SYSMICS Kickoff Meeting Barcelona, Sept. 2016

Interpreting Sequent Calculi as Client–Server Games

Chris Fermüller

Theory and Logic Group Vienna University of Technology

• substructural logics are often motivated by resource consciousness

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:

"For \$1 you get a pack of Camels, but also a pack of Marlboro"

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:

"For \$1 you get a pack of Camels, but also a pack of Marlboro" "but also": multiplicative in contrast to additive conjunction

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:

"For \$1 you get a pack of Camels, but also a pack of Marlboro" "but also": multiplicative in contrast to additive conjunction

• Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:

"For \$1 you get a pack of Camels, but also a pack of Marlboro" "but also": multiplicative in contrast to additive conjunction

• Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness – this leads to (fragments of) linear logic, possibly even Lambek calculus

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:

"For \$1 you get a pack of Camels, but also a pack of Marlboro" "but also": multiplicative in contrast to additive conjunction

- Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness – this leads to (fragments of) linear logic, possibly even Lambek calculus
- to breathe life into the resource metaphor, we need dynamics

 \implies game semantics for substructural sequent calculi

- "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)
 - abstract semantic models of (fragments and variants) of linear logic
 - leads to a fully abstract semantic model of PCF
- (2) "logical dialogue games"(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
 - Proponent/Opponent games with logical and structural rules
 - proofs are winning strategies for Proponent

- "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)
 - abstract semantic models of (fragments and variants) of linear logic
 - leads to a fully abstract semantic model of PCF
- (2) "logical dialogue games"(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
 - Proponent/Opponent games with logical and structural rules
 - proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:

- "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)
 - abstract semantic models of (fragments and variants) of linear logic
 - leads to a fully abstract semantic model of PCF
- (2) "logical dialogue games"(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
 - Proponent/Opponent games with logical and structural rules
 - proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:

(3) Client/Server games (C/S-games)

• we identify formulas with "information packages" (IPs)

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom ⊥ = elementary inconsistency) or structured according to access options:
 - any_of(F_1, \ldots, F_n)
 - some_of(F_1, \ldots, F_n)
 - F_1 given F_2

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom ⊥ = elementary inconsistency) or structured according to access options:
 - any_of(F_1, \ldots, F_n)
 - some_of(F_1, \ldots, F_n)
 - ► *F*₁ given *F*₂
- a client **C** seeks to extract/reconstruct an IP *H* with respect to a whole bunch of IPs G_1, \ldots, G_n maintained by the server **S**: Notation: $G_1, \ldots, G_n \triangleright H$

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom ⊥ = elementary inconsistency) or structured according to access options:
 - any_of(F_1, \ldots, F_n)
 - some_of(F_1, \ldots, F_n)
 - F_1 given F_2
- a client **C** seeks to extract/reconstruct an IP *H* with respect to a whole bunch of IPs G_1, \ldots, G_n maintained by the server **S**: Notation: $G_1, \ldots, G_n \triangleright H$
- extraction proceeds stepwise, in rounds, initiated by C

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom ⊥ = elementary inconsistency) or structured according to access options:
 - any_of(F_1, \ldots, F_n)
 - some_of(F_1, \ldots, F_n)
 - F_1 given F_2
- a client **C** seeks to extract/reconstruct an IP *H* with respect to a whole bunch of IPs G_1, \ldots, G_n maintained by the server **S**: Notation: $G_1, \ldots, G_n \triangleright H$
- extraction proceeds stepwise, in rounds, initiated by C
- C succeeds (wins) if H is atomic and ∈ {G₁,..., G_n} the final state.
 We are interested in winning strategies for C.

Two types of rounds

Two types of rounds

in each state $\Gamma \triangleright H$ the client **C** may request one of two actions from **S**:

- UNPACK one of your (S's) IP
- CHECK my (C's) current IP

Two types of rounds

in each state $\Gamma \triangleright H$ the client **C** may request one of two actions from **S**:

- UNPACK one of your (S's) IP
- CHECK my (C's) current IP

UNPACK-rules: **C** picks $G \in \Gamma$ (= bunch of IPs provided by **S**)

$$(U_{any}^*)$$
 $G = any_of(F_1, ..., F_n)$: **C** chooses *i*, **S** adds F_i to Γ
 (U_{some}^*) $G = some_of(F_1, ..., F_n)$: **S** chooses *i* and adds F_i to Γ
 (U_{given}^*) $G = (F_1 \text{ given } F_2)$: either **S** adds F_1 to Γ or F_2 replaces H
 (U_{\perp}^+) $G = \bot$: game ends, **C** wins

CHECK-rules: depend on C's current IP H.

$$(C_{any})$$
 $H = any_of(F_1, ..., F_n)$: **S** chooses *i*, F_i replaces H
 (C_{some}) $H = some_of(F_1, ..., F_n)$: **C** chooses *i*, F_i replaces H
 (C_{given}) $H = (F_1 \text{ given } F_2)$: **S** adds F_2 to Γ , F_1 replaces H
 (C_{atom}^+) H is atomic: game ends, **C** wins if $H \in \Gamma$

[(a,b),(b,c)]

 $some_of(any_of(a, b), any_of(b, c)) > some_of(b, d)$

 $\underbrace{[(a,b),(b,c)]}_{\text{some_of(any_of(a, b), any_of(b, c))}} \triangleright \text{ some_of(b, d)}$ $\downarrow C_{\text{some}}$ $[(a, b), (b, c)] \triangleright b$

[(a,b),(b,c)] $some_of(any_of(a, b), any_of(b, c))$ > some_of(b, d) $\downarrow C_{some}$ $[(a, b), (b, c)] \triangleright b$ $\searrow U_{\text{some}}^*$ \checkmark any_of(b, c), $[(a, b), (b, c)] \triangleright b$ $any_of(a, b), [(a, b), (b, c)] \triangleright b$ $\downarrow U_{any}^*$ $\downarrow U_{anv}^*$ $b, any_of(a, b), [(a, b), (b, c)] \triangleright b$ $b, any_of(b, c), [(a, b), (b, c)] \triangleright b$ C wins C wins

[(a,b),(b,c)] $some_of(any_of(a, b), any_of(b, c)) > some_of(b, d)$ $\downarrow C_{some}$ $[(a, b), (b, c)] \triangleright b$ $\searrow U_{\rm come}^*$ \checkmark any of (a, b), [(a, b), (b, c)] > bany of (b, c), [(a, b), (b, c)] > b $\downarrow U_{anv}^*$ $\downarrow U_{anv}^*$ $b, any_of(a, b), [(a, b), (b, c)] \triangleright b$ $b, any_of(b, c), [(a, b), (b, c)] \triangleright b$ C wins C wins

Note: (winning) strategies for **C** are trees of states that branch for all choices of **S**

• any_of(F_1, \ldots, F_n) corresponds to $F_1 \land \ldots \land F_n$ • some_of(F_1, \ldots, F_n) corresponds to $F_1 \lor \ldots \lor F_n$ • F_1 given F_2 corresponds to $F_2 \rightarrow F_1$

- any_of(F₁,..., F_n) corresponds to F₁ ^ ... ^ F_n
 some_of(F₁,..., F_n) corresponds to F₁ ^{...} ^{...}
- F_1 given F_2 corresponds to $F_2 \rightarrow F_1$

Sequent calculus proofs in disguise

C's winning strategy for $[(a, b), (b, c)] \triangleright \text{some_of}(b, d)$ corresponds to

$$\frac{b, a \land b, (a \land b) \lor (b \land c) \vdash b}{a \land b, (a \land b) \lor (b \land c) \vdash b} (\land, l) \qquad \frac{b, a \land b, (a \land b) \lor (b \land c) \vdash b}{a \land b, (a \land b) \lor (b \land c) \vdash b} (\land, l)}{\frac{(a \land b) \lor (b \land c) \vdash b}{(a \land b) \lor (b \land c) \vdash b}}{(\lor, r)}$$

- any_of(F₁,..., F_n) corresponds to F₁ \lambda ... \lambda F_n
 some_of(F₁,..., F_n) corresponds to F₁ \lambda ... \lambda F_n
- F_1 given F_2 corresponds to $F_2 o F_1$

