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Introduction

Admissibility Theory

Given a logic L, an L-unifier of a formula ¢ is a substitution o
such that -, op.

A single-conclusion rule is an expression of the form I'/¢ where
@ is a formula and T is a finite set of formulas.

[y is L-derivable in L iff T - .

'/ is L-admissible in L iff every common L-unifier of I is also an
L-unifier of .

I/ is passive L-admissible in L iff [ has no common L-unifier.
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Introduction

Admissibility Theory

A logic is structurally complete iff every admissible rule is a
derivable rule.
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Introduction

Admissibility Theory

A logic is structurally complete iff every admissible rule is a
derivable rule.

A logic is almost structurally complete iff every admissible rule
is either derivable rule or a passive admissible.
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Introduction

Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of
the Monoidal t-norm logic (MTL) given by the axioms

Inv oY = P
WNM (%@ — L)V (¥ A p = b x @)
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Introduction

t-norm semantics

[0, 1]y = {aeR:0<a< 1} %, —,A,V,—,0,1) where A and Vv
are the meet and join with the usual order and for every
a,b e [0,1],

aw b min{a, b}, if b> .1—a;
0, otherwise.

g b 1, if a < b;
~ | max{1—a, b} otherwise.

—a:=a—0=1-—2a
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Introduction
t-norm semantics

[0, 1]y = ({aeR:0<a<1};%,—,A,V,,0,1) where A and V
are the meet and join with the usual order and for every

a,b e [0,1],
aw b min{a, b}, |fb>.1—a;
0, otherwise.
g b 1, if a <b;
~ | max{1—a, b} otherwise.

—a:=a—0=1-a2

Let T U {p} C Prop(X), then

I }:[OyllNM %2 iff
for every h: Prop(x) — [0,1], h(¢) = 1 whenever hl' = {1}
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Introduction

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Xy o iff T Ep0 1 ¢
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Introduction

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

Xy o iff T Ep0 1 ¢

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with NM the
class of all NM-algebras as its equivalent quasivariety semantics.
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Introduction

Algebraic logic

Finitary Extensions of NML <+—  Quasivarieties of NM
Axiomatic Extensions — Varieties
(Finite) Axiomatization =~ <— (Finite) Axiomatization
Deduction Theorem — EDPCR
Local Deduction Theorem <+— RCEP
—>

Interpolation Theorem Amalgamation Property
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Introduction

Algebraic Admissibility Theory

Given a quasivariety K, we say that a quasiequation
a1 ~7& - &ap Yy, > e

is K-admissible iff for every term substitution o if
K = o(aj) = o(n;) for i =1+ n, then K |= o(€) = o(n).

is passive in K iff there is no term substitution ¢ such that

K = o(aj) = o(yi) for i =1+ n.

K is structurally complete iff every K-admissible quasiequation is
valid in K.

K is almost structurally complete iff every admissible

quasiequation is either valid in K or passive in K. s
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Introduction

Algebraic logic

Finitary Extensions of NML — Quasivarieties of NM

L — K
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Introduction

Algebraic logic

Finitary Extensions of NML — Quasivarieties of NM
L — K
{1, /e — m~c1l&--&yrl=p=x1
—

{a1<_>51w~'aan<_>5n}/€<_>77 alzﬁl&"'&anzﬁnzezn
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Introduction

Algebraic logic

Finitary Extensions of NML — Quasivarieties of NM
L — K
{7, /e — m=x1l& - &yrl=p=x1
{ag © P1,..,an < Botlesn — a1=(1& - &a, =, = €exn
derivable in L — valid in K
L-admissible — K-admissible
—

passive L-admissible passive in K
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Introduction

Algebraic logic

Theorem (Rybakov 1997, Olson et al. 2008 )

Let L be an algebraizable logic and K its quasivariety semantics,

then L is (almost) structurally complete iff K is (almost)
structurally complete.

o1
©

J.Gispert Structural Completeness NM.-logics



Introduction

Goal

To study (almost) structural completeness of all axiomatic
extensions of NML
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Introduction

Goal

To study (almost) structural completeness of all subvarieties of NM
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Introduction

Structural completeness and free algebras

Theorem (Bergman 1991)

Let K be a quasivariety, then the following properties are
equivalent.

© K s structurally complete.

