Poset Product and BL-chains

Conrado Gomez (joint work with Manuela Busaniche)

Syntax Meets Semantics 2016
Barcelona, 5th September

Hoops and BL-algebras

A hoop is an algebra $\mathbf{H}=\langle H, \cdot, \rightarrow, 1\rangle$ of type $\langle 2,2,0\rangle$ such that $\langle H, \cdot, 1\rangle$ is a commutative monoid satisfying
(i) $x \rightarrow x=1$
(ii) $x \cdot(x \rightarrow y)=y \cdot(y \rightarrow x)$
(iii) $x \rightarrow(y \rightarrow z)=(x \cdot y) \rightarrow z$
for all $x, y, z \in H$.
If \mathbf{H} is a hoop, then $(H, \cdot, 1)$ is a naturally ordered residuated commutative monoid, where $x \leq y$ if and only if $x \rightarrow y=1$ and the residuation is

$$
x \cdot y \leq z \text { if and only if } x \leq y \rightarrow z
$$

Hoops and BL-algebras

A hoop is called

- bounded if it is an algebra $\mathbf{H}=\langle H, \cdot, \rightarrow, 0,1\rangle$ such that $\langle H, \cdot, \rightarrow, 1\rangle$ is a hoop and $0 \leq x$ for all $x \in H$.
- basic if it is a hoop satisfying the identity

$$
(((x \rightarrow y) \rightarrow z) \cdot((y \rightarrow x) \rightarrow z)) \rightarrow z=1
$$

- a Wajsberg hoop if it satisfies

$$
(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x
$$

The prelineariry equation $(x \rightarrow y) \vee(y \rightarrow x)=1$ holds in every basic hoop.

Hoops and BL-algebras

A BL-algebra is a bounded basic hoop and a BL-chain is a totally ordered BLalgebra. We will mainly work with two subvarieties of BL-algebras

- the subvariety of MV-algebras, characterized by

$$
\neg \neg x=x \quad(\text { where } \neg x=x \rightarrow 0)
$$

- the subvariety of product algebras, characterized by

$$
\begin{aligned}
(\neg \neg z \cdot((x \cdot z) & \rightarrow(y \cdot z))) \rightarrow(x \rightarrow y)=1 \\
& x
\end{aligned}
$$

An MV-chain is a totally ordered MV-algebra and a product chain is a totally ordered product algebra.

Classical examples

The standard MV-chain $[0,1]_{M V}$ is the MV-algebra whose universe is the real unit interval $[0,1]$, where $x \cdot y=\max (0, x+y-1)$ and $x \rightarrow y=\min (1,1-x+y)$. For $n \geq 2, \mathfrak{Ł}_{n}$ is the subalgebra of $[0,1]_{\mathrm{MV}}$ with domain

$$
Ł_{n}=\left\{\frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-1}{n-1}\right\} .
$$

The standard product chain is the algebra $[0,1]_{\Pi}=\langle[0,1], \cdot, \rightarrow, 0,1\rangle$ where \cdot is the usual product over the real interval $[0,1]$ and \rightarrow is given by

$$
x \rightarrow y= \begin{cases}y / x & \text { if } x>y \\ 1 & \text { if } x \leq y\end{cases}
$$

Ordinal sum

Let $\left\{\mathbf{H}_{i}: i \in I\right\}$ be a family of hoops indexed by a totally ordered set (I, \leq). Let us assume that $\mathbf{H}_{i} \cap \mathbf{H}_{j}=\{1\}$ whenever $i \neq j \in I$. The ordinal sum of this family is the hoop

$$
\bigoplus_{i \in I} \mathbf{H}_{i}=\left\langle\bigcup_{i \in I} H_{i}, \cdot, \rightarrow, 1\right\rangle
$$

where the operations are given by

$$
\begin{gathered}
x \cdot y= \begin{cases}x \cdot_{i} y & \text { if } x, y \in H_{i}, \\
x & \text { if } x \in H_{i} \backslash\{1\}, y \in H_{j}, i<j, \\
y & \text { if } y \in H_{i} \backslash\{1\}, x \in H_{j}, i<j .\end{cases} \\
x \rightarrow y= \begin{cases}1 & \text { if } x \in H_{i} \backslash\{1\}, y \in W_{j}, i<j \\
x \rightarrow_{i} y & \text { if } x, y \in H_{i}, \\
y & \text { if } y \in H_{i}, x \in H_{j}, i<j .\end{cases}
\end{gathered}
$$

BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)
Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of non-trivial totally ordered Wajsberg hoops.

BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)
Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of non-trivial totally ordered Wajsberg hoops.

Remarks

If $\bigoplus_{i \in I} \mathbf{W}_{i}$ is the decomposition of a BL-chain into Wajsberg hoops, then the index set I has a minimum element i_{0} and the resulting constant bottom in the ordinal sum is the bottom of $\mathbf{W}_{i_{0}}$.

BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)
Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of non-trivial totally ordered Wajsberg hoops.

Remarks

Totally ordered Wajsberg hoops can be either lower bounded or not.

- If bounded, they are bottom free reducts of MV-chains.
- If unbounded, they are cancellative Wajsberg hoops, i.e. they satisfy the identity $x \rightarrow(x \cdot y)=y$. Example: $(0,1]_{\Pi}$.

BL-chain decomposition

Decomposition theorem for BL-chains (Aglianò-Montagna)
Each non-trivial BL-chain admits a unique decomposition into an ordinal sum of non-trivial totally ordered Wajsberg hoops.

Remarks

$[0,1]_{\Pi} \cong \mathfrak{Ł}_{2} \oplus(\mathbf{0}, \mathbf{1}]_{\Pi}$. In general, if \mathbf{A} is a product chain, then

$$
\mathbf{A} \cong \mathfrak{Ł}_{2} \oplus \mathbf{W}
$$

where \mathbf{W} is a cancellative hoop. In addition, for each cancellative totally ordered hoop \mathbf{W}, the ordinal sum $\boldsymbol{Ł}_{2} \oplus \mathbf{W}$ is a product chain.

Poset product

Given a poset $\mathbf{P}=\langle P, \leq\rangle$ and a collection $\left\{\mathbf{A}_{p}: p \in P\right\}$ of BL-algebras sharing the same neutral element 1 and the same minimum element 0 , the poset product $\bigotimes_{p \in P} \mathbf{A}_{p}$ is the residuated lattice $\mathbf{A}=\langle A, \cdot, \rightarrow, \vee, \wedge, \perp, \mathrm{~T}\rangle$ defined as follows:

Poset product

Given a poset $\mathbf{P}=\langle P, \leq\rangle$ and a collection $\left\{\mathbf{A}_{p}: p \in P\right\}$ of BL-algebras sharing the same neutral element 1 and the same minimum element 0 , the poset product $\bigotimes_{p \in P} \mathbf{A}_{p}$ is the residuated lattice $\mathbf{A}=\langle A, \cdot, \rightarrow, \vee, \wedge, \perp, \mathrm{~T}\rangle$ defined as follows:

- The domain of \mathbf{A} is the set of all maps $x \in \prod_{p \in P} A_{p}$ such that for all $i \in P$, if $x_{i} \neq 1$, then $x_{j}=0$ provided that $j>i$.

Poset product

Given a poset $\mathbf{P}=\langle P, \leq\rangle$ and a collection $\left\{\mathbf{A}_{p}: p \in P\right\}$ of BL-algebras sharing the same neutral element 1 and the same minimum element 0 , the poset product $\bigotimes_{p \in P} \mathbf{A}_{p}$ is the residuated lattice $\mathbf{A}=\langle A, \cdot, \rightarrow, \vee, \wedge, \perp, \mathrm{~T}\rangle$ defined as follows:

- The domain of \mathbf{A} is the set of all maps $x \in \prod_{p \in P} A_{p}$ such that for all $i \in P$, if $x_{i} \neq 1$, then $x_{j}=0$ provided that $j>i$.
- T is the map whose value in each coordinate is 1 . Analogously for the symbol \perp to denote the minimum element.

Poset product

Given a poset $\mathbf{P}=\langle P, \leq\rangle$ and a collection $\left\{\mathbf{A}_{p}: p \in P\right\}$ of BL-algebras sharing the same neutral element 1 and the same minimum element 0 , the poset product $\bigotimes_{p \in P} \mathbf{A}_{p}$ is the residuated lattice $\mathbf{A}=\langle A, \cdot, \rightarrow, \vee, \wedge, \perp, \mathrm{~T}\rangle$ defined as follows:

- The domain of \mathbf{A} is the set of all maps $x \in \prod_{p \in P} A_{p}$ such that for all $i \in P$, if $x_{i} \neq 1$, then $x_{j}=0$ provided that $j>i$.
- T is the map whose value in each coordinate is 1 . Analogously for the symbol \perp to denote the minimum element.
- Monoid and lattice operations are defined pointwise.