Sequent calculus proofs in disguise

C's winning strategy for $[(a, b), (b, c)] \triangleright \text{some_of}(b, d)$ corresponds to

$$\frac{b, a \land b, (a \land b) \lor (b \land c) \vdash b}{a \land b, (a \land b) \lor (b \land c) \vdash b} (\land, l) \qquad \frac{b, a \land b, (a \land b) \lor (b \land c) \vdash b}{a \land b, (a \land b) \lor (b \land c) \vdash b} (\land, l) \\ \frac{(a \land b) \lor (b \land c) \vdash b}{(a \land b) \lor (b \land c) \vdash b \lor d} (\lor, r)$$

Note:

- intuitionistic rules
- no structural rules

Gentzen's original LI/LK

L

Initial sequents: $A \vdash A$ Cut rule: $\frac{\Gamma \vdash \Delta, A \quad A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}$ (cut)Structural rules:

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} (w, r) \quad \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} (w, l) \qquad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} (c, r) \quad \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} (c, l)$$

ogical rules: $A, \Gamma \vdash \Delta$ (...) $\Gamma \vdash \Delta, A$ (...)

$$\frac{\overline{\Gamma \vdash \Delta, \neg A} (\neg, r)}{\overline{\Gamma \vdash \Delta, A \land B} (\land, r)} \frac{\overline{\neg A, \Gamma \vdash \Delta} (\neg, r)}{\overline{\neg A, \Gamma \vdash \Delta} (\land, r)} \\
\frac{\overline{\Gamma \vdash \Delta, A \land B}}{\overline{\Gamma \vdash \Delta, A \lor B} (\lor, r)} \frac{A, B, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} (\land, l) \\
\frac{\overline{\Lambda, \Gamma \vdash \Delta, B}}{\overline{\Gamma \vdash \Delta, A \to B} (\rightarrow, r)} \frac{\overline{\Gamma \vdash \Delta, A} (\neg, l)}{\overline{\Lambda \lor B, \Gamma \vdash \Delta} (\rightarrow, l)}$$

Gentzen's original LI/LK

Initial sequents: $A \vdash A$ Cut rule: $\frac{\Gamma \vdash \Delta, A = A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}$ (cut)Structural rules:

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} (w, r) \quad \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} (w, l) \qquad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} (c, r) \quad \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} (c, l)$$

$$\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} (\neg, r) \qquad \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} (\neg, r)$$

$$\frac{\Gamma \vdash \Delta, A \qquad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} (\land, r) \qquad \frac{A, B, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} (\land, l)$$

$$\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} (\lor, r) \qquad \frac{A, \Gamma \vdash \Delta \qquad B, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} (\lor, l)$$

$$\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B} (\rightarrow, r) \qquad \frac{\Gamma \vdash \Delta, A \qquad B, \Gamma \vdash \Delta}{A \rightarrow B, \Gamma \vdash \Delta} (\to, l)$$

Llp – a proof search friendly version of LI:

- Initial sequents: $A, \Gamma \vdash \Delta, A / \perp, \Gamma \vdash \Delta \implies$ no weakening
- contraction built into logical rules, cut-free

Adequateness of the basic $\ensuremath{C/S}\xspace$ -game

Corollary to the (cut-free!) soundness and completeness of LIp:

Theorem

C has a winning strategy for $G_1, \ldots, G_n \triangleright F$ iff $G_1, \ldots, G_n \models F$ holds in intuitionistic logic.

Corollary to the (cut-free!) soundness and completeness of LIp:

Theorem

```
C has a winning strategy for G_1, \ldots, G_n \triangleright F iff G_1, \ldots, G_n \models F holds in intuitionistic logic.
```

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Corollary to the (cut-free!) soundness and completeness of LIp:

Theorem

```
C has a winning strategy for G_1, \ldots, G_n \triangleright F iff G_1, \ldots, G_n \models F holds in intuitionistic logic.
```

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Where to go from here?

Corollary to the (cut-free!) soundness and completeness of LIp:

Theorem

C has a winning strategy for $G_1, \ldots, G_n \triangleright F$ iff $G_1, \ldots, G_n \models F$ holds in intuitionistic logic.

