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Logics

Let Fm be the formula algebra in some language over a countably infinite
set Var of variables.

Definition

A logic is a pair L = 〈Fm,`L〉, where Fm is the formula algebra and
`L is a relation between sets of formulas and single formulas satisfying
the following:

(i) if ϕ ∈ Γ, then Γ `L ϕ; (reflexivity)

(ii) if Γ `L ϕ and ∆ `L γ for all γ ∈ Γ, then ∆ `L ϕ; (cut)

(iii) if Γ `L ϕ and σ ∈ End(Fm), then σΓ `L σϕ. (structurality)

A logic is finitary if moreover the following holds

(iv) if Γ `L ϕ, then there is a finite Γ′ ⊆ Γ such that Γ′ `L ϕ.

A set T of formulas is an L-theory if it is closed under the consequence
relation of L, i.e. if T `L ϕ implies ϕ ∈ T . The set ThL of all
L-theories forms a complete lattice under set-inclusion.
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Leibniz operator

One central aim in AAL is to classify logics according to the properties
that the so called Leibniz operator has when restricted to (a sublattice
of) the lattice of theories of a given logic.

Definition

Let Γ ⊆ Fm. The Leibniz congruence ΩΓ determined by Γ is defined as

〈α, β〉 ∈ ΩΓ if for all formulas ϕ and all variables x ,

ϕ(x/α) ∈ Γ if and only if ϕ(x/β) ∈ Γ.

The Leibniz operator Ω is the mapping that assigns to any subset Γ of
formulas the Leibniz congruence ΩΓ.
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Protoalgebraic Logics

Definition

A logic L is protoalgebraic if for every L-theory T and all formulas ϕ and
ψ,

〈ϕ,ψ〉 ∈ ΩT implies ϕ,T a`L T , ψ.

Theorem

Let L be a logic. Then the following are equivalent:

(i) L is protoalgebraic;

(ii) Ω is monotone on ThL.
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Two Syntactic Characterizations

There are two distinct syntactic characterizations for protoalgebraic logics
via the existence a set of formulas with certain properties. We will use
one of them to define finitely protoalgebraic logics.

Definition

Let L be a logic. A set ∆(x , y) of formulas in two variables is a
proto-implication for L if the following two conditions hold:

(i) `L ∆(x , x);

(ii) x ,∆(x , y) `L y .
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Two Syntactic Characterizations

Given a set ∆(x , y , z̄) of formulas with main variables x and y and
parameters z̄ we define for all formulas ϕ and ψ,

∆(〈ϕ,ψ〉) := {δ(ϕ,ψ, γ̄) : δ(x , y , z̄) ∈ ∆(x , y , z̄), γ̄ ∈ Fm}.

Definition

Let L be a logic. A set ∆(x , y , z̄) is a parameterized equivalence for L if
the following three conditions hold:

(i) `L ∆(〈x , x〉);

(ii) x ,∆(〈x , y〉) `L y ;

(iii) ∆(〈x1, y1〉), . . . ,∆(〈xn, yn〉) `L ∆(〈λx1 . . . xn, λy1 . . . yn〉) for all
n-ary connectives λ.
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Two Syntactic Characterizations

Theorem

Let L be a logic. Then the following are equivalent:

(i) L is protoalgebraic;

(ii) There is a proto-implication for L;

(iii) There is a parameterized equivalence for L.

Definition

A logic L is (finitely) equivalential if there is a (finite) parameter-free
equivalence for L.
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Two Syntactic Characterizations

Which of the two syntactic characterizations do we use to define finitely
protoalgebraic logics? The following lemma suggests that the second one
is to be preferred.

Lemma

Let L be a protoalgebraic logic and let ∆(x , y , z̄) be a parameterized
equivalence for L. Then for any T ∈ ThL,

〈ϕ,ψ〉 ∈ ΩT if and only if ∆(〈ϕ,ψ〉) ⊆ T .

Hence, we call a logic finitely protoalgebraic if it has a finite
parameterized equivalence.

Lemma

Let L be a logic. L has a finite proto-implication if and only if the
finitary companion Lf is protoalgebraic.
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Counterexample: The Doubting Thomas Logic

We define a logic that is finitely protoalgebraic and equivalential, but not
finitely equivalential. Consider a language with single ternary connective
λ and define

∆(x , y) := {λ(x , y , δ) : δ ∈ Fm(x , y)}.

The Doubting Thomas Logic DT is the least logic satisfying the
following:

(i) ` ∆(x , x);

(ii) x ,∆(x , y) ` y ;

(iii) ∆(x1, y1),∆(x2, y2),∆(x3, y3) ` λ(λ(x1, x2, x3), λ(y1, y2, y3), z).

Now {λ(x , y , z)} is a parameterized equivalence and ∆(x , y) is a
parameter-free equivalence for DT . On the other hand DT does not
have a finite parameter-free equivalence, since for no finite
∆′(x , y) ⊆ ∆(x , y) does the Modus Ponens hold. Also, DT does not
have a finite proto-implication.
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Invariant theories

Definition

Let L be a logic and let X be a set of variables. An L-theory T is
X -invariant if σT ⊆ T for any substitution σ such that σx = x for all
x ∈ X .

We denote the set of all X -invariant L-theories by ThXinvL. ThXinvL is a
complete sublattice of ThL for any set X of variables.
In the following we are interested in the lattice ThxyinvL of all
{x , y}-invariant L-theories.
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Finitely protoalgebraic logics

Lemma

Let L be a logic. Then the following are equivalent:

(i) Ω is monotone on ThL;

(ii) Ω is monotone on ThxyinvL.

Theorem

Let L be a logic. Then the following are equivalent:

(i) L is finitely protoalgebraic;

(ii) Ω is continuous on ThxyinvL, i.e. for any directed family {Ti : i ∈ I}
of {x , y}-invariant L-theories such that

⋃
i∈I Ti is an L-theory, it

holds that
Ω
⋃
i∈I

Ti =
⋃
i∈I

ΩTi .
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Finitely weakly algebraizable logics

Definition

A (finitely) protoalgebraic logic is (finitely) weakly algebraizable if Ω is
injective on ThL.

Lemma

Let L be a protoalgebraic logic. Then the following are equivalent:

(i) Ω is injective on ThL;

(ii) Ω is injective on ThxyinvL.

Theorem

Let L be a logic. Then the following are equivalent:

(i) L is finitely weakly algebraizable;

(ii) Ω is continuous and injective on ThxyinvL.
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The End

Thank you!
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