Embedding Ext**IPC** into Ext**PLL** via canonical formulas

Guram[†] and Nick^{*} Bezhanishvili, Julia Ilin^{*}

*Institute of Logic, Language and Computation, Universiteit van Amsterdam, The Netherlands

[†]Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico

SYSMICS, 2016

Introduction/Notation

- \mathcal{L}_{IPC} denote the language of propositional logic.
- IPC denotes the intuitionistic propositional calculus.
- ExtIPC denotes the lattice of all superintuitionistic logics (si-logics).
- An intuitionistic modal logic is a collection of formulas in the language $\mathcal{L}_{IPC} \cup \{\bigcirc\}$, closed under MP and substitution.

Definition

- $p \rightarrow \bigcirc p$
- $\blacksquare \bigcirc \bigcirc p \rightarrow \bigcirc p$
- $\bigcirc (p \land q) \leftrightarrow (\bigcirc p \land \bigcirc q).$

Definition

- $p \rightarrow \bigcirc p$
- $\bigcirc \bigcirc p \rightarrow \bigcirc p$
- $\bigcirc (p \land q) \leftrightarrow (\bigcirc p \land \bigcirc q).$
- The modality was studied in several context (see Fairtlough and Mendler [FM97]).

Definition

- $p \rightarrow \bigcirc p$
- $\bigcirc \bigcirc p \rightarrow \bigcirc p$
- $\bigcirc (p \land q) \leftrightarrow (\bigcirc p \land \bigcirc q).$
- The modality was studied in several context (see Fairtlough and Mendler [FM97]).
- Different semantics were studied by Goldblatt in [Gol81], by Dragalin in [Dra88] and in [FM97].

Definition

- $p \rightarrow \bigcirc p$
- $\bigcirc \bigcirc p \rightarrow \bigcirc p$
- $\bigcirc (p \land q) \leftrightarrow (\bigcirc p \land \bigcirc q).$
- The modality was studied in several context (see Fairtlough and Mendler [FM97]).
- Different semantics were studied by Goldblatt in [Gol81], by Dragalin in [Dra88] and in [FM97].
- PLL has the finite model property and is decidable [Gol81], [FM97], [WZ98].

Nuclear Heyting algebras

Definition

Let A be a Heyting algebra. A *nucleus* on A is a function $j : A \to A$ such that for all $a, b \in A$

$$a \leq j(a), \quad j(j(a)) = j(a), \quad j(a \wedge b) = j(a) \wedge j(b).$$

A *nuclear Heyting algebra* is a pair $\mathfrak{A} = (A, j)$, where A is a Heyting algebra and j is a nucleus on A.

Nuclear Heyting algebras

Definition

Let A be a Heyting algebra. A *nucleus* on A is a function $j : A \to A$ such that for all $a, b \in A$

$$a \leq j(a), \quad j(j(a)) = j(a), \quad j(a \wedge b) = j(a) \wedge j(b).$$

A *nuclear Heyting algebra* is a pair $\mathfrak{A} = (A, j)$, where A is a Heyting algebra and j is a nucleus on A.

Theorem (Gol81)

Every $M \in \text{Ext}\text{PLL}$ is sound and complete with respect to its corresponding variety of nuclear Heyting algebras.

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,
 - **PLL** + Γ denotes the smallest extension of **PLL** that contains Γ .

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,
 - **PLL** + Γ denotes the smallest extension of **PLL** that contains Γ .
- This gives rise to an embedding $ExtIPC \rightarrow ExtPLL$.

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,
 - **PLL** + Γ denotes the smallest extension of **PLL** that contains Γ .
- This gives rise to an embedding $ExtIPC \rightarrow ExtPLL$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$.

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,
 - \blacksquare PLL + Γ denotes the smallest extension of PLL that contains $\Gamma.$
- This gives rise to an embedding $ExtIPC \rightarrow ExtPLL$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$. Suppose the si-logic IPC + Γ has property X, does PLL + Γ have property X, too?

