INVESTOR ENVELON

| 4 回 2 4 U = 2 4 U =

Almost structural completeness and structural completeness of nilpotent minimum logics.

Joan Gispert

Facultat de Matemàtiques. Universitat de Barcelona jgispertb@ub.edu

SYSMICS 2016, Barcelona, 5-9 September 2016

Limit UNVERSITATE INACELONA

Admissibility Theory

Given a logic *L*, an *L*-unifier of a formula φ is a substitution σ such that $\vdash_L \sigma \varphi$.

A single-conclusion rule is an expression of the form Γ/φ where φ is a formula and Γ is a finite set of formulas.

 Γ/φ is *L*-derivable in *L* iff $\Gamma \vdash_L \varphi$.

 Γ/φ is *L*-admissible in *L* iff every common *L*-unifier of Γ is also an *L*-unifier of φ .

 Γ/φ is **passive** *L*-admissible in *L* iff Γ has no common *L*-unifier.

・ロン ・回と ・ヨン ・ヨン

Admissibility Theory

A logic is **structurally complete** iff every admissible rule is a derivable rule.

Admissibility Theory

A logic is **structurally complete** iff every admissible rule is a derivable rule.

A logic is **almost structurally complete** iff every admissible rule is either derivable rule or a passive admissible.

| 4 回 2 4 U = 2 4 U =

Nilpotent Minimum Logic

Nilpotent Minimum Logic (NML) is the axiomatic extension of the Monoidal t-norm logic (MTL) given by the axioms

$$\begin{array}{l} \mathsf{Inv} \neg \neg \varphi \to \varphi \\ \mathsf{WNM} \ (\psi \ast \varphi \to \bot) \lor (\psi \land \varphi \to \psi \ast \varphi) \end{array} \end{array}$$

æ

t-norm semantics

 $[0,1]_{NM} = \langle \{a \in \mathbb{R} : 0 \le a \le 1\}; *, \rightarrow, \land, \lor, \neg, 0, 1 \rangle$ where \land and \lor are the meet and join with the usual order and for every $a, b \in [0,1]$,

$$a * b = \begin{cases} min\{a, b\}, & \text{if } b > 1 - a; \\ 0, & \text{otherwise.} \end{cases}$$

$$a
ightarrow b = \left\{ egin{array}{cc} 1, & ext{if } a \leq b; \ max\{1-a,b\} & ext{otherwise}. \end{array}
ight.$$

$$\neg a := a \rightarrow 0 = 1 - a$$

イロト イヨト イヨト イヨト

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

t-norm semantics

$$\begin{split} & [0,1]_{NM} = \langle \{a \in \mathbb{R} : 0 \leq a \leq 1\}; *, \rightarrow, \wedge, \vee, \neg, 0, 1 \rangle \text{ where } \wedge \text{ and } \vee \\ & \text{ are the meet and join with the usual order and for every} \\ & a, b \in [0,1], \end{split}$$

$$a * b = \left\{ egin{array}{cc} \min\{a,b\}, & ext{if } b > 1-a; \\ 0, & ext{otherwise.} \end{array}
ight.$$

$$a
ightarrow b = \left\{ egin{array}{cc} 1, & ext{if } a \leq b; \ max\{1-a,b\} & ext{otherwise}. \end{array}
ight.$$

$$\neg a := a \rightarrow 0 = 1 - a$$

Let $\Gamma \cup \{\varphi\} \subseteq Prop(X)$, then

 $\begin{tabular}{l} \begin{tabular}{l} $\Gamma \models_{[0,1]_{NM}} φ iff \\ for every $h: Prop(x) \rightarrow [0,1]$, $h($\varphi$) = 1$ whenever h $\Gamma = \{1\}$ \equal for h $\Gamma = \{1\}$ \equal fo$

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

 $\Sigma \vdash_{\textit{NML}} \varphi \textit{ iff } \Sigma \models_{[0,1]_{\textit{NM}}} \varphi$

Completeness Theorem

Theorem (Esteva Godo 2001, Noguera et al 2008)

 $\Sigma \vdash_{\textit{NML}} \varphi \textit{ iff } \Sigma \models_{[0,1]_{\textit{NM}}} \varphi$

Algebraic logic

The Nilpotent Minimum Logic NML is algebraizable with \mathbb{NM} the class of all NM-algebras as its equivalent quasivariety semantics.