Poset product

Given a poset $\mathbf{P}=\langle P, \leq\rangle$ and a collection $\left\{\mathbf{A}_{p}: p \in P\right\}$ of BL-algebras sharing the same neutral element 1 and the same minimum element 0 , the poset product $\bigotimes_{p \in P} \mathbf{A}_{p}$ is the residuated lattice $\mathbf{A}=\langle A, \cdot, \rightarrow, \vee, \wedge, \perp, \top\rangle$ defined as follows:

- The domain of \mathbf{A} is the set of all maps $x \in \prod_{p \in P} A_{p}$ such that for all $i \in P$, if $x_{i} \neq 1$, then $x_{j}=0$ provided that $j>i$.
- T is the map whose value in each coordinate is 1 . Analogously for the symbol \perp to denote the minimum element.
- Monoid and lattice operations are defined pointwise.
- The residual is

$$
\left(x \rightarrow_{\mathbf{A}} y\right)_{i}= \begin{cases}x_{i} \rightarrow_{\mathbf{A}_{i}} y_{i} & \text { if } x_{j} \leq y_{j} \text { for all } j<i \\ 0 & \text { otherwise }\end{cases}
$$

Properties and examples

If P is finite and totally ordered, then $\bigotimes_{i \in P} \mathbf{A}_{i} \cong \bigoplus_{i \in P} \mathbf{A}_{i}$.
Let $P=\{a<b\}, \mathbf{A}_{a}=\boldsymbol{Ł}_{3}$ and $\mathbf{A}_{b}=\mathfrak{Ł}_{2}$, then $\boldsymbol{Ł}_{3} \otimes \mathfrak{Ł}_{2} \cong \boldsymbol{Ł}_{3} \oplus \boldsymbol{Ł}_{2}$.

$$
\left\{\begin{array}{l}
\top=(1,1) \\
(1,0) \\
\left(\frac{1}{2}, 0\right) \\
\perp=(0,0)
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\frac{1}{2}, 0\right) \cdot\left(\frac{1}{2}, 0\right)=\perp \\
& (1,0) \rightarrow\left(\frac{1}{2}, 0\right)=\left(\frac{1}{2}, 0\right)
\end{aligned}
$$

Properties and examples

If P is finite and totally ordered, then $\bigotimes_{i \in P} \mathbf{A}_{i} \cong \bigoplus_{i \in P} \mathbf{A}_{i}$.
Let $P=\{a<b\}, \mathbf{A}_{a}=\boldsymbol{Ł}_{3}$ and $\mathbf{A}_{b}=\boldsymbol{Ł}_{2}$, then $\boldsymbol{Ł}_{3} \otimes \mathfrak{Ł}_{2} \cong \mathfrak{Ł}_{3} \oplus \boldsymbol{Ł}_{2}$.

If P is an antichain, then $\bigotimes_{i \in P} \mathbf{A}_{i}=\prod_{i \in P} \mathbf{A}_{i}$.
Let $P=\{a \| b\}$ and $\mathbf{A}_{a}=\mathbf{A}_{\boldsymbol{b}}=\boldsymbol{Ł}_{2}$, then $\boldsymbol{Ł}_{2} \otimes \mathfrak{Ł}_{2}=\boldsymbol{Ł}_{2} \times \boldsymbol{Ł}_{2}$.

Properties and examples

If $\boldsymbol{\Lambda}=\langle\Lambda,<\rangle=\langle\{a, b, c\},\{(b, a),(c, a)\}\rangle$ and $\mathbf{A}_{a}=\mathbf{A}_{b}=\mathbf{A}_{c}=\boldsymbol{Ł}_{2}$, then

The poset product of the family is

$$
\bigotimes_{\Lambda} \mathfrak{t}_{2}=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,1,1)\} .
$$

Properties and examples

If $\boldsymbol{\Lambda}=\langle\Lambda,<\rangle=\langle\{a, b, c\},\{(b, a),(c, a)\}\rangle$ and $\mathbf{A}_{a}=\mathbf{A}_{b}=\mathbf{A}_{c}=\boldsymbol{\not}_{2}$, then

$\otimes_{\Lambda} \mathbf{k}_{2}$ is not a BL-algebra because

$$
(x \rightarrow y) \vee(y \rightarrow x)=(0,0,1) \vee(0,1,0)=(0,1,1)<(1,1,1)=T .
$$

Forests

From now on, we will consider posets that do not contain as a subposet the configuration Λ. They are known as forests. Thus, a forest is a poset $\mathbf{P}=\langle P, \leq\rangle$ such that for each $i \in P$, the downset

$$
\downarrow i=\{j \in P: j \leq i\}
$$

is totally ordered.

