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Admissibility Theory

Given a logic L, an L-unifier of a formula ϕ is a substitution σ
such that `L σϕ.

A single-conclusion rule is an expression of the form Γ/ϕ where
ϕ is a formula and Γ is a finite set of formulas.

Γ/ϕ is L-derivable in L iff Γ `L ϕ.

Γ/ϕ is L-admissible in L iff every common L-unifier of Γ is also an
L-unifier of ϕ.

Γ/ϕ is passive L-admissible in L iff Γ has no common L-unifier.

J.Gispert Structural Completeness NM.-logics



Introduction NM-algebras Varieties of NM-algebras (Almost) structural completeness results

Admissibility Theory

A logic is structurally complete iff every admissible rule is a
derivable rule.

A logic is almost structurally complete iff every admissible rule
is either derivable rule or a passive admissible.
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Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of
the Monoidal t-norm logic (MTL) given by the axioms

Inv ¬¬ϕ→ ϕ

WNM (ψ ∗ ϕ→ ⊥) ∨ (ψ ∧ ϕ→ ψ ∗ ϕ)
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t-norm semantics

[0, 1]NM = 〈{a ∈ R : 0 ≤ a ≤ 1}; ∗,→,∧,∨,¬, 0, 1〉 where ∧ and ∨
are the meet and join with the usual order and for every
a, b ∈ [0, 1],

a ∗ b =

{
min{a, b}, if b > 1− a;
0, otherwise.

a→ b =

{
1, if a ≤ b;
max{1− a, b} otherwise.

¬a := a→ 0 = 1− a

Let Γ ∪ {ϕ} ⊆ Prop(X ), then

Γ |=[0,1]NM ϕ iff
for every h : Prop(x)→ [0, 1], h(ϕ) = 1 whenever hΓ = {1}
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Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Σ `NML ϕ iff Σ |=[0,1]NM ϕ

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with NM the
class of all NM-algebras as its equivalent quasivariety semantics.
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Algebraic logic

Finitary Extensions of NML ←→ Quasivarieties of NM

Axiomatic Extensions ←→ Varieties

(Finite) Axiomatization ←→ (Finite) Axiomatization

Deduction Theorem ←→ EDPCR

Local Deduction Theorem ←→ RCEP

Interpolation Theorem ←→ Amalgamation Property
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Algebraic Admissibility Theory

Given a quasivariety K, we say that a quasiequation

α1 ≈ γ1& · · ·&αn ≈ γn ⇒ ε ≈ η

is K-admissible iff for every term substitution σ if
K |= σ(αi ) ≈ σ(γi ) for i = 1÷ n, then K |= σ(ε) ≈ σ(η).

is passive in K iff there is no term substitution σ such that
K |= σ(αi ) ≈ σ(γi ) for i = 1÷ n.

K is structurally complete iff every K-admissible quasiequation is
valid in K.

K is almost structurally complete iff every admissible
quasiequation is either valid in K or passive in K.

J.Gispert Structural Completeness NM.-logics



Introduction NM-algebras Varieties of NM-algebras (Almost) structural completeness results

Algebraic logic

Finitary Extensions of NML ←→ Quasivarieties of NM

L ←→ K

{γ1, . . . , γn}/ϕ −→ γ1 ≈ 1& · · ·&γn ≈ 1 =⇒ ϕ ≈ 1

{α1 ↔ β1, . . . , αn ↔ βn}/ε↔ η ←− α1 ≈ β1& · · ·&αn ≈ βn =⇒ ε ≈ η

derivable in L ←→ valid in K

L-admissible ←→ K-admissible

passive L-admissible ←→ passive in K
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Algebraic logic

Theorem (Rybakov 1997, Olson et al. 2008 )

Let L be an algebraizable logic and K its quasivariety semantics,
then L is (almost) structurally complete iff K is (almost)
structurally complete.
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Goal

To study (almost) structural completeness of all axiomatic
extensions of NML
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Goal

To study (almost) structural completeness of all subvarieties of NM
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Structural completeness and free algebras

Theorem (Bergman 1991)

Let K be a quasivariety, then the following properties are
equivalent.