イロン イヨン イヨン イヨン

Introduction	NM-algebras N	/arieties of NM-alg	ebras (Almost) structural	completeness results
Algebraic	logic			
-	F		0 · · · · · · · · · · · · · · · · · · ·	<i>п</i>
Finitary	Extensions of N	$ML \leftrightarrow$	Quasivarieties of NN	/I
Axio	matic Extensions	\longleftrightarrow	Varieties	
(Finit	e) Axiomatization	n \longleftrightarrow	(Finite) Axiomatizati	on
Dec	luction Theorem	\longleftrightarrow	EDPCR	
Local [Deduction Theore	$em \leftrightarrow$	RCEP	
Inter	polation Theorem	$h \leftrightarrow$	Amalgamation Prope	rty

(ロ) (団) (三) (三) (三) (○) (○)

Algebraic Admissibility Theory

Given a quasivariety $\mathbb K,$ we say that a quasiequation

$$\alpha_1 \approx \gamma_1 \& \cdots \& \alpha_n \approx \gamma_n \Rightarrow \epsilon \approx \eta$$

is \mathbb{K} -admissible iff for every term substitution σ if $\mathbb{K} \models \sigma(\alpha_i) \approx \sigma(\gamma_i)$ for $i = 1 \div n$, then $\mathbb{K} \models \sigma(\epsilon) \approx \sigma(\eta)$.

is **passive** in \mathbb{K} iff there is no term substitution σ such that $\mathbb{K} \models \sigma(\alpha_i) \approx \sigma(\gamma_i)$ for $i = 1 \div n$.

 $\mathbb K$ is structurally complete iff every $\mathbb K\text{-}\mathsf{adm}\mathsf{issible}$ quasiequation is valid in $\mathbb K.$

 \mathbb{K} is **almost structurally complete** iff every admissible quasiequation is either valid in \mathbb{K} or passive in \mathbb{K} .

・ロン ・回と ・ヨン ・ヨン

Introduction	NM-algebras	Varieties of NN	M-algebras (Almost) structural completeness r	esults	
Algebraic logic					
Finitary Ext	ensions of <i>NM</i>	$\underline{L} \longleftrightarrow$	Quasivarieties of \mathbb{NM}		
	L	\longleftrightarrow	K		

eties of INIVI-	algebras (Almost) structural completeness results
\longleftrightarrow	Quasivarieties of \mathbb{NM}
\longleftrightarrow	K
\longrightarrow	$\gamma_1 \approx 1 \& \cdots \& \gamma_n \approx 1 \Longrightarrow \varphi \approx 1$
←	$\alpha_1 \approx \beta_1 \& \cdots \& \alpha_n \approx \beta_n \Longrightarrow \epsilon \approx \eta$
	\longleftrightarrow

・ロン ・四と ・ヨン ・ヨ

Introduction	NM-algebras	Varieties of NM-	algebras (Almost) structural completer	iess results
Algebraic	logic			
Finitary Ext	ensions of <i>NML</i>	\longleftrightarrow	Quasivarieties of \mathbb{NM}	
	L	\longleftrightarrow	K	
$\{\gamma_1, .$	$\ldots, \gamma_n\}/\varphi$	\longrightarrow	$\gamma_1 pprox 1 \& \cdots \& \gamma_n pprox 1 \Longrightarrow \varphi$	pprox 1
$\{\alpha_1 \leftrightarrow \beta_1, \dots$	$, \alpha_n \leftrightarrow \beta_n \} / \epsilon \leftrightarrow$	$\eta \longleftarrow$	$\alpha_1 \approx \beta_1 \& \cdots \& \alpha_n \approx \beta_n \Longrightarrow$	$\epsilon \approx \eta$
deriv	vable in <i>L</i>	\longleftrightarrow	valid in $\mathbb K$	
L-ac	Imissible	\longleftrightarrow	${\mathbb K} ext{-admissible}$	
passive	<i>L</i> -admissible	\longleftrightarrow	passive in ${\mathbb K}$	
				E 990

Theorem (Rybakov 1997, Olson et al. 2008)

Let L be an algebraizable logic and \mathbb{K} its quasivariety semantics, then L is (almost) structurally complete iff \mathbb{K} is (almost) structurally complete.