Forests

From now on, we will consider posets that do not contain as a subposet the configuration Λ. They are known as forests. Thus, a forest is a poset $\mathbf{P}=\langle P, \leq\rangle$ such that for each $i \in P$, the downset

$$
\downarrow i=\{j \in P: j \leq i\}
$$

is totally ordered.

Forests

From now on, we will consider posets that do not contain as a subposet the configuration Λ. They are known as forests. Thus, a forest is a poset $\mathbf{P}=\langle P, \leq\rangle$ such that for each $i \in P$, the downset

$$
\downarrow i=\{j \in P: j \leq i\}
$$

is totally ordered.

Theorem

If P is a forest and \mathbf{A}_{p} is a BL-chain for all $p \in P$, then $\bigotimes_{p \in P} \mathbf{A}_{p}$ is a BLalgebra.

Idempotent free BL-algebras

An algebra \mathbf{A} is said to be poset product indecomposable if \mathbf{A} is non-trivial and if \mathbf{A} is a poset product of two algebras \mathbf{A}_{1} and \mathbf{A}_{2}, then either \mathbf{A}_{1} or \mathbf{A}_{2} is trivial.
We will say that a BL-chain \mathbf{A} is idempotent free if $\mathbf{I d}(\mathbf{A}) \cong \mathfrak{Ł}_{2}$.

Idempotent free BL-algebras

An algebra \mathbf{A} is said to be poset product indecomposable if \mathbf{A} is non-trivial and if \mathbf{A} is a poset product of two algebras \mathbf{A}_{1} and \mathbf{A}_{2}, then either \mathbf{A}_{1} or \mathbf{A}_{2} is trivial.
We will say that a BL-chain \mathbf{A} is idempotent free if $\operatorname{Id}(\mathbf{A}) \cong \mathfrak{Ł}_{2}$.

Proposition

Let A be a non-trivial BL-chain. Then
\mathbf{A} is idempotent free $\Longleftrightarrow \mathbf{A}$ is poset product indecomposable.

For all $n \geq 2, \mathbf{Ł}_{n} \oplus(0,1]_{\Pi}$ is indecomposable in the sense of poset product.

Representability

Given a BL-chain A, if there are a totally ordered set P and a family of idempotent free BL-chains $\left\{\mathbf{A}_{i}: i \in P\right\}$ such that $\mathbf{A} \cong \bigotimes_{i \in P} \mathbf{A}_{i}$, we will say that \mathbf{A} is representable. If the family only contains MV-chains and product chains, we will say that \mathbf{A} is $\Pi \mathrm{MV}$-representable.

Representability

Given a BL-chain \mathbf{A}, if there are a totally ordered set P and a family of idempotent free BL-chains $\left\{\mathbf{A}_{i}: i \in P\right\}$ such that $\mathbf{A} \cong \bigotimes_{i \in P} \mathbf{A}_{i}$, we will say that \mathbf{A} is representable. If the family only contains MV-chains and product chains, we will say that \mathbf{A} is $\Pi \mathrm{MV}$-representable.

- MV-chains and product chains are representable BL-chains.
- $\ell_{3} \oplus(0,1]_{\Pi}$ is representable

Representability

Given a BL-chain \mathbf{A}, if there are a totally ordered set P and a family of idempotent free BL-chains $\left\{\mathbf{A}_{i}: i \in P\right\}$ such that $\mathbf{A} \cong \bigotimes_{i \in P} \mathbf{A}_{i}$, we will say that \mathbf{A} is representable. If the family only contains MV-chains and product chains, we will say that \mathbf{A} is $\Pi \mathrm{MV}$-representable.

- MV-chains and product chains are representable BL-chains.
- $\ell_{3} \oplus(0,1]_{\Pi}$ is representable but is not חMV-representable.