- Let $\Gamma \subseteq \mathcal{L}_{IPC}$. Then
 - **IPC** + Γ denotes the smallest si-logic that contains Γ ,
 - \blacksquare PLL + Γ denotes the smallest extension of PLL that contains $\Gamma.$
- This gives rise to an embedding $ExtIPC \rightarrow ExtPLL$.

Let $X \in \{\text{fmp, Kripke completeness, tabularity, decidability}\}$. Suppose the si-logic IPC + Γ has property X, does PLL + Γ have property X, too?

 Wolter and Zakharyaschev studied such preservation results by embedding intuitionistic modal logics into classical bi-modal logics.

Canonical formulas for si-logics were introduced by Zakharyaschev.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $(\land, \rightarrow, 0)$ structure of A fully and
 - the behavior of \vee partially on the set D.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $(\land, \rightarrow, 0)$ structure of A fully and
 - the behavior of \vee partially on the set D.
- Every formula in \mathcal{L}_{IPC} is equivalent to a finite conjunction of canonical formulas.

- Canonical formulas for si-logics were introduced by Zakharyaschev.
- Algebraic generalizations were studied by Bez², Citkin, Tomaszewski.
- Like Jankov-de Jongh formulas (aka splitting formulas), they encode the structure of finite algebras.
- Let A be a finite s.i. Heyting algebra, $D \subseteq A^2$. Then the canonical formula $\beta(A, D)$ encodes
 - the $(\land, \rightarrow, 0)$ structure of A fully and
 - the behavior of \vee partially on the set D.
- Every formula in \mathcal{L}_{IPC} is equivalent to a finite conjunction of canonical formulas.
- Thus, all si-logics are axiomatizable by canonical formulas.

Canonical formulas for $\ensuremath{\mathsf{PLL}}$

• A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.

- A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.
- Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$ and $D^{\bigcirc} \subseteq A$.

- A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.
- Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$ and $D^{\bigcirc} \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

- A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.
- Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$ and $D^{\bigcirc} \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

$$\begin{split} \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc}) &:= \bigwedge \{ p_{a*b} \leftrightarrow (p_a * p_b) \mid a, b \in A, * \in \{ \land, \rightarrow \} \} \land \{ p_0 \leftrightarrow 0 \} \\ & \bigwedge \{ p_{a \vee b} \leftrightarrow (p_a \vee p_b) \mid a, b \in D^{\vee} \} \land \\ & \bigwedge \{ \bigcirc p_a \rightarrow p_{j(a)} \mid a \in A \} \land \\ & \bigwedge \{ p_{j(a)} \rightarrow \bigcirc p_a \mid a \in D^{\bigcirc} \} \\ & \longrightarrow p_s. \end{split}$$

- A nuclear Heyting algebra $\mathfrak{A} = (A, j)$ is subdirectly irreducible (s.i.) iff A has a second largest element.
- Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$ and $D^{\bigcirc} \subseteq A$.

For $a \in A$ let p_a be a propositional letter, let s be the second largest element of A.

$$\begin{split} \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc}) &:= \bigwedge \{ p_{a*b} \leftrightarrow (p_a * p_b) \mid a, b \in A, * \in \{ \wedge, \rightarrow \} \} \land \{ p_0 \leftrightarrow 0 \} \\ & \bigwedge \{ p_{a \vee b} \leftrightarrow (p_a \vee p_b) \mid a, b \in D^{\vee} \} \land \\ & \bigwedge \{ \bigcirc p_a \rightarrow p_{j(a)} \mid a \in A \} \land \\ & \bigwedge \{ p_{j(a)} \rightarrow \bigcirc p_a \mid a \in D^{\bigcirc} \} \\ & \longrightarrow p_s. \end{split}$$

 $\beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$ is called the canonical formula of $(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

• Let $f : \mathfrak{A} \to \mathfrak{B}$ be a $(\wedge, \to, 0)$ -morphism.

