lor)$.
- Some finite L-Heyting algebra B refutes $\beta(A, D^\lor)$.
- \exists homomorphic image C of B and a $(\land, \rightarrow, 0)$-embedding $f : A \rightarrow C$ preserving \lor for $(a, b) \in D^\lor$.
- Define a nucleus k on C so that $f : \mathfrak{A} \rightarrow \mathfrak{C} = (C, k)$ preserves its structure.
Sketch: fmp is preserved.

- Suppose $PLL + \Gamma \not\vdash \beta(\mathcal{A}, D^\vee, D^\circ)$. Then $L \not\vdash \beta(A, D^\vee)$.

- Some finite L-Heyting algebra B refutes $\beta(A, D^\vee)$.

- \exists homomorphistic image C of B and a $(\wedge, \to, 0)$-embedding $f : A \to C$ preserving \vee for $(a, b) \in D^\vee$.

- Define a nucleus k on C so that $f : \mathcal{A} \to \mathcal{C} = (C, k)$ preserves its structure.

- Then $f : \mathcal{A} \to \mathcal{C}$ is (D^\vee, D°)-stable, so \mathcal{C} refutes $\beta(\mathcal{A}, D^\vee, D^\circ)$.

Since \mathcal{C} is an L-algebra, \mathcal{C} validates Γ and is finite.
Sketch: fmp is preserved.

- Suppose $\text{PLL} + \Gamma \not\vdash \beta(\mathcal{A}, D^\vee, D^\odot)$. Then $L \not\vdash \beta(A, D^\vee)$.
- Some finite L-Heyting algebra B refutes $\beta(A, D^\vee)$.
- \exists homomorphimic image C of B and a $(\land, \to, 0)$-embedding $f : A \to C$ preserving \lor for $(a, b) \in D^\vee$.
- Define a nucleus k on C so that $f : \mathcal{A} \to C = (C, k)$ preserves its structure.
- Then $f : \mathcal{A} \to C$ is (D^\vee, D^\odot)-stable, so C refutes $\beta(\mathcal{A}, D^\vee, D^\odot)$.
- Since C is an L-algebra, C validates Γ and is finite.
Future work and open problems

- Is the (\land, \rightarrow, j)-fragment of nuclear Heyting algebras locally finite?
Future work and open problems

- Is the (\land, \rightarrow, j)-fragment of nuclear Heyting algebras locally finite?

- Similarly to the Gödel-embedding, there is another natural way to embed ExtIPC into ExtPLL. Can we prove similar preservation results?
Future work and open problems

- Is the (\land, \to, j)-fragment of nuclear Heyting algebras locally finite?

- Similarly to the Gödel-embedding, there is another natural way to embed ExtIPC into ExtPLL. Can we prove similar preservation results?

- Can we obtain preservation results for other intuitionistic modal logics in this way?
Future work and open problems

- Is the \((\land, \to, j)\)-fragment of nuclear Heyting algebras locally finite?

- Similarly to the Gödel-embedding, there is another natural way to embed \textsf{ExtIPC} into \textsf{ExtPLL}. Can we prove similar preservation results?

- Can we obtain preservation results for other intuitionistic modal logics in this way?

- Thank you!