Representability

Given a BL-chain \mathbf{A}, if there are a totally ordered set P and a family of idempotent free BL-chains $\left\{\mathbf{A}_{i}: i \in P\right\}$ such that $\mathbf{A} \cong \bigotimes_{i \in P} \mathbf{A}_{i}$, we will say that \mathbf{A} is representable. If the family only contains MV-chains and product chains, we will say that \mathbf{A} is $\Pi \mathrm{MV}$-representable.

- MV-chains and product chains are representable BL-chains.
- $\ell_{3} \oplus(0,1]_{\Pi}$ is representable but is not ПMV-representable.

Jipsen-Montagna's generalization for Di Nola-Lettieri's result

Every finite BL-algebra is isomorphic to the a poset product of a collection of MV-chains.

Poset product of idempotent free BL-chains

Theorem

Let $\langle P, \leq\rangle$ be a totally ordered set and $\left\{\mathbf{A}_{p}: p \in P\right\}$ be a family of idempotent free BL-chains. Then $\bigoplus_{p \in P} \mathbf{A}_{p} \cong \bigotimes_{p \in P} \mathbf{A}_{p}$ if and only if P is well-ordered.

Poset product of idempotent free BL-chains

Theorem

Let $\langle P, \leq\rangle$ be a totally ordered set and $\left\{\mathbf{A}_{p}: p \in P\right\}$ be a family of idempotent free BL-chains. Then $\bigoplus_{p \in P} \mathbf{A}_{p} \cong \bigotimes_{p \in P} \mathbf{A}_{p}$ if and only if P is well-ordered.
(\Rightarrow) If $\bigoplus_{p \in P} \mathbf{A}_{p} \cong \bigotimes_{p \in P} \mathbf{A}_{p}$, since
$\operatorname{Id}\left(\mathbf{A}_{p}\right)=\{0,1\} \forall p \in P$,

$$
\bigoplus_{P} \mathfrak{t}_{2} \cong \bigotimes_{P} \mathfrak{Ł}_{2} .
$$

Given that $\bigotimes_{P} \mathfrak{Ł}_{2}$ is complete, P can be seen as a complete poset which actually is a well-ordered set.

Poset product of idempotent free BL-chains

Theorem

Let $\langle P, \leq\rangle$ be a totally ordered set and $\left\{\mathbf{A}_{p}: p \in P\right\}$ be a family of idempotent free BL-chains. Then $\bigoplus_{p \in P} \mathbf{A}_{p} \cong \bigotimes_{p \in P} \mathbf{A}_{p}$ if and only if P is well-ordered.
(\Rightarrow) If $\bigoplus_{p \in P} \mathbf{A}_{p} \cong \bigotimes_{p \in P} \mathbf{A}_{p}$, since $\operatorname{Id}\left(\mathbf{A}_{p}\right)=\{0,1\} \forall p \in P$,

$$
\bigoplus_{P} \mathfrak{t}_{2} \cong \bigotimes_{P} \mathfrak{t}_{2} .
$$

Given that $\bigotimes_{P} \mathfrak{Ł}_{2}$ is complete, P can be seen as a complete poset which actually is a well-ordered set.
(\Leftarrow) If P is a well-ordered set, the $\operatorname{map} f: \bigoplus_{p \in P} \mathbf{A}_{p} \rightarrow \bigotimes_{p \in P} \mathbf{A}_{p}$ defined by $f(1)=T$ and

$$
f(a)_{p}= \begin{cases}1 & \text { if } p<j \\ a & \text { if } p=j \\ 0 & \text { if } p>j\end{cases}
$$

if $a \in A_{j} \backslash\{\top\}$ is an isomorphism.

Some issues

Unfortunately, not all BL-chain can be written as an ordinal sum of idempotent free BL-chains. If it were the case, the index set would not always be a wellordered set.

Some issues

Unfortunately, not all BL-chain can be written as an ordinal sum of idempotent free BL-chains. If it were the case, the index set would not always be a wellordered set.

Representable BL-chain without a well-ordered index set
Let $\mathbf{A}=\bigoplus_{I} \boldsymbol{\not}_{2}$, where $\mathbf{I}=\left\langle\{b\} \cup \mathbb{Z}^{-}, \leq\right\rangle$. Although I is not a well-ordered set, $\mathbf{A} \cong \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{\mathbf{2}}$. Observe that $\bigoplus_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2} \nsucceq \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2}$.