- Let $f : \mathfrak{A} \to \mathfrak{B}$ be a $(\wedge, \to, 0)$ -morphism.
 - If $j(f(a)) \leq f(j(a))$ for all $a \in A$, then we call f stable.

- Let $f : \mathfrak{A} \to \mathfrak{B}$ be a $(\wedge, \to, 0)$ -morphism.
 - If $j(f(a)) \leq f(j(a))$ for all $a \in A$, then we call f stable.

If in addition,

• $f(a \lor b) = f(a) \lor f(b)$ for every $(a, b) \in D^{\lor}$ and

•
$$f(j(a)) = j(f(a))$$
 for every $a \in D^{\bigcirc}$,

then f is called (D^{\vee}, D^{\bigcirc}) -stable.

- Let $f : \mathfrak{A} \to \mathfrak{B}$ be a $(\wedge, \to, 0)$ -morphism.
 - If $j(f(a)) \leq f(j(a))$ for all $a \in A$, then we call f stable.

If in addition,

• $f(a \lor b) = f(a) \lor f(b)$ for every $(a, b) \in D^{\lor}$ and

•
$$f(j(a)) = j(f(a))$$
 for every $a \in D^{\bigcirc}$,

then f is called (D^{\vee}, D^{\bigcirc}) -stable.

Theorem

For every nuclear Heyting algebra $\mathfrak{B} = (B, j)$, the following are equivalent:

1 $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc}).$

2 There is a homomorphic image € of 𝔅 and a (D[∨], D[○])-stable embedding from 𝔅 into 𝔅.

Axiomatic completeness

Proposition

For every **PLL**-formula φ , there is a finite collection $\{(\mathfrak{A}_i, D_i^{\vee}, D_i^{\bigcirc})\}_{1 \le i \le n}$ such that for each nuclear Heyting algebra \mathfrak{B} , TFAE:

1 $\mathfrak{B} \not\models \varphi$.

2 For all $1 \leq i \leq n$, $B \not\models \beta(\mathfrak{A}_i, D_i^{\vee}, D_i^{\bigcirc})$.

Axiomatic completeness

Proposition

For every **PLL**-formula φ , there is a finite collection $\{(\mathfrak{A}_i, D_i^{\vee}, D_i^{\bigcirc})\}_{1 \le i \le n}$ such that for each nuclear Heyting algebra \mathfrak{B} , TFAE:

- 1 $\mathfrak{B} \not\models \varphi$.
- **2** For all $1 \leq i \leq n$, $B \not\models \beta(\mathfrak{A}_i, D_i^{\vee}, D_i^{\bigcirc})$.

Corollary

- **I** Every formula in the language of **PLL** is equivalent to a finite conjunction of canonical formulas.
- **2** Every $M \in \text{Ext}\mathsf{PLL}$ can be axiomatized by canonical formulas.

Comparison to Zakharyschev's canonical formulas

■ By "deleting the parts with ○", we obtain an algebraic version of Zakharyaschev.'s canonical formulas:

Comparison to Zakharyschev's canonical formulas

- By "deleting the parts with ○", we obtain an algebraic version of Zakharyaschev.'s canonical formulas:
- For a finite s.i. Heyting algebra A let

$$\begin{split} \beta(A,D^{\vee}) &:= \quad \{p_0 \leftrightarrow 0\} \quad \wedge \\ & \bigwedge \{p_{a*b} \leftrightarrow (p_a*p_b) \mid a, b \in A, * \in \{\wedge, \rightarrow\}\} \quad \wedge \\ & \bigwedge \{p_{a \lor b} \leftrightarrow (p_a \lor p_b) \mid a, b \in D^{\vee}\} \\ & \longrightarrow p_s. \end{split}$$