1 K is structurally complete.

2 Each proper subquasivariety of K generates a proper
subvariety of V(K)

3 K = Q(FreeK(ω)).
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Almost Structural completeness and free algebras

Theorem (Metcalfe-Röthlisberger 2013)

Let K be a quasivariety. The following are equivalent for any
B ∈ S(FreeK(ω))

1 K is almost structurally complete.

2 Q({A× B : A ∈ K}) = Q(FreeK(ω)).

3 {A× B : A ∈ K} j Q(FreeK(ω)).
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NML and Gödel logic

NML is an involutive version of Gödel logic.

Gödel logic is a based t-norm logic where the t-norm is the
minimum. It’s associated negation is not involutive.

NML is a based t-norm logic where the the t-norm is the nilpotent
minimum. It’s associated negation is involutive. It’s the ”closest”
to the minimum t-norm if you want the negation to be involutive.
That is, an involutive version of the minimum t-norm.
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Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 2, Gn is embeddable into FreeG(ω).
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NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x → y) ∨ (y → x) ≈ 1̄ (L)

¬¬x ≈ x (I)

¬(x ∗ y) ∨ (x ∧ y → x ∗ y) ≈ 1̄ (WNM)

Example: [0, 1]NM is a NM-algebra.
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NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Since the class of all NM-algebras, denoted by NM, is a proper
subvariety of MTL-algebras the decomposition theorem is also
valid.

Proposition

Each NM-algebra is representable as a subdirect product of
NM-chains
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NM-chains

Let 〈A,≤, 0̄, 1̄〉 a totally ordered bounded set equipped with an
involutive negation ¬,

if we define for every a, b ∈ A,

a∗b =

{
0̄, if b ≤ ¬a;
a ∧ b, otherwise.

a→ b =

{
1̄, if a ≤ b;
¬a ∨ b, otherwise.

,

a ∧ b = min{a, b} a ∨ b = max{a, b},

then A = 〈A, ∗,→,∧,∨, 0̄, 1̄〉 is a NM-chain.

Every NM-chain is of this form.
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Finite NM-chains

Therefore up to isomorphism for each finite n ∈ N, there is only
one NM-chain An with exactly n elements.

A2n+1 = 〈[−n, n] ∩ Z, ∗,→,∧,∨,−n, n〉.

A2n = 〈A2n+1 r {0}, ∗,→,∧,∨,−n, n〉.

Notice that A1 is the trivial algebra, A2 the 2-element Boolean
algebra and A3 the 3-element MV-algebra.
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Let A be an NM-algebra,

A+ = {a ∈ A : a > ¬a}
A− = {a ∈ A : a < ¬a}.
a ∈ A is a negation fixpoint (or just fixpoint, for short) iff
¬a = a.

Let C be an NM-chain. Then

C = C+ ∪ C− if C has no fixpoint.

C = C+ ∪ C− ∪ {c} if c is the fixpoint of C .
Moreover C r {c} is the universe of a subalgebra of C which
we denote by C−.

A2n = A2n+1
−
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NM-chains, Gödel chains

Let A be an NM-chain. Then

If A has negation fix point then A is the connected rotation of
a Gödel chain.

If A has no negation fixpoint then A is the disconnected
rotation of the 0̄-free subreduct of a Gödel chain.
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NM-chains, Gödel chains

[0, 1]NM
∼= ConRot([0, 1]G)

A2n+1
∼= ConRot(Gn+1)

A2n
∼= DiscRot(G+

n )

[0, 1]−NM
∼= DiscRot((0, 1]+G )
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Let ∇(x) = ¬(¬x2)2 and ∆(x) = (¬(¬x)2)2 where x2 is an
abbreviation of x ∗ x .