Some issues

Unfortunately, not all BL-chain can be written as an ordinal sum of idempotent free BL-chains. If it were the case, the index set would not always be a wellordered set.

Representable BL-chain without a well-ordered index set
Let $\mathbf{A}=\bigoplus_{I} \mathfrak{\not}_{2}$, where $\mathbf{I}=\left\langle\{b\} \cup \mathbb{Z}^{-}, \leq\right\rangle$. Although I is not a well-ordered set, $\mathbf{A} \cong \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{\mathbf{2}}$. Observe that $\bigoplus_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2} \nsucceq \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2}$.

In addition, a well-ordered index set in a decomposition of a BL-chain does not guarantee a representation in terms of idempotent free BL-chains.

Some issues

Unfortunately, not all BL-chain can be written as an ordinal sum of idempotent free BL-chains. If it were the case, the index set would not always be a wellordered set.

Representable BL-chain without a well-ordered index set

Let $\mathbf{A}=\bigoplus_{I} \boldsymbol{\not}_{2}$, where $\mathbf{I}=\left\langle\{b\} \cup \mathbb{Z}^{-}, \leq\right\rangle$. Although I is not a well-ordered set, $\mathbf{A} \cong \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{\mathbf{2}}$. Observe that $\bigoplus_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2} \not \not \bigotimes_{\mathbb{Z}^{-}} \boldsymbol{\iota}_{2}$.

In addition, a well-ordered index set in a decomposition of a BL-chain does not guarantee a representation in terms of idempotent free BL-chains.

Non-representable BL-chain indexed by a well-ordered set
Let $\mathbf{A}=\bigoplus_{i \in I} \mathbf{W}_{i}$, where $\mathbf{I}=\langle\mathbb{N} \cup\{t\}, \leq\rangle, \mathbf{W}_{n}=\boldsymbol{\iota}_{2}$ for all $n \in \mathbb{N}$ and $\mathbf{W}_{t}=(0,1]_{\boldsymbol{n}}$. Then \mathbf{A} is not representable. Note that \mathbf{W}_{t} is not a BL-chain.

A sufficient (but strong) condition for representability

Proposition

If each prime filter in a BL-chain \mathbf{A} is a principal filter, then \mathbf{A} is representable.
If $\mathbf{A} \cong \bigoplus_{i \in I} \mathbf{W}_{i}$, it turns out that the index set I is well-ordered and every \mathbf{W}_{i} is a bounded hoop (MV-chain). Thus $\mathbf{A} \cong \bigotimes_{i \in I} \mathbf{W}_{i}$.

A sufficient (but strong) condition for representability

Proposition

If each prime filter in a BL-chain \mathbf{A} is a principal filter, then \mathbf{A} is representable.
If $\mathbf{A} \cong \bigoplus_{i \in I} \mathbf{W}_{i}$, it turns out that the index set I is well-ordered and every \mathbf{W}_{i} is a bounded hoop (MV-chain). Thus $\mathbf{A} \cong \bigotimes_{i \in I} \mathbf{W}_{i}$.
Since in a finite BL-algebra all filters are principal, this is a proposition that (for the case of BL-chains) enhances the Jipsen and Montagna's result we cited before.

A sufficient (but strong) condition for representability

Proposition

If each prime filter in a BL-chain \mathbf{A} is a principal filter, then \mathbf{A} is representable.
If $\mathbf{A} \cong \bigoplus_{i \in I} \mathbf{W}_{i}$, it turns out that the index set I is well-ordered and every \mathbf{W}_{i} is a bounded hoop (MV-chain). Thus $\mathbf{A} \cong \bigotimes_{i \in I} \mathbf{W}_{i}$.
Since in a finite BL-algebra all filters are principal, this is a proposition that (for the case of BL-chains) enhances the Jipsen and Montagna's result we cited before. However, it must be said that the hypothesis is still too restrictive, since in general idempotent free BL-chains contain a non-prime principal filter.

For all $n \geq 2$, the set $(0,1]$ is a prime filter in the representable BL-chain $\boldsymbol{Ł}_{n} \oplus(0,1]_{\Pi}$ which is not a principal filter.

Saturated BL-chains

Let \mathbf{A} be a BL-chain. A pair of sets (X, Y) is called a cut in \mathbf{A} if

- $X \cup Y=A$,
- $x \leq y$ for all $x \in X$ and all $y \in Y$,
- Y is closed under - and
- $x \cdot y=x$ for all $x \in X$ and all $y \in Y$.