Comparison to Zakharyschev's canonical formulas

- By "deleting the parts with ○", we obtain an algebraic version of Zakharyaschev.'s canonical formulas:
- For a finite s.i. Heyting algebra A let

$$\begin{split} \beta(A,D^{\vee}) &:= \quad \{p_0 \leftrightarrow 0\} \quad \wedge \\ & \bigwedge \{p_{a*b} \leftrightarrow (p_a*p_b) \mid a, b \in A, * \in \{\wedge, \rightarrow\}\} \quad \wedge \\ & \bigwedge \{p_{a \lor b} \leftrightarrow (p_a \lor p_b) \mid a, b \in D^{\vee}\} \\ & \longrightarrow p_s. \end{split}$$

■ For every Heyting algebra 𝔅, TFAE:

- $\blacksquare B \not\models \beta(A, D^{\vee}).$
- 2 There is a homomorphic image C of B and a (∧, →, 0)-embedding from h: A → C with h(a ∨ b) = h(a) ∨ h(b) for all (a, b) ∈ D[∨].

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathbf{IPC} + \Gamma$. Then

 $L \vdash \beta(A, D^{\vee})$ implies **PLL** + $\Gamma \vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathsf{IPC} + \Gamma$. Then

$$L \vdash eta(A, D^{\vee}) \text{ implies } \mathsf{PLL} + \Gamma \vdash eta(\mathfrak{A}, D^{\vee}, D^{\bigcirc}).$$

Proof.

```
• Suppose PLL + \Gamma \not\vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc}).
```

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathsf{IPC} + \Gamma$. Then $L \vdash \mathscr{Q}(A, D^{\vee})$ implies $\mathsf{PLL} \vdash \Gamma \vdash \mathscr{Q}(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$

$$L \vdash \beta(A, D^{\vee})$$
 implies $\mathsf{PLL} + \Gamma \vdash \beta(\mathfrak{A}, D^{\vee}, D^{\vee})$

Proof.

- Suppose **PLL** + $\Gamma \not\vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathsf{IPC} + \Gamma$. Then $L \vdash \beta(A, D^{\vee})$ implies $\mathsf{PLL} + \Gamma \vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

Proof.

- Suppose **PLL** + $\Gamma \not\vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is a homomorphic image \mathfrak{C} of \mathfrak{B} and a $(\mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$ -stable embedding $h : \mathfrak{A} \to \mathfrak{C}$.

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathsf{IPC} + \Gamma$. Then $L \vdash \beta(A, D^{\vee})$ implies $\mathsf{PLL} + \Gamma \vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

- Suppose **PLL** + $\Gamma \not\vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is a homomorphic image 𝔅 of 𝔅 and a (D[∨], D[○])-stable embedding h : 𝔅 → 𝔅.
- So, C is a homomorphic image of B and h : A → C is a
 (∧, →, 0)-embedding from A into C with h(a ∨ b) = h(a) ∨ h(b) for
 all (a, b) ∈ D[∨].

Let $\mathfrak{A} = (A, j)$ be finite and s.i., $D^{\vee} \subseteq A^2$, $D^{\bigcirc} \subseteq A$. Let $L = \mathsf{IPC} + \Gamma$. Then $L \vdash \beta(A, D^{\vee})$ implies $\mathsf{PLL} + \Gamma \vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

- Suppose **PLL** + $\Gamma \not\vdash \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is $\mathfrak{B} = (B, k)$ with $\mathfrak{B} \models \Gamma$ and $\mathfrak{B} \not\models \beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- There is a homomorphic image \mathfrak{C} of \mathfrak{B} and a $(\mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$ -stable embedding $h : \mathfrak{A} \to \mathfrak{C}$.
- So, C is a homomorphic image of B and h : A → C is a
 (∧, →, 0)-embedding from A into C with h(a ∨ b) = h(a) ∨ h(b) for
 all (a, b) ∈ D[∨].

•
$$B \not\models \beta(A, D^{\vee})$$
. Since $B \models L, \beta(A, D^{\vee}) \notin L$.