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Where to go from here?

intuitionistic logic is hardly 'substructural'

 \Rightarrow find versions of the game that model resource consciousness

Recall the UNPACK-rules: **C** picks $G \in \Gamma$ (= bunch of IPs provided by **S**) (U_{any}^*) $G = any_of(F_1, ..., F_n)$: **C** chooses i, **S** adds F_i to Γ (U_{some}^*) $G = some_of(F_1, ..., F_n)$: **S** chooses i and adds F_i to Γ (U_{given}^*) $G = (F_1 \text{ given } F_2)$: either **S** adds F_2 to Γ or F_2 replaces H (U_{i}^+) $G = \bot$: game ends, **C** wins

Recall the UNPACK-rules:
C picks
$$G \in \Gamma$$
 (= bunch of IPs provided by **S**)
 (U_{any}^*) $G = any_of(F_1, \dots, F_n)$: **C** chooses *i*, **S** adds F_i to Γ
 (U_{some}^*) $G = some_of(F_1, \dots, F_n)$: **S** chooses *i* and adds F_i to Γ
 (U_{given}^*) $G = (F_1 \text{ given } F_2)$: either **S** adds F_2 to Γ or F_2 replaces H
 (U_{\perp}^+) $G = \bot$: game ends, **C** wins

Recall the UNPACK-rules:
C picks
$$G \in \Gamma$$
 (= bunch of IPs provided by **S**)
 (U_{any}^*) $G = any_of(F_1, \ldots, F_n)$: **C** chooses *i*, **S** adds F_i to Γ
 (U_{some}^*) $G = some_of(F_1, \ldots, F_n)$: **S** chooses *i* and adds F_i to Γ
 (U_{given}^*) $G = (F_1 \text{ given } F_2)$: either **S** adds F_2 to Γ or F_2 replaces H
 (U_{\perp}^+) $G = \bot$: game ends, **C** wins

• change adds $F_{i/2}$ to Γ into replace G by $F_{i/2}$ in Γ

Recall the UNPACK-rules:
C picks
$$G \in \Gamma$$
 (= bunch of IPs provided by **S**)
 (U_{any}^*) $G = any_of(F_1, \dots, F_n)$: **C** chooses *i*, **S** adds F_i to Γ
 (U_{some}^*) $G = some_of(F_1, \dots, F_n)$: **S** chooses *i* and adds F_i to Γ
 (U_{given}^*) $G = (F_1 \text{ given } F_2)$: either **S** adds F_2 to Γ or F_2 replaces H
 (U_{\perp}^+) $G = \bot$: game ends, **C** wins

- change adds $F_{i/2}$ to Γ into replace G by $F_{i/2}$ in Γ
- $\bullet \ \Rightarrow \ \ {\rm contraction \ free \ intuitionistic \ logic}$

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
 (*Dismiss*) C chooses F ∈ Γ, S removes F from Γ
- corresponds to weakening (w, l) of LI

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
 (*Dismiss*) C chooses F ∈ Γ, S removes F from Γ
- corresponds to weakening (w, l) of LI

Compensating for contraction

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
 (*Dismiss*) C chooses F ∈ Γ, S removes F from Γ
- corresponds to weakening (w, l) of LI

Compensating for contraction

• new constructor: arbitrary_many(F)

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
 (*Dismiss*) C chooses F ∈ Γ, S removes F from Γ
- corresponds to weakening (w, l) of LI

Compensating for contraction

- new constructor: arbitrary_many(F)
- game rules for arbitrary_many(F):
 - dismiss arbitrary_many(F)
 - replace arbitrary_many(F) by F
 - add another copy of arbitrary_many(F)

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
 (*Dismiss*) C chooses F ∈ Γ, S removes F from Γ
- corresponds to weakening (w, l) of LI

Compensating for contraction

- new constructor: arbitrary_many(F)
- game rules for arbitrary_many(F):
 - dismiss arbitrary_many(F)
 - replace arbitrary_many(F) by F
 - add another copy of arbitrary_many(F)
- arbitrary_many(F) corresponds to !F of linear logic
- dismissing, copying, and replacing correspond to

$$\frac{\Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta} (w!) \quad \frac{!A, !A, \Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta} (c!) \quad \frac{A, \Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta} L!$$

• we want to model/interpret the following sequent rules:

$$\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta} (\otimes, l) \qquad \frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1, \Gamma_2 \vdash A \otimes B} (\otimes, r)$$

• we want to model/interpret the following sequent rules:

$$\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta} (\otimes, I) \qquad \frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1, \Gamma_2 \vdash A \otimes B} (\otimes, r)$$