A is called saturated if for every cut (X, Y) there exists $u \in \operatorname{Id}(\mathbf{A})$ such that $x \leq u \leq y$ for all $x \in X$ and all $y \in Y$.

Representation of saturated BL-chains

- MV-chains and product chains are the only idempotent free BL-chains with the property of being saturated chains.
- The Gödel chain $\bigoplus_{[0,1]} \mathbf{k}_{2}$ is a saturated chain that is not representable.

Representation of saturated BL-chains

- MV-chains and product chains are the only idempotent free BL-chains with the property of being saturated chains.
- The Gödel chain $\bigoplus_{[0,1]} \mathbf{k}_{2}$ is a saturated chain that is not representable.

Lemma

Let $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ be a saturated BL-chain. If \mathbf{W}_{j} is an unbounded hoop for some $j \in P$, then there exists $j_{0} \in P$ preceding j such that $\mathbf{W}_{j_{0}} \cong \boldsymbol{Ł}_{2}$.

Representation of saturated BL-chains

- MV-chains and product chains are the only idempotent free BL-chains with the property of being saturated chains.
- The Gödel chain $\bigoplus_{[0,1]} \mathbf{k}_{2}$ is a saturated chain that is not representable.

Lemma

Let $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ be a saturated BL-chain. If \mathbf{W}_{j} is an unbounded hoop for some $j \in P$, then there exists $j_{0} \in P$ preceding j such that $\mathbf{W}_{j_{0}} \cong \mathfrak{Ł}_{2}$.

Theorem

Let \mathbf{A} be a saturated BL-chain and let $\bigoplus_{i \in P} \mathbf{W}_{i}$ be its unique decomposition into non-trivial Wajsberg hoops. If P is a well-ordered set, then there is a wellordered set P^{\prime} such that $\mathbf{A} \cong \bigoplus_{i \in P^{\prime}} \mathbf{A}_{i}$, with \mathbf{A}_{i} an MV-chain or a product chain. Consequently, \mathbf{A} is $\Pi \mathrm{MV}$-representable.

Representation of saturated BL-chains

We know that $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ and P is a well-ordered set. As remarked, a hoop \mathbf{W}_{i} in the decomposition of a BL-chain \mathbf{A} can be unbounded. For instance, let us assume that \mathbf{W}_{j} and \mathbf{W}_{k} are unbounded hoops for some $j, k \in P$.

$$
\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}=\mathbf{W}_{1} \oplus \ldots \oplus \mathbf{W}_{j} \oplus \ldots \oplus \mathbf{W}_{k} \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Representation of saturated BL-chains

We know that $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ and P is a well-ordered set. As remarked, a hoop \mathbf{W}_{i} in the decomposition of a BL-chain \mathbf{A} can be unbounded. For instance, let us assume that \mathbf{W}_{j} and \mathbf{W}_{k} are unbounded hoops for some $j, k \in P$.

$$
\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}=\mathbf{W}_{1} \oplus \ldots \oplus \mathbf{W}_{j} \oplus \ldots \oplus \mathbf{W}_{k} \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Let $j_{0}, k_{0} \in P$ be the elements below j and k, respectively. Then

$$
\mathbf{A} \cong \mathbf{W}_{1} \oplus \ldots \oplus\left(\mathbf{W}_{j 0} \oplus \mathbf{W}_{j}\right) \oplus \ldots \oplus\left(\mathbf{W}_{k_{0}} \oplus \mathbf{W}_{k}\right) \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Representation of saturated BL-chains

We know that $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ and P is a well-ordered set. As remarked, a hoop \mathbf{W}_{i} in the decomposition of a BL-chain \mathbf{A} can be unbounded. For instance, let us assume that \mathbf{W}_{j} and \mathbf{W}_{k} are unbounded hoops for some $j, k \in P$.

$$
\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}=\mathbf{W}_{1} \oplus \ldots \oplus \mathbf{W}_{j} \oplus \ldots \oplus \mathbf{W}_{k} \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Let $j_{0}, k_{0} \in P$ be the elements below j and k, respectively. Then

$$
\mathbf{A} \cong \mathbf{W}_{1} \oplus \ldots \oplus\left(\mathbf{W}_{j_{0}} \oplus \mathbf{W}_{j}\right) \oplus \ldots \oplus\left(\mathbf{W}_{k_{0}} \oplus \mathbf{W}_{k}\right) \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Moreover, since $\mathbf{W}_{j_{0}} \cong \mathbf{W}_{k_{0}} \cong \boldsymbol{Ł}_{2}$,

$$
\mathbf{A} \cong \mathbf{W}_{1} \oplus \ldots \oplus\left(\mathbf{Ł}_{2} \oplus \mathbf{W}_{j}\right) \oplus \ldots \oplus\left(\mathbf{Ł}_{2} \oplus \mathbf{W}_{k}\right) \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Representation of saturated BL-chains