@ Each proper subquasivariety of K generates a proper
subvariety of V(K)

O K= 9(Freex(w)).
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Introduction
Almost Structural completeness and free algebras

Theorem (Metcalfe-Rothlisberger 2013)

Let K be a quasivariety. The following are equivalent for any
B € S(Freeg(w))

© K is almost structurally complete.
Q@ 9({A xB:AcK})= Q(Freex(w)).
© {AxB:AcK} < O(Freeg(w)).
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Introduction

NML and Godel logic

NML is an involutive version of Gédel logic.
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Introduction

NML and Godel logic

NML is an involutive version of Gédel logic.

Godel logic is a based t-norm logic where the t-norm is the
minimum. It's associated negation is not involutive.

NML is a based t-norm logic where the the t-norm is the nilpotent
minimum. It's associated negation is involutive. It's the " closest”

to the minimum t-norm if you want the negation to be involutive.
That is, an involutive version of the minimum t-norm.
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Introduction

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete.

For every n > 2, G, is embeddable into Freeg(w). J
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NM-algebras

NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x=y)Vy—=x)~1 (L)
X XX (l)

S(x*xy)V(xAy = xxy)~1 (WNM)
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NM-algebras

NM-algebras

A NM-algebra is a bounded integral residuated lattice satisfying
the following equations:

(x=y)Vly—=x)=1 (L)
X XX (l)
S(x*xy)V(xAy = xxy)~1 (WNM)

Example: [0, 1]y is a NM-algebra.
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NM-algebras

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.
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NM-algebras

NM-chains

We say that a NM-algebra is a NM-chain, provided that it is
totally ordered.

Since the class of all NM-algebras, denoted by NM, is a proper
subvariety of MTL-algebras the decomposition theorem is also
valid.

Proposition

Each NM-algebra is representable as a subdirect product of
NM-chains

(TR
©

J.Gispert Structural Completeness NM.-logics



NM-algebras

NM-chains

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,
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NM-algebras

NM-chains

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,if we define for every a, b € A,

0, if b<-a; 1, if a < b;
axb = . a— b= .
aA b, otherwise. -aV b, otherwise.

aA b= min{a, b} aV b= max{a, b},
then A = (A, x,—,A,V,0,1) is a NM-chain.
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NM-algebras

NM-chains

Let (A, <,0,1) a totally ordered bounded set equipped with an
involutive negation —,if we define for every a, b € A,

0, if b<-a; 1, if a < b;

axb = . a— b= .
aA b, otherwise. -aV b, otherwise.
aA b= min{a, b} aV b= max{a, b},

then A = (A, x,—,A,V,0,1) is a NM-chain.

Every NM-chain is of this form.
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NM-algebras

Finite NM-chains

Therefore up to isomorphism for each finite n € N, there is only
one NM-chain A, with exactly n elements.

Aspi1={[—nnNZ,x,—, A V,—n,n).

Azp = (Aont1 N {0}, %, —, A, V, —n, n).

Notice that Aj is the trivial algebra, A, the 2-element Boolean
algebra and A3 the 3-element MV-algebra.
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NM-algebras

Let A be an NM-algebra,

Ay ={acA:a>a}

A_={a€A:a<a}

a € A'is a negation fixpoint (or just fixpoint, for short) iff
—a = a.

Let C be an NM-chain. Then
e C=CLUC_ if C has no fixpoint.

o C = CyUC_U{c} ifcis the fixpoint of C.
Moreover C ~\. {c} is the universe of a subalgebra of C which
we denote by C™.

Az = Agni1™

J.Gispert Structural Completeness NM.-logics
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NM-algebras

NM-chains, Godel chains

Let A be an NM-chain. Then

@ If A has negation fix point then A is the connected rotation of
a Godel chain.

e If A has no negation fixpoint then A is the disconnected
rotation of the 0-free subreduct of a Gédel chain.
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NM-algebras
NM-chains, Godel chains

e [0,1]nm = ConRot([0,1]g)
e Ajyi1 = ConRot(Gpy1)
e Ay, = DiscRot(G;)

o [0,1]yw = DiscRot((0,1]&)
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NM-algebras

Let V(x) = =(=x?)? and A(x) = (=(—x)?)? where x? is an
abbreviation of x * x.

Lemma
Let A be an NM-chain and let a € A. Then we have

I, if a > —a;
via) = { 0, ifa< -a.

1, ifa> —a;
Al = { 0, ifa< —a.

Therefore, A does not have a fixpoint iff V(a) = A(a) for every
acA
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Varieties of NM-algebras

NM-varieties

NM is a locally finite variety.