Theorem

Let $L = IPC + \Gamma$ be a si-logic. If L has one of the properties

- tabularity,
- the fmp,
- Kripke completeness,
- decidability and Kripke completeness,

then **PLL** + Γ also enjoys the same property.

• Suppose $\mathbf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.

- Suppose $\mathbf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.
- Some finite *L* Heyting algebra *B* refutes $\beta(A, D^{\vee})$.

- Suppose $\mathsf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.
- Some finite *L* Heyting algebra *B* refutes $\beta(A, D^{\vee})$.
- ∃ homomorphic image *C* of *B* and a (\land , \rightarrow , 0)-embedding *f* : *A* \rightarrow *C* preserving \lor for (*a*, *b*) \in *D* \lor .

- Suppose $\mathsf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.
- Some finite *L* Heyting algebra *B* refutes $\beta(A, D^{\vee})$.
- ∃ homomorphic image *C* of *B* and a (\land , \rightarrow , 0)-embedding *f* : *A* → *C* preserving \lor for (*a*, *b*) ∈ *D*^{\lor}.
- Define a nucleus k on C so that $f : \mathfrak{A} \to \mathfrak{C} = (C, k)$ preserves its structure.

- Suppose **PLL** + $\Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.
- Some finite *L* Heyting algebra *B* refutes $\beta(A, D^{\vee})$.
- ∃ homomorphic image *C* of *B* and a (\land , \rightarrow , 0)-embedding *f* : *A* → *C* preserving \lor for (*a*, *b*) ∈ *D*^{\lor}.
- Define a nucleus k on C so that $f : \mathfrak{A} \to \mathfrak{C} = (C, k)$ preserves its structure.
- Then $f : \mathfrak{A} \to \mathfrak{C}$ is (D^{\vee}, D^{\bigcirc}) -stable, so \mathfrak{C} refutes $\beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.

- Suppose $\mathsf{PLL} + \Gamma \not\vdash \beta(\mathfrak{A}, \mathsf{D}^{\vee}, \mathsf{D}^{\bigcirc})$. Then $L \not\vdash \beta(A, \mathsf{D}^{\vee})$.
- Some finite *L* Heyting algebra *B* refutes $\beta(A, D^{\vee})$.
- ∃ homomorphic image *C* of *B* and a (\land , \rightarrow , 0)-embedding *f* : *A* → *C* preserving \lor for (*a*, *b*) ∈ *D* \lor .
- Define a nucleus k on C so that $f : \mathfrak{A} \to \mathfrak{C} = (C, k)$ preserves its structure.
- Then $f : \mathfrak{A} \to \mathfrak{C}$ is (D^{\vee}, D^{\bigcirc}) -stable, so \mathfrak{C} refutes $\beta(\mathfrak{A}, D^{\vee}, D^{\bigcirc})$.
- Since C is an L-algebra, \mathfrak{C} validates Γ and is finite.

• Is the (\land, \rightarrow, j) -fragment of nuclear Heyting algebras locally finite?

- Is the (\wedge, \rightarrow, j) -fragment of nuclear Heyting algebras locally finite?
- Similarly to the Gödel-embedding, there is another natural way to embed ExtIPC into ExtPLL. Can we prove similar preservation results?

- Is the (\wedge, \rightarrow, j) -fragment of nuclear Heyting algebras locally finite?
- Similarly to the Gödel-embedding, there is another natural way to embed ExtIPC into ExtPLL. Can we prove similar preservation results?
- Can we obtain preservation results for other intuitionistic modal logics in this way?

- Is the (\wedge, \rightarrow, j) -fragment of nuclear Heyting algebras locally finite?
- Similarly to the Gödel-embedding, there is another natural way to embed ExtIPC into ExtPLL. Can we prove similar preservation results?
- Can we obtain preservation results for other intuitionistic modal logics in this way?
- Thank you!