We know that $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ and P is a well-ordered set. As remarked, a hoop \mathbf{W}_{i} in the decomposition of a BL-chain \mathbf{A} can be unbounded. For instance, let us assume that \mathbf{W}_{j} and \mathbf{W}_{k} are unbounded hoops for some $j, k \in P$.

$$
\mathbf{A} \cong \mathbf{W}_{1} \oplus \ldots \oplus\left(\mathbf{k}_{2} \oplus \mathbf{W}_{j}\right) \oplus \ldots \oplus\left(\mathbf{\not}_{2} \oplus \mathbf{W}_{k}\right) \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Following the above suggested idea we define P^{\prime} as a rearrangement of P. P^{\prime} will index the summands

$$
\mathbf{A}_{i}= \begin{cases}\boldsymbol{\not}_{2} \oplus \mathbf{W}_{i} & \text { if } \mathbf{W}_{i} \text { is unbounded } \\ \mathbf{W}_{i} & \text { if } \mathbf{W}_{i} \text { is bounded }\end{cases}
$$

Representation of saturated BL-chains

We know that $\mathbf{A} \cong \bigoplus_{i \in P} \mathbf{W}_{i}$ and P is a well-ordered set. As remarked, a hoop \mathbf{W}_{i} in the decomposition of a BL-chain \mathbf{A} can be unbounded. For instance, let us assume that \mathbf{W}_{j} and \mathbf{W}_{k} are unbounded hoops for some $j, k \in P$.

$$
\mathbf{A} \cong \mathbf{W}_{1} \oplus \ldots \oplus\left(\mathbf{Ł}_{2} \oplus \mathbf{W}_{j}\right) \oplus \ldots \oplus\left(\mathbf{Ł}_{2} \oplus \mathbf{W}_{k}\right) \oplus \ldots \oplus \mathbf{W}_{l} \oplus \ldots
$$

Following the above suggested idea we define P^{\prime} as a rearrangement of $P . P^{\prime}$ will index the summands

$$
\mathbf{A}_{i}= \begin{cases}\boldsymbol{t}_{2} \oplus \mathbf{W}_{i} & \text { if } \mathbf{W}_{i} \text { is unbounded } \\ \mathbf{W}_{i} & \text { if } \mathbf{W}_{i} \text { is bounded }\end{cases}
$$

Then $\mathbf{A} \cong \bigoplus_{i \in P^{\prime}} \mathbf{A}_{i}$ and each summand is an MV-chain or a product chain. Note that P^{\prime} is a well-ordered set because P so is. Thus

$$
\mathbf{A} \cong \bigotimes_{i \in P^{\prime}} \mathbf{A}_{i}
$$

Representation of saturated BL-chains

The next result provides an alternative definition for ПМV-representability. It also reveals the link between the notions of representability and $\Pi M V$-representability.

Corollary
A BL-chain A is representable and saturated if and only if it is חMV-representable.

Further readings on the poset product construction

Busaniche, M., and F. Montagna, 'Hájek's logic BL and BL-algebras', in Handbook of Mathematical Fuzzy Logic, vol. 1 of Studies in Logic, Mathematical Logic and Foundations, chap. V, College Publications, London, 2011, pp. 355-447.

唔
Jipsen, P., 'Generalizations of boolean products for lattice-ordered algebras', Annals of Pure and Applied Logic, 161 (2009), 228-234

Jipsen, P., and F. Montagna, 'On the structure of generalized BL-algebras', Algebra Universalis, 55 (2006), 227-238.

Jipsen, P., and F. Montagna, 'The Blok-Ferreirim theorem for normal GBL-algebras and its applications', Algebra Universalis, 60 (2009), 381-404.

目
Jipsen, P., and F. Montagna, 'Embedding theorems for classes of GBL-algebras', Journal of Pure and Applied Algebra, 214 (2010), 1559-1575.

Thank you

