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Hoops and BL-algebras

A hoop is an algebra H = hH; �;!; 1i of type h2; 2; 0i such that hH; �; 1i is a
commutative monoid satisfying

(i) x! x = 1

(ii) x � (x! y) = y � (y ! x)

(iii) x! (y ! z) = (x � y)! z

for all x; y; z 2 H.

If H is a hoop, then (H; �; 1) is a naturally ordered residuated commutative
monoid, where x � y if and only if x! y = 1 and the residuation is

x � y � z if and only if x � y ! z:



Hoops and BL-algebras

A hoop is called

bounded if it is an algebra H = hH; �;!; 0; 1i such that hH; �;!; 1i is a
hoop and 0 � x for all x 2 H.

basic if it is a hoop satisfying the identity

(((x! y)! z) � ((y ! x)! z))! z = 1:

a Wajsberg hoop if it satisfies

(x! y)! y = (y ! x)! x:

The prelineariry equation (x! y) _ (y ! x) = 1 holds in every basic hoop.



Hoops and BL-algebras

A BL-algebra is a bounded basic hoop and a BL-chain is a totally ordered BL-
algebra. We will mainly work with two subvarieties of BL-algebras

the subvariety of MV-algebras, characterized by

::x = x (where :x = x! 0).

the subvariety of product algebras, characterized by

(::z � ((x � z)! (y � z)))! (x! y) = 1

x ^ :x = 0

An MV-chain is a totally ordered MV-algebra and a product chain is a totally
ordered product algebra.



Classical examples

The standard MV-chain [0; 1][0; 1][0; 1]MV is the MV-algebra whose universe is the real
unit interval [0; 1], where x�y = max(0; x+y�1) and x! y = min(1; 1�x+y).
For n � 2, Łn is the subalgebra of [0; 1][0; 1][0; 1]MV with domain

Łn =
n

0

n� 1
;

1

n� 1
;

2

n� 1
; : : : ;

n� 1

n� 1

o
:

The standard product chain is the algebra [0; 1][0; 1][0; 1]Π = h[0; 1]; �;!; 0; 1i where � is
the usual product over the real interval [0; 1] and ! is given by

x! y =

�
y=x if x > y;

1 if x � y:



Ordinal sum

Let fHi : i 2 Ig be a family of hoops indexed by a totally ordered set (I;�).
Let us assume that Hi \Hj = f1g whenever i 6= j 2 I. The ordinal sum of this
family is the hoop M

i2I

Hi = h
[
i2I

Hi; �;!; 1i;

where the operations are given by

x � y =

8<
:
x �i y if x; y 2 Hi;

x if x 2 Hi n f1g; y 2 Hj ; i < j;

y if y 2 Hi n f1g; x 2 Hj ; i < j:

x! y =

8<
:
1 if x 2 Hi n f1g; y 2Wj ; i < j;

x!i y if x; y 2 Hi;

y if y 2 Hi; x 2 Hj ; i < j:



BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)

Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of
non-trivial totally ordered Wajsberg hoops.

Remarks
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non-trivial totally ordered Wajsberg hoops.

Remarks

If
L

i2I
Wi is the decomposition of a BL-chain into Wajsberg hoops, then the

index set I has a minimum element i0 and the resulting constant bottom in the
ordinal sum is the bottom of Wi0 .



BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)

Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of
non-trivial totally ordered Wajsberg hoops.

Remarks

Totally ordered Wajsberg hoops can be either lower bounded or not.

If bounded, they are bottom free reducts of MV-chains.

If unbounded, they are cancellative Wajsberg hoops, i.e. they satisfy the
identity x! (x � y) = y. Example: (0; 1](0; 1](0; 1]Π.



BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)

Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of
non-trivial totally ordered Wajsberg hoops.

Remarks

[0; 1][0; 1][0; 1]Π �= Ł2 � (0; 1](0; 1](0; 1]Π. In general, if A is a product chain, then

A �= Ł2 �W;

where W is a cancellative hoop. In addition, for each cancellative totally ordered
hoop W, the ordinal sum Ł2 �W is a product chain.



Poset product

Given a poset P = hP;�i and a collection fAp : p 2 Pg of BL-algebras sharing
the same neutral element 1 and the same minimum element 0, the poset productN

p2P
Ap is the residuated lattice A = hA; �;!;_;^;?;>i defined as follows:

The domain of A is the set of all maps x 2
Q

p2P
Ap such that for all

i 2 P , if xi 6= 1, then xj = 0 provided that j > i.

> is the map whose value in each coordinate is 1. Analogously for the
symbol ? to denote the minimum element.

Monoid and lattice operations are defined pointwise.

The residual is

(x!A y)i =

�
xi !Ai

yi if xj � yj for all j < i;

0 otherwise.
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Properties and examples

If P is finite and totally ordered, then
N

i2P
Ai

�=
L

i2P
Ai.