- 4 回 2 - 4 □ 2 - 4 □

To study (almost) structural completeness of all axiomatic extensions of NML

æ

To study (almost) structural completeness of all subvarieties of $\mathbb{N}\mathbb{M}$

(1日) (1日) (日)

Structural completeness and free algebras

Theorem (Bergman 1991)

Let \mathbb{K} be a quasivariety, then the following properties are equivalent.

- **●** K is structurally complete.
- Each proper subquasivariety of K generates a proper subvariety of V(K)

3 $\mathbb{K} = \mathcal{Q}(\mathbf{Free}_{\mathbb{K}}(\omega)).$

イロン イヨン イヨン イヨン

- 4 回 2 - 4 □ 2 - 4 □

Almost Structural completeness and free algebras

Theorem (Metcalfe-Röthlisberger 2013)

Let \mathbb{K} be a quasivariety. The following are equivalent for any $\mathbf{B} \in \mathcal{S}(\mathbf{Free}_{\mathbb{K}}(\omega))$

- $\textcircled{0} \mathbb{K} is almost structurally complete.$
- $2 \mathcal{Q}(\{\mathbf{A} \times \mathbf{B} : \mathbf{A} \in \mathbb{K}\}) = \mathcal{Q}(\mathbf{Free}_{\mathbb{K}}(\omega)).$

NML and Gödel logic

NML is an involutive version of Gödel logic.

(1日) (1日) (日)

NML and Gödel logic

NML is an involutive version of Gödel logic.

Gödel logic is a based t-norm logic where the t-norm is the minimum. It's associated negation is not involutive.

NML is a based t-norm logic where the the t-norm is the nilpotent minimum. It's associated negation is involutive. It's the "closest" to the minimum t-norm if you want the negation to be involutive. That is, an involutive version of the minimum t-norm.

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete.

For every n > 2, \mathbf{G}_n is embeddable into $\mathbf{Free}_{\mathbb{G}}(\omega)$.

INVERSE

A **NM-algebra** is a bounded integral residuated lattice satisfying the following equations:

$$(x o y) \lor (y o x) pprox ar{1}$$
 (L)

$$\neg \neg x \approx x$$
 (I)

$$eg(x * y) \lor (x \land y \to x * y) \approx \overline{1}$$
 (WNM)

æ

▲□ ▶ ▲ □ ▶ ▲ □ ▶

A **NM-algebra** is a bounded integral residuated lattice satisfying the following equations:

$$(x o y) \lor (y o x) pprox ar{1}$$
 (L)

$$\neg \neg x \approx x$$
 (I)

$$eg(x * y) \lor (x \land y \to x * y) \approx \overline{1}$$
 (WNM)

Example: $[0, 1]_{NM}$ is a NM-algebra.

æ

・日・ ・ヨ・ ・ヨ・

æ

NM-chains

We say that a NM-algebra is a $\ensuremath{\text{NM-chain}}$, provided that it is totally ordered.

(1日) (1日) (日)

▲冊→ ▲屋→ ▲屋→

NM-chains

We say that a NM-algebra is a $\ensuremath{\text{NM-chain}}$, provided that it is totally ordered.

Since the class of all NM-algebras, denoted by \mathbb{NM} , is a proper subvariety of MTL-algebras the decomposition theorem is also valid.