NM = V({A,:n>1})
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Varieties of NM-algebras
NM-varieties

NM is a locally finite variety. |

NM = V({A,:n>1})

NM— = NM + V(x) =~ A(x)

NM-— = V({Az, : n > 0}) )
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Varieties of NM-algebras
NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following
types:

O NM =V([0,1]) = V({A,: n>1})

Q@ NM-— =YVY([0,1]7) = V({Az,: n > 0})

© NMypy1 = V(A2mt1) for some m >0

QO NMy, = V(Az,) for some n > 0

@ NMopomi1 = V({A2n, A2m+1}) for some n > m >0

O NM—2,1 = V({[0,1] 7, Aomi1}) = V({A2, : n >

0} U {A2m41})

(ORI -
©

J.Gispert Structural Completeness NM.-logics



Varieties of NM-algebras
NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following
types:

O NM = Q([0,1]) = Q({A, : n > 1})

@ NM- = Q(0,1]) = Q({Az, : n > 0})

© NMopmy1 = Q(Aomy1) for some m >0

QO NMy, = Q(Az,) for some n >0

@ NMopomi1 = Q({A2n, Aomt1}) for some n > m > 0

O NM—ymi1 = Q({[0, 1], Agmi1}) = Q{Azn: n >

0} U{A2mi1})
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Varieties of NM-algebras

Axiomatic extensions of NML

NML,
Axiomatic Extensions "
of NML
NM2m+1
N - NM2n+1, NML-
NM2n+l NMer\,Zn 1
. NM9, NML-
ave, T
\ .-NM7, NML-
NM8, 7
NM7 — _..oe-----NM5, NML-
\ NM8,5 \
//NMG,S/ ==~ NM3, NML-
NM5 \
\ — NM8,3 \
——NM6,3 vz ML
L3 ——NM4,3 \ \
_ NM8TTT
Nva — M6
cPCc—
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(Almost) structural completeness results

Proposition

NML is not structurally complete.
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(Almost) structural completeness results

Proposition

NML is not structurally complete.

Proof:
—p <> p/L is not NML-derivable and NML-admissible.

J.Gispert Structural Completeness NM.-logics



(Almost) structural completeness results

Proposition
NML is not structurally complete.

Proof:
—p <> p/L is not NML-derivable and NML-admissible.

If h: Prop — [0,1] is such that h(p) = } then h(-p «+ p) =1

while h(L) =0 # 1, hence =p ¢+ p o 11y L-
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(Almost) structural completeness results

Proposition

NML is not structurally complete.

Proof:
—p <> p/L is not NML-derivable and NML-admissible.

If h: Prop — [0,1] is such that h(p) = } then h(-p «+ p) =1
while h(L) = 0# 1, hence =p <> p [0 1] L

Since Freepy has no negation fixpoint, then —p <> p has no
unifier, therefore —p <> p/_L is passive NML-admissible.
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(Almost) structural completeness results

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete

For every n > 2, G, is embeddable into Freeg(w) |
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(Almost) structural completeness results

Theorem (Dzik-Wronski 1973)

Godel logic is structurally complete

For every n > 2, G, is embeddable into Freeg(w) |

Theorem (Cintula-Metcalfe 2009)

The positive fragment of the Godel logic is structurally complete

For every n > 2, G\ is embeddable into Freeg+(w) |
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(Almost) structural completeness results

Proposition

For every n > 0, Ay, is embeddable into Freeny—(w).
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(Almost) structural completeness results

Proposition
For every n > 0, Ay, is embeddable into Freeny—(w).

Proof: Let p1,...,pn_1 € X be distinct variables, we define

®1=p1Vp1
ei = ((((piV=pi) = wi-1) = (piV=pi)) =(piV=pi)) T =2+n—1
on=T

. , ~ | i, Wi >0;
then f : Ay, — Freeny—(w) defined by (i) = { 5, ifi<0
is an embedding. |
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(Almost) structural completeness results

Structural complete NM logics

Q(Freeny—) = Q({A2, : n > 0}) = NM

For every n > 0, Q(Freeny,,) = Q(Az2,) = NMy,
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(Almost) structural completeness results

Structural complete NM logics

Q(Freeny—) = Q({A2, : n > 0}) = NM

For every n > 0, Q(Freeny,,) = Q(Az2,) = NMy,

NML™ is hereditarily structurally complete.
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(Almost) structural completeness results

Proposition

Let M be a non trivial variety of NM-algebras not satisfying the
identity V(x) ~ A(x). Then for every k > 1, Ay x Ay is
embeddable into Freey(w) if and only if Ay € M
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(Almost) structural completeness results