Lemma

Let A be an NM-chain and let a ∈ A. Then we have

∇(a) =

{
1̄, if a > ¬a;
0̄, if a ≤ ¬a.

and

∆(a) =

{
1̄, if a ≥ ¬a;
0̄, if a < ¬a.

Therefore, A does not have a fixpoint iff ∇(a) = ∆(a) for every
a ∈ A
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NM-varieties

NM is a locally finite variety.

NM = V({An : n > 1})

NM− = NM +∇(x) ≈ ∆(x)

NM− = V({A2n : n > 0})
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NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following
types:

1 NM = V([0, 1]) = V({An : n > 1})
2 NM− = V([0, 1]−) = V({A2n : n > 0})
3 NM2m+1 = V(A2m+1) for some m > 0

4 NM2n = V(A2n) for some n > 0

5 NM2n2m+1 = V({A2n,A2m+1}) for some n > m > 0

6 NM−2m+1 = V({[0, 1]−,A2m+1}) = V({A2n : n >
0} ∪ {A2m+1})

J.Gispert Structural Completeness NM.-logics



Introduction NM-algebras Varieties of NM-algebras (Almost) structural completeness results

NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following
types:

1 NM = Q([0, 1]) = Q({An : n > 1})
2 NM− = Q([0, 1]−) = Q({A2n : n > 0})
3 NM2m+1 = Q(A2m+1) for some m > 0

4 NM2n = Q(A2n) for some n > 0

5 NM2n2m+1 = Q({A2n,A2m+1}) for some n > m > 0

6 NM−2m+1 = Q({[0, 1]−,A2m+1}) = Q({A2n : n >
0} ∪ {A2m+1})
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Axiomatic extensions of NML

CPC

L3

NM4
NM6

NM2mNM4,3

NM5

NM7

NM6,3

NM6,5

NM8

NM8,7

NM8,3

NM8,5

NM9

NM2m,2n+1
NM2n+1

NM2m+1

NML-

NM7, NML-

NM3, NML-

NM5, NML-

NM9, NML-

NM2n+1, NML-

NML

Axiomatic Extensions
of NML
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Proposition

NML is not structurally complete.

Proof:
¬p ↔ p/⊥ is not NML-derivable and NML-admissible.

If h : Prop → [0, 1] is such that h(p) = 1
2 then h(¬p ↔ p) = 1

while h(⊥) = 0 6= 1, hence ¬p ↔ p 6|=[0,1]NM
⊥.

Since FreeNM has no negation fixpoint, then ¬p ↔ p has no
unifier, therefore ¬p ↔ p/⊥ is passive NML-admissible.
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Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete

For every n > 2, Gn is embeddable into FreeG(ω)

Theorem (Cintula-Metcalfe 2009)

The positive fragment of the Gödel logic is structurally complete

For every n > 2, G+
n is embeddable into FreeG+(ω)
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Proposition

For every n > 0, A2n is embeddable into FreeNM−(ω).

Proof: Let p1, . . . , pn−1 ∈ X be distinct variables, we define
ϕ1 = p1 ∨ ¬p1

ϕi = ((((pi∨¬pi )→ ϕi−1)→ (pi∨¬pi ))→(pi∨¬pi )) i = 2÷n−1
ϕn = >

then f : A2n → FreeNM−(ω) defined by f (i) =

{
ϕi , if i > 0;
¬ϕi , if i < 0.

is an embedding. 2
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Structural complete NM logics

Q(FreeNM−) = Q({A2n : n > 0}) = NM

For every n > 0, Q(FreeNM2n) = Q(A2n) = NM2n

Theorem

NML− is hereditarily structurally complete.
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Proposition