Proposition

Each NM-algebra is representable as a subdirect product of NM-chains

Let $\langle A,\leq,\bar{0},\bar{1}\rangle$ a totally ordered bounded set equipped with an involutive negation $\neg,$

・ 回 と く ヨ と く ヨ と

æ

Let $\langle A, \leq, \bar{0}, \bar{1} \rangle$ a totally ordered bounded set equipped with an involutive negation \neg , if we define for every $a, b \in A$,

$$a*b = \left\{ egin{array}{cccc} ar{0}, & ext{if } b \leq
egar{array}{ccccc} a \wedge b, & ext{otherwise.} \end{array}
ight.$$
 $a o b = \left\{ egin{array}{ccccc} ar{1}, & ext{if } a \leq b; \
egar{array}{ccccc} \neg a \lor b, & ext{otherwise.} \end{array}
ight.$

 $a \wedge b = min\{a, b\}$ $a \vee b = max\{a, b\},$ then $\mathbf{A} = \langle A, *, \rightarrow, \land, \lor, \overline{0}, \overline{1} \rangle$ is a NM-chain.

・ロン ・回と ・ヨン・

æ

Let $\langle A, \leq, \bar{0}, \bar{1} \rangle$ a totally ordered bounded set equipped with an involutive negation \neg , if we define for every $a, b \in A$,

$$a*b = \left\{ egin{array}{cccc} ar{0}, & ext{if } b \leq
egar{array}{ccccc} a \wedge b, & ext{otherwise.} \end{array}
ight.$$
 $a o b = \left\{ egin{array}{ccccc} ar{1}, & ext{if } a \leq b; \
egar{array}{ccccc} \neg a \lor b, & ext{otherwise.} \end{array}
ight.$

 $a \wedge b = min\{a, b\}$ $a \vee b = max\{a, b\},$ then $\mathbf{A} = \langle A, *, \rightarrow, \land, \lor, \overline{0}, \overline{1} \rangle$ is a NM-chain.

Every NM-chain is of this form.

(1日) (日) (日)

in the states of the section

(4回) (4回) (4回)

Finite NM-chains

Therefore up to isomorphism for each finite $n \in \mathbb{N}$, there is only one NM-chain \mathbf{A}_n with exactly *n* elements.

$$\mathbf{A}_{2n+1} = \langle [-n, n] \cap \mathbb{Z}, *, \rightarrow, \land, \lor, -n, n \rangle.$$

$$\mathbf{A}_{2n} = \langle A_{2n+1} \smallsetminus \{0\}, *, \rightarrow, \land, \lor, -n, n \rangle.$$

Notice that A_1 is the trivial algebra, A_2 the 2-element Boolean algebra and A_3 the 3-element MV-algebra.

INVESTOR ENVELON

(日) (日) (日)

Let **A** be an NM-algebra,

 $A_{+} = \{a \in A : a > \neg a\}$ $A_{-} = \{a \in A : a < \neg a\}.$ $a \in A \text{ is a negation fixpoint (or just fixpoint, for short) iff}$ $\neg a = a.$

Let C be an NM-chain. Then

- $C = C_+ \cup C_-$ if C has no fixpoint.
- C = C₊ ∪ C₋ ∪ {c} if c is the fixpoint of C. Moreover C \ {c} is the universe of a subalgebra of C which we denote by C⁻.

$$\mathbf{A_{2n}}=\mathbf{A_{2n+1}}^{-}$$

NM-chains, Gödel chains

Let A be an NM-chain. Then

- If A has negation fix point then A is the connected rotation of a Gödel chain.
- If **A** has no negation fixpoint then **A** is the disconnected rotation of the 0-free subreduct of a Gödel chain.

▲ 同 ▶ | ▲ 臣 ▶

< ≣⇒

3

・ 回 と ・ ヨ と ・ ヨ と

NM-chains, Gödel chains

- $\bullet \ [0,1]_{\mathsf{NM}}\cong \textit{ConRot}([0,1]_{\mathsf{G}})$
- $A_{2n+1} \cong ConRot(G_{n+1})$
- $A_{2n} \cong \textit{DiscRot}(G_n^+)$
- $\bullet~[0,1]^-_{\mathsf{NM}}\cong \textit{DiscRot}((0,1]^+_{\mathsf{G}})$

INTERNET

Let $\nabla(x) = \neg(\neg x^2)^2$ and $\Delta(x) = (\neg(\neg x)^2)^2$ where x^2 is an abbreviation of x * x.