• new constructor: each_of(F_1, \ldots, F_n)

• we want to model/interpret the following sequent rules:

$$\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta} (\otimes, I) \qquad \frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1, \Gamma_2 \vdash A \otimes B} (\otimes, r)$$

- new constructor: each_of(F_1, \ldots, F_n)
- game rules require splitting of the bunch of IPs provided by S:
 - $\begin{array}{l} (U_{each}) \quad G = \text{each_of}(F_1, F_2): \ \textbf{S} \ \text{replaces} \ G \ \text{in} \ \Gamma \ \text{by} \ F_1 \ \text{and} \ F_2 \\ (C_{each}) \quad H = \text{each_of}(F_1, F_2): \ \textbf{C} \ \text{splits} \ \textbf{S}' \text{s} \ \Gamma \ \text{into} \ \Gamma_1 \uplus \Gamma_2, \end{array}$

S chooses whether to continue with $\Gamma_1 \triangleright F_1$ or $\Gamma_2 \triangleright F_2$

• we want to model/interpret the following sequent rules:

$$\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta} (\otimes, l) \qquad \frac{\Gamma_1 \vdash A \quad \Gamma_2 \vdash B}{\Gamma_1, \Gamma_2 \vdash A \otimes B} (\otimes, r)$$

- new constructor: each_of(F_1, \ldots, F_n)
- game rules require splitting of the bunch of IPs provided by S:

 $\begin{array}{l} (U_{each}) \quad G = \text{each_of}(F_1, F_2): \ \textbf{S} \ \text{replaces} \ G \ \text{in} \ \Gamma \ \text{by} \ F_1 \ \text{and} \ F_2 \\ (C_{each}) \quad H = \text{each_of}(F_1, F_2): \ \textbf{C} \ \text{splits} \ \textbf{S} \ \text{'s} \ \Gamma \ \text{into} \ \Gamma_1 \uplus \Gamma_2, \\ \textbf{S} \ \text{chooses} \ \text{whether} \ \text{to} \ \text{continue} \ \text{with} \ \Gamma_1 \triangleright F_1 \ \text{or} \ \Gamma_2 \triangleright F_2 \end{array}$

- to obtain a C/S-game for full intuitionistic linear logic (ILL):
 - replace (U_{given}) by a 'splitting version' of it
 - \blacktriangleright C can always add \emptyset (empty IP corresponding to Girard's 1) to S's Γ
 - modify the winning conditions:
 - **C** wins in the following states: $A \triangleright A \quad \bot, \Gamma \triangleright A \quad \triangleright \emptyset$

Interpreting Lambek's calculus: sequences of IPs instead of multisets

Interpreting Lambek's calculus: sequences of IPs instead of multisets

• the 'bunch of information' provided by **S** might be a list (sequence)

Interpreting Lambek's calculus: sequences of IPs instead of multisets

- the 'bunch of information' provided by **S** might be a list (sequence)
- if **S** CHECKs an conditional IP of **C**, the 'conditioning IP' is added either first or last:

 \Rightarrow F_1 given F_2 splits into F_1 given $\searrow F_2$, F_1 given $\nearrow F_2$ corresponding to

$$\frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B} (\backslash, r) \qquad \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash B / A} (/, r)$$

• UNPACKing conditional information provided by **S** follows

$$\frac{\Gamma \vdash A}{\Pi, \Gamma, A \backslash B, \Sigma \vdash \Delta} (\backslash, I) \qquad \qquad \frac{\Gamma \vdash A}{\Pi, A / B, \Gamma, \Sigma \vdash \Delta} (/, I)$$

• combined with a 'sequence version of conjunction' (fusion) this leads to an C/S-game for full Lambek calculus FL

• interpreting formulas as 'information packages' emphasizes resources

- interpreting formulas as 'information packages' emphasizes resources
- \bullet a client ${\bf C}$ seeks to reconstruct an IP form IPs provided by a server ${\bf S}$

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - S's choices can be seen as nondeterministic behavior

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - ► S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - **S**'s choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
 - C acts as scheduler
 - S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

Topics for further investigation

- interpreting multi-conclusion calculi, in particular full LL
- systematic connections to other game semantics
- hypersequent systems modeled by parallel games

• . . .