Let P = fa < bg, Aa = Ł3 and Ab = Ł2, then Ł3 
 Ł2
�= Ł3 � Ł2.

0Ł3

1

2
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? = (0; 0)

�
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2
; 0
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�
�

�
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2
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=
�
1

2
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�

If P is an antichain, then
N

i2P
Ai =

Q
i2P

Ai.

Let P = fa k bg and Aa = Ab = Ł2, then Ł2 
 Ł2 = Ł2 � Ł2.
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Properties and examples

If Λ = h�; <i = hfa; b; cg; f(b; a); (c; a)gi and Aa = Ab = Ac = Ł2, then

b

a

c

? = (0; 0; 0)

x = (0; 1; 0) y = (0; 0; 1)

(0; 1; 1)

> = (1; 1; 1)

The poset product of the family isO
�

Ł2 = f(0; 0; 0); (0; 0; 1); (0; 1; 0); (0; 1; 1); (1; 1; 1)g:



Properties and examples

If Λ = h�; <i = hfa; b; cg; f(b; a); (c; a)gi and Aa = Ab = Ac = Ł2, then

b

a

c

? = (0; 0; 0)

x = (0; 1; 0) y = (0; 0; 1)

(0; 1; 1)

> = (1; 1; 1)

N
Λ

Ł2 is not a BL-algebra because

(x! y) _ (y ! x) = (0; 0; 1) _ (0; 1; 0) = (0; 1; 1) < (1; 1; 1) = >:



Forests

From now on, we will consider posets that do not contain as a subposet the
configuration �. They are known as forests. Thus, a forest is a poset P = hP;�i
such that for each i 2 P , the downset

# i = fj 2 P : j � ig

is totally ordered.



Forests

From now on, we will consider posets that do not contain as a subposet the
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Connected forest
i

Not connected forest



Forests

From now on, we will consider posets that do not contain as a subposet the
configuration �. They are known as forests. Thus, a forest is a poset P = hP;�i
such that for each i 2 P , the downset

# i = fj 2 P : j � ig

is totally ordered.

Theorem

If P is a forest and Ap is a BL-chain for all p 2 P , then
N

p2P
Ap is a BL-

algebra.



Idempotent free BL-algebras

An algebra A is said to be poset product indecomposable if A is non-trivial and
if A is a poset product of two algebras A1 and A2, then either A1 or A2 is
trivial.
We will say that a BL-chain A is idempotent free if Id(A) �= Ł2.

Proposition

Let A be a non-trivial BL-chain. Then

A is idempotent free () A is poset product indecomposable.

For all n � 2, Łn � (0; 1]�(0; 1]�(0; 1]� is indecomposable in the sense of poset product.
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Representability

Given a BL-chain A, if there are a totally ordered set P and a family of idem-
potent free BL-chains fAi : i 2 Pg such that A �=

N
i2P

Ai, we will say that
A is representable. If the family only contains MV-chains and product chains,
we will say that A is �MV-representable.

MV-chains and product chains are representable BL-chains.

Ł3 � (0; 1]�(0; 1]�(0; 1]� is representable but is not �MV-representable.

Jipsen-Montagna’s generalization for Di Nola-Lettieri’s result

Every finite BL-algebra is isomorphic to the a poset product of a collection of
MV-chains.
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Poset product of idempotent free BL-chains

Theorem

Let hP;�i be a totally ordered set and fAp : p 2 Pg be a family of idempotent
free BL-chains. Then

L
p2P

Ap
�=
N

p2P
Ap if and only if P is well-ordered.

()) If
L

p2P
Ap

�=
N

p2P
Ap, since

Id(Ap) = f0; 1g 8p 2 P ,
M
P

Ł2
�=
O
P

Ł2:

Given that
N

P
Ł2 is complete, P can

be seen as a complete poset which
actually is a well-ordered set.

(() If P is a well-ordered set, the
map f :

L
p2P

Ap !
N

p2P
Ap de-

fined by f(1) = > and

f(a)p =

8<
:
1 if p < j;

a if p = j;

0 if p > j:

if a 2 Aj n f>g is an isomorphism.



Poset product of idempotent free BL-chains

Theorem

Let hP;�i be a totally ordered set and fAp : p 2 Pg be a family of idempotent
free BL-chains. Then

L
p2P

Ap
�=
N

p2P
Ap if and only if P is well-ordered.

()) If
L

p2P
Ap

�=
N

p2P
Ap, since

Id(Ap) = f0; 1g 8p 2 P ,
M
P

Ł2
�=
O
P

Ł2:

Given that
N

P
Ł2 is complete, P can

be seen as a complete poset which
actually is a well-ordered set.