Lemma

Let **A** be an NM-chain and let $a \in A$. Then we have

$$abla(a) = \left\{ egin{array}{cc} ar{1}, & ext{if } a >
eg a; \ ar{0}, & ext{if } a \leq
eg a. \end{array}
ight.$$

and

$$\Delta(a) = \begin{cases} \bar{1}, & \text{if } a \geq \neg a; \\ \bar{0}, & \text{if } a < \neg a. \end{cases}$$

Therefore, **A** does not have a fixpoint iff $\nabla(a) = \Delta(a)$ for every $a \in A$

▲ □ ► < □ ►</p>

< ≣ >

NM-varieties

 \mathbb{NM} is a locally finite variety.

 $\mathbb{NM} = \mathcal{V}(\{\mathbf{A}_n : n > 1\})$

in the states of the section

æ

NM-varieties

NM is a locally finite variety. NM = $\mathcal{V}(\{\mathbf{A}_n : n > 1\})$

$$\mathbb{NM} = \mathbb{NM} + \nabla(x) \approx \Delta(x)$$

 $\mathbb{NM}^{-} = \mathcal{V}(\{\mathbf{A}_{2n} : n > 0\})$

NM-varieties

Theorem (Gispert 03)

Every nontrivial variety of NM-algebras is of one of the following types:

$$\mathbb{NM} = \mathcal{V}([\mathbf{0},\mathbf{1}]) = \mathcal{V}(\{\mathbf{A}_n : n > 1\})$$

$$\mathbb{NM} - = \mathcal{V}([\mathbf{0},\mathbf{1}]^{-}) = \mathcal{V}(\{\mathbf{A}_{2n}: n > 0\})$$

3
$$\mathbb{NM}_{2m+1} = \mathcal{V}(\mathsf{A}_{2m+1})$$
 for some $m > 0$

•
$$\mathbb{NM}_{2n} = \mathcal{V}(\mathbf{A}_{2n})$$
 for some $n > 0$

•
$$\mathbb{NM}_{2m+1} = \mathcal{V}(\{[0,1]^-, A_{2m+1}\}) = \mathcal{V}(\{A_{2n} : n > 0\} \cup \{A_{2m+1}\})$$

・ロト ・回ト ・ヨト

< ≣⇒

NM-varieties as quasivarieties

Theorem (Noguera et al. 08)

Every nontrivial variety of NM-algebras is of one of the following types:

$$\mathbb{NM} = \mathcal{Q}([\mathbf{0},\mathbf{1}]) = \mathcal{Q}(\{\mathbf{A}_n : n > 1\})$$

$$\mathbb{NM} - = \mathcal{Q}([\mathbf{0},\mathbf{1}]^{-}) = \mathcal{Q}(\{\mathbf{A}_{2n}: n > 0\})$$

3
$$\mathbb{NM}_{2m+1} = \mathcal{Q}(\mathbf{A}_{2m+1})$$
 for some $m > 0$

•
$$\mathbb{NM}_{2n} = \mathcal{Q}(\mathbf{A}_{2n})$$
 for some $n > 0$

•
$$\mathbb{NM}_{2m+1} = \mathcal{Q}(\{[0,1]^-, A_{2m+1}\}) = \mathcal{Q}(\{A_{2n} : n > 0\} \cup \{A_{2m+1}\})$$

▲□→ < □→</p>

< ≣⇒

Axiomatic extensions of NML

in the state of th

æ

Proposition

NML is not structurally complete.

・ロ・ ・ 日・ ・ 田・ ・ 日・

Proposition

NML is not structurally complete.

Proof:

 $\neg p \leftrightarrow p/\bot$ is not NML-derivable and NML-admissible.

INVESTOR ENVELON

Proposition

NML is not structurally complete.

Proof:

 $\neg p \leftrightarrow p/\bot$ is not NML-derivable and NML-admissible.