Proof:
Let pg,...,pn—1 € X be distinct variables if we define

Sn=7=T,7 = i(p1,.-.,pi) and ¢; = @ir1(po, ..., p;) for
0<i<n-1, then

h: A2 X A2n+1 — FreeMw)
h((1, m)) = V(¢o) V ém h((—1

h((1,0)) = V(o) V ¢o h((—1,0)) = —|V(¢
h((1,—m)) = V(o) V ~¢m  h((-1

g : Aa X Agp — Freey(w)
g((1,m)) = =V(11) Vv ym g((=1,m)) = V(70) A vm
g((1,=m)) ==V(11)V—=rm g((=1,-m)) = V(1) A ~Vm

give the desired embeddings. O
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(Almost) structural completeness results

Almost structural completeness of NM logics

If M & NM—, then
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(Almost) structural completeness results

Almost structural completeness of NM logics

If M & NM—, then

Q(Freey) = Q({A2 x Ay : Ay € M}) J
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(Almost) structural completeness results

Almost structural completeness of NM logics

If M & NM—, then

Q(Freey) = Q({A2 x Ay : Ay € M}) J

M is almost structurally complete
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(Almost) structural completeness results

Almost structural completeness of NM logics

NML is almost structurally complete and all their consistent
axiomatic extensions are almost structurally complete.
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(Almost) structural completeness results

For every axiomatic extension of NML the rule —p <> p/ L
axiomatizes all passive admissible rules.
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(Almost) structural completeness results

For every axiomatic extension of NML the rule —p <> p/ L
axiomatizes all passive admissible rules.

Proof:

(Jetabek 2010)

The rule =(p vV —p)" /L axiomatizes all passive rules for every
n-contractive axiomatic extension of MTL

=p < p Atnme ~(p V —p)?
(5]
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(Almost) structural completeness results

THANK YOU FOR YOUR ATTENTION
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(Almost) structural completeness results

Axiomatic extensions of NML

NML,
Axiomatic Extensions "
of NML
NM2m+1
N - NM2n+1, NML-
NM2n+l NMer\,Zn 1
. NM9, NML-
ave, T
\ .-NM7, NML-
NM8, 7
NM7 — _..oe-----NM5, NML-
\ NM8,5 \
//NMG,S/ ==~ NM3, NML-
NM5 \
\ — NM8,3 \
——NM6,3 vz ML
L3 ——NM4,3 \ \
_ NM8TTT
Nva — M6
cPCc—
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(Almost) structural completeness results

Finitary extensions of NML

ANML
Finitary Extensions NMLE
of NML
NM2m+1
NM2m-1* .
AR NM2n+1, NML-

‘NM2m,Znel
S NMZq+1, NV

NM2n+1, ‘s
~NM2m,2n+1*
. .- NM9, NML-

NMZn+1*
NM9,\NML-*
_»,/,\NM?, NML-
__-NM7,\NML-*
st NML-
\
___NM5, NML-*
- NM3, NML-

~ NM3, NML-*
—~NML-

L NM2

/ NM6
NM4 —
P
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(Almost) structural completeness results

Connected Rotation

A= (AVA,®,>,0,1) aMTL-algebra
1 satisfying 1 or 2

1. A has no 0 divisors
2. For all 0 divisors a,b,
a=>0=>b=0
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(Almost) structural completeness results

Connected Rotation

A= (AVA,®,>,0,1) aMTL-algebra

=1 satisfying 1 or 2.
R Foralla,b € A,
a*< b

a*<b* iff b<a

0=0*

A*

\/
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(Almost) structural completeness results

Connected Rotation

A= (AVA,®,>,0,1) aMTL-algebra

T=1 satisfying 1 or 2.
B= (AUA* VA&~ T )
A Foralla,b € A,
a*< b

a*<b* iff b<a

>_-< 0=0*

“a=a
"a*=a
A a&b = agb
a*&b* = (a®b)*
\/ adb”™ = (ajb)*
b = ~(a&~ ®
N a-b = 7(a&"b) e
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(Almost) structural completeness results

Disconnected Rotation

A= (AAV, ®, =, T) basic semihoop
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(Almost) structural completeness results

Disconnected Rotation

5 = (AAV, ®, =, T) basic semihoop

Foralla,b € A,
a*<b
a*<b* iff b<a

'_'
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(Almost) structural completeness results

Disconnected Rotation

5 A= (A, ®, >, T) basic semihoop

'

A*

J.Gispert

B= (AUA*AV,&~,,T)

Foralla,b € A,
a*<b
a*<b* iff b<a

*

Ta=a
1g* =3
a&b = a®b

a*&b* = (a®b)*
a&b* = (asb)*

a-b = 7(a&b)
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