Let M be a non trivial variety of NM-algebras not satisfying the
identity ∇(x) ≈ ∆(x). Then for every k > 1, A2 × Ak is
embeddable into FreeM(ω) if and only if Ak ∈M
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Proof:
Let p0, . . . , pn−1 ∈ X be distinct variables if we define
φn = γn = >, γi = ϕi (p1, . . . , pi ) and φi = ϕi+1(p0, . . . , pi ) for
0 ≤ i ≤ n − 1, then

h : A2 × A2n+1 → FreeM(ω)
h((1,m)) = ∇(φ0) ∨ φm h((−1,m)) = ¬∇(φ0) ∧ φm
h((1, 0)) = ∇(φ0) ∨ φ0 h((−1, 0)) = ¬∇(φ0) ∧ φ0

h((1,−m)) = ∇(φ0) ∨ ¬φm h((−1,−m)) = ¬∇(φ0) ∧ ¬φm

g : A2 × A2n → FreeM(ω)
g((1,m)) = ¬∇(γ1) ∨ γm g((−1,m)) = ∇(γ0) ∧ γm
g((1,−m)) = ¬∇(γ1) ∨ ¬γm g((−1,−m)) = ∇(γ1) ∧ ¬γm

give the desired embeddings. 2
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Almost structural completeness of NM logics

If M 6⊆ NM−, then

Q(FreeM) = Q({A2 × Ak : Ak ∈M})

Theorem

M is almost structurally complete
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Almost structural completeness of NM logics

If M 6⊆ NM−, then

Q(FreeM) = Q({A2 × Ak : Ak ∈M})

Theorem

M is almost structurally complete
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Almost structural completeness of NM logics

Theorem

NML is almost structurally complete and all their consistent
axiomatic extensions are almost structurally complete.
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Theorem

For every axiomatic extension of NML the rule ¬p ↔ p/⊥
axiomatizes all passive admissible rules.

Proof:

(Jĕrábek 2010)

The rule ¬(p ∨ ¬p)n/⊥ axiomatizes all passive rules for every
n-contractive axiomatic extension of MTL

¬p ↔ p a`NML ¬(p ∨ ¬p)2
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Thank you for your attention
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Axiomatic extensions of NML

CPC

L3

NM4
NM6

NM2mNM4,3

NM5

NM7

NM6,3

NM6,5

NM8

NM8,7

NM8,3

NM8,5

NM9

NM2m,2n+1
NM2n+1

NM2m+1

NML-

NM7, NML-

NM3, NML-

NM5, NML-

NM9, NML-

NM2n+1, NML-

NML

Axiomatic Extensions
of NML
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Finitary extensions of NML

CPC

L3

NM4
NM6

NM2mNM4,3

NM5

NM7

NM6,3

NM6,5

NM8

NM8,7

NM8,3

NM8,5

NM9

NM2m,2n+1
NM2n+1

NM2m+1

NML-

NM7, NML-

NM3, NML-

NM5, NML-

NM9, NML-

NM2n+1, NML-

NML

Finitary Extensions

of NML
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A

Connected Rotation

1
A= 〈 A, ٨,٧  ,⊗, ⇒, 0,1 〉 a MTL-algebra
 satisfying 1 or 2

0

1. A has no 0 divisors
2. For all 0 divisors a,b,  

a⇒0 = b⇒0
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A

Connected Rotation

A*

⊤=1

⊥

For all a,b ∈ A,
a* ≤  b
a* ≤ b*  iff   b ≤ a

A= 〈 A, ٨,٧  ,⊗, ⇒, 0,1 〉 a MTL-algebra
 satisfying 1 or 2.

0=0*
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A

Connected Rotation

A*

⊤=1

⊥

¬a = a* 
¬a* = a

a&b = a⊗b
a*&b* = (a⊗b)*
a&b*  = (a⇒b)*

a→b = ¬(a&¬b)

For all a,b ∈ A,
a* ≤  b
a* ≤ b*  iff   b ≤ a

B= 〈 A∪A*, ٨,٧ ,&,→,¬, ⊤ 〉

A= 〈 A, ٨,٧  ,⊗, ⇒, 0,1 〉 a MTL-algebra
 satisfying 1 or 2.

0=0*
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A

Disconnected Rotation

⊤
A=〈A,٨,٧, ⊗, ⇒, ⊤〉basic semihoop
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