If $h : Prop \to [0, 1]$ is such that $h(p) = \frac{1}{2}$ then $h(\neg p \leftrightarrow p) = 1$ while $h(\bot) = 0 \neq 1$, hence $\neg p \leftrightarrow p \not\models_{[0,1]_{NM}} \bot$.

INVESTOR ENVELON

Proposition

NML is not structurally complete.

Proof:

 $\neg p \leftrightarrow p/\bot$ is not NML-derivable and NML-admissible.

If $h : Prop \to [0, 1]$ is such that $h(p) = \frac{1}{2}$ then $h(\neg p \leftrightarrow p) = 1$ while $h(\bot) = 0 \neq 1$, hence $\neg p \leftrightarrow p \not\models_{[0,1]_{NM}} \bot$.

Since **Free**_{NM} has no negation fixpoint, then $\neg p \leftrightarrow p$ has no unifier, therefore $\neg p \leftrightarrow p/\bot$ is passive NML-admissible.

ヘロン ヘ週ン ヘヨン ヘヨン

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete

For every n > 2, \mathbf{G}_n is embeddable into $\mathbf{Free}_{\mathbb{G}}(\omega)$

Theorem (Dzik-Wronski 1973)

Gödel logic is structurally complete

For every n > 2, \mathbf{G}_n is embeddable into $\mathbf{Free}_{\mathbb{G}}(\omega)$

Theorem (Cintula-Metcalfe 2009)

The positive fragment of the Gödel logic is structurally complete

For every n > 2, \mathbf{G}_n^+ is embeddable into $\mathbf{Free}_{\mathbb{G}^+}(\omega)$

・ロト ・日本 ・モート ・モート

Proposition

For every n > 0, \mathbf{A}_{2n} is embeddable into $\mathbf{Free}_{\mathbb{NM}-}(\omega)$.

in the states of the section

æ

Proposition

For every n > 0, \mathbf{A}_{2n} is embeddable into $\mathbf{Free}_{\mathbb{NM}-}(\omega)$.

Proof: Let
$$p_1, \ldots, p_{n-1} \in X$$
 be distinct variables, we define
 $\varphi_1 = p_1 \lor \neg p_1$
 $\varphi_i = ((((p_i \lor \neg p_i) \to \varphi_{i-1}) \to (p_i \lor \neg p_i)) \to (p_i \lor \neg p_i)) \quad i = 2 \div n-1$
 $\varphi_n = \top$
then $f : A_{2n} \to Free_{\mathbb{NM}-}(\omega)$ defined by $f(i) = \begin{cases} \overline{\varphi_i}, & \text{if } i > 0; \\ \overline{\neg \varphi_i}, & \text{if } i < 0. \end{cases}$
is an embedding. \Box

NM-algebras

Structural complete NM logics

$$\mathcal{Q}(\mathsf{Free}_{\mathbb{NM}-}) = \mathcal{Q}(\{\mathsf{A}_{2n} : n > 0\}) = \mathbb{NM}$$

For every n > 0, $\mathcal{Q}(\mathsf{Free}_{\mathbb{NM}_{2n}}) = \mathcal{Q}(\mathsf{A}_{2n}) = \mathbb{NM}_{2n}$

NM-algebras

Structural complete NM logics

$$\mathcal{Q}(\mathsf{Free}_{\mathbb{NM}-}) = \mathcal{Q}(\{\mathsf{A}_{2n} : n > 0\}) = \mathbb{NM}$$

For every n > 0, $Q(Free_{\mathbb{NM}_{2n}}) = Q(A_{2n}) = \mathbb{NM}_{2n}$

Theorem

NML⁻ is hereditarily structurally complete.