(() If P is a well-ordered set, the
map f :

L
p2P

Ap !
N

p2P
Ap de-

fined by f(1) = > and

f(a)p =

8<
:
1 if p < j;

a if p = j;

0 if p > j:

if a 2 Aj n f>g is an isomorphism.



Poset product of idempotent free BL-chains

Theorem

Let hP;�i be a totally ordered set and fAp : p 2 Pg be a family of idempotent
free BL-chains. Then

L
p2P

Ap
�=
N

p2P
Ap if and only if P is well-ordered.

()) If
L

p2P
Ap

�=
N

p2P
Ap, since

Id(Ap) = f0; 1g 8p 2 P ,
M
P

Ł2
�=
O
P

Ł2:

Given that
N

P
Ł2 is complete, P can

be seen as a complete poset which
actually is a well-ordered set.

(() If P is a well-ordered set, the
map f :

L
p2P

Ap !
N

p2P
Ap de-

fined by f(1) = > and

f(a)p =

8<
:
1 if p < j;

a if p = j;

0 if p > j:

if a 2 Aj n f>g is an isomorphism.



Some issues

Unfortunately, not all BL-chain can be written as an ordinal sum of idempotent
free BL-chains. If it were the case, the index set would not always be a well-
ordered set.

Representable BL-chain without a well-ordered index set

Let A =
L

I
Ł2, where I = hfbg[Z�;�i. Although I is not a well-ordered set,

A �=
N

Z�
Ł2. Observe that

L
Z�

Ł2 �
N

Z�
Ł2.

In addition, a well-ordered index set in a decomposition of a BL-chain does not
guarantee a representation in terms of idempotent free BL-chains.

Non-representable BL-chain indexed by a well-ordered set

Let A =
L

i2I
Wi, where I = hN [ ftg;�i, Wn = Ł2 for all n 2 N and

Wt = (0; 1]�(0; 1]�(0; 1]�. Then A is not representable. Note that Wt is not a BL-chain.
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A sufficient (but strong) condition for representability

Proposition

If each prime filter in a BL-chain A is a principal filter, then A is representable.

If A �=
L

i2I
Wi, it turns out that the index set I is well-ordered and every Wi

is a bounded hoop (MV-chain). Thus A �=
N

i2I
Wi.

Since in a finite BL-algebra all filters are principal, this is a proposition that
(for the case of BL-chains) enhances the Jipsen and Montagna’s result we cited
before. However, it must be said that the hypothesis is still too restrictive, since
in general idempotent free BL-chains contain a non-prime principal filter.

For all n � 2, the set (0; 1] is a prime filter in the representable BL-chain
Łn � (0; 1]�(0; 1]�(0; 1]� which is not a principal filter.
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Saturated BL-chains

Let A be a BL-chain. A pair of sets (X;Y ) is called a cut in A if

X [ Y = A,

x � y for all x 2 X and all y 2 Y ,

Y is closed under � and

x � y = x for all x 2 X and all y 2 Y .

A is called saturated if for every cut (X;Y ) there exists u 2 Id(A) such that
x � u � y for all x 2 X and all y 2 Y .



Representation of saturated BL-chains

MV-chains and product chains are the only idempotent free BL-chains with
the property of being saturated chains.

The Gödel chain
L

[0;1]
Ł2 is a saturated chain that is not representable.

Lemma

Let A �=
L

i2P
Wi be a saturated BL-chain. If Wj is an unbounded hoop for

some j 2 P , then there exists j0 2 P preceding j such that Wj0
�= Ł2.

Theorem

Let A be a saturated BL-chain and let
L

i2P
Wi be its unique decomposition

into non-trivial Wajsberg hoops. If P is a well-ordered set, then there is a well-
ordered set P 0 such that A �=

L
i2P 0

Ai, with Ai an MV-chain or a product
chain. Consequently, A is �MV-representable.
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We know that A �=
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i2P
Wi and P is a well-ordered set. As remarked, a

hoop Wi in the decomposition of a BL-chain A can be unbounded. For in-
stance, let us assume that Wj and Wk are unbounded hoops for some j; k 2 P .

A �= W1 � : : :� (Ł2 �Wj)� : : :� (Ł2 �Wk)� : : :�Wl � : : :

Following the above suggested idea we define P 0 as a rearrangement of P . P 0

will index the summands

Ai =

�
Ł2 �Wi if Wi is unbounded;
Wi if Wi is bounded.

Then A �=
L

i2P 0
Ai and each summand is an MV-chain or a product chain.

Note that P 0 is a well-ordered set because P so is. Thus

A �=
O
i2P 0

Ai:



Representation of saturated BL-chains

The next result provides an alternative definition for �MV-representability. It also
reveals the link between the notions of representability and �MV-representability.

Corollary

A BL-chain A is representable and saturated if and only if it is �MV-repre-
sentable.
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