・ロト ・回ト ・ヨト ・ヨト

Proposition

Let \mathbb{M} be a non trivial variety of NM-algebras not satisfying the identity $\nabla(x) \approx \Delta(x)$. Then for every k > 1, $\mathbf{A}_2 \times \mathbf{A}_k$ is embeddable into $\mathbf{Free}_{\mathbb{M}}(\omega)$ if and only if $\mathbf{A}_k \in \mathbb{M}$

| 4 回 2 4 U = 2 4 U =

æ

Proof:

Let $p_0, \ldots, p_{n-1} \in X$ be distinct variables if we define $\phi_n = \gamma_n = \top, \ \gamma_i = \varphi_i(p_1, \ldots, p_i)$ and $\phi_i = \varphi_{i+1}(p_0, \ldots, p_i)$ for $0 \le i \le n-1$, then

$$\begin{array}{ll} h: A_2 \times A_{2n+1} \to Free_{\mathbb{M}}(\omega) \\ h((1,m)) = \overline{\nabla(\phi_0) \vee \phi_m} \\ h((1,0)) = \overline{\nabla(\phi_0) \vee \phi_0} \\ h((1,-m)) = \overline{\nabla(\phi_0) \vee \neg \phi_m} \end{array} \begin{array}{l} h((-1,m)) = \overline{\neg \nabla(\phi_0) \wedge \phi_m} \\ h((-1,0)) = \overline{\neg \nabla(\phi_0) \wedge \phi_0} \\ h((-1,-m)) = \overline{\neg \nabla(\phi_0) \wedge \neg \phi_m} \end{array}$$

 $g: A_2 \times A_{2n} \xrightarrow{} Free_{\mathbb{M}}(\omega)$ $g((1, m)) = \neg \overline{\nabla(\gamma_1) \vee \gamma_m}$ $g((1, -m)) = \neg \overline{\nabla(\gamma_1) \vee \neg \gamma_m}$

$$g((-1,m)) = \overline{\nabla(\gamma_0) \wedge \gamma_m}$$
$$g((-1,-m)) = \overline{\nabla(\gamma_1) \wedge \neg \gamma_m}$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

give the desired embeddings.

Almost structural completeness of NM logics

If $\mathbb{M} \not\subseteq \mathbb{NM}$ -, then

Almost structural completeness of NM logics

If $\mathbb{M} \not\subseteq \mathbb{NM}-$, then

$\mathcal{Q}(\mathsf{Free}_{\mathbb{M}}) = \mathcal{Q}(\{\mathsf{A}_2 \times \mathsf{A}_k : \mathsf{A}_k \in \mathbb{M}\})$

INVESTOR ENVELON

Almost structural completeness of NM logics

If $\mathbb{M} \not\subseteq \mathbb{NM}-$, then

$\mathcal{Q}(\mathsf{Free}_{\mathbb{M}}) = \mathcal{Q}(\{\mathsf{A}_2 \times \mathsf{A}_k : \mathsf{A}_k \in \mathbb{M}\})$

Theorem

 ${\mathbb M}$ is almost structurally complete

・ロト ・回ト ・ヨト ・ヨト

NM-algebras

Varieties of NM-algebras

(Almost) structural completeness results

Almost structural completeness of NM logics

Theorem

NML is almost structurally complete and all their consistent axiomatic extensions are almost structurally complete.

(4回) (4回) (4回)

INVESTOR ENVELON

Theorem

For every axiomatic extension of NML the rule $\neg p \leftrightarrow p/\bot$ axiomatizes all passive admissible rules.

(4回) (4回) (4回)

Theorem

For every axiomatic extension of NML the rule $\neg p \leftrightarrow p/\bot$ axiomatizes all passive admissible rules.

Proof:

(Jeřábek 2010)

The rule $\neg (p \lor \neg p)^n / \bot$ axiomatizes all passive rules for every *n*-contractive axiomatic extension of MTL

$$\neg p \leftrightarrow p \dashv \vdash_{NML} \neg (p \lor \neg p)^2$$

・ロト ・回ト ・ヨト ・ヨト

THANK YOU FOR YOUR ATTENTION

Axiomatic extensions of NML

Finitary extensions of NML

J.Gispert Structural Completeness NM.-logics

Connected Rotation

Connected Rotation

Connected Rotation

J.Gispert Structural Completeness NM.-logics

Disconnected Rotation

Disconnected Rotation

INVESTIGATION

Disconnected Rotation

J.Gispert Structural Completeness NM.-logics