SYSMICS Kickoff Meeting

Barcelona, Sept. 2016

Interpreting Sequent Calculi as Client-Server Games

Chris Fermüller

Theory and Logic Group
Vienna University of Technology

Background

Background

- substructural logics are often motivated by resource consciousness

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:
"For \$1 you get a pack of Camels, but also a pack of Marlboro"

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:
"For \$1 you get a pack of Camels, but also a pack of Marlboro"
"but also": multiplicative in contrast to additive conjunction

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:
"For \$1 you get a pack of Camels, but also a pack of Marlboro"
"but also": multiplicative in contrast to additive conjunction
- Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:
"For \$1 you get a pack of Camels, but also a pack of Marlboro"
"but also": multiplicative in contrast to additive conjunction
- Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness - this leads to (fragments of) linear logic, possibly even Lambek calculus

Background

- substructural logics are often motivated by resource consciousness
- this motivation usually remains metaphorical
- think of Girard's cigarette example:
"For \$1 you get a pack of Camels, but also a pack of Marlboro"
"but also": multiplicative in contrast to additive conjunction
- Gentzen's sequent calculus (LK/LI) is the natural starting point for connecting inference and resource consciousness - this leads to (fragments of) linear logic, possibly even Lambek calculus
- to breathe life into the resource metaphor, we need dynamics
\Longrightarrow game semantics for substructural sequent calculi

Different types of game semantics

Different types of game semantics

(1) "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

- abstract semantic models of (fragments and variants) of linear logic
- leads to a fully abstract semantic model of PCF
(2) "logical dialogue games" (since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
- Proponent/Opponent games with logical and structural rules
- proofs are winning strategies for Proponent

Different types of game semantics

(1) "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

- abstract semantic models of (fragments and variants) of linear logic
- leads to a fully abstract semantic model of PCF
(2) "logical dialogue games" (since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
- Proponent/Opponent games with logical and structural rules
- proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:

Different types of game semantics

(1) "propositions as games / connectives as game operators" (since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

- abstract semantic models of (fragments and variants) of linear logic
- leads to a fully abstract semantic model of PCF
(2) "logical dialogue games" (since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)
- Proponent/Opponent games with logical and structural rules
- proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:
(3) Client/Server games (C/S-games)

C/S-games - the basic idea

C/S-games - the basic idea

- we identify formulas with "information packages" (IPs)

C/S-games - the basic idea

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom $\perp=$ elementary inconsistency) or structured according to access options:
- any_of $\left(F_{1}, \ldots, F_{n}\right)$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$
- F_{1} given F_{2}

C/S-games - the basic idea

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom $\perp=$ elementary inconsistency) or structured according to access options:
- any_of $\left(F_{1}, \ldots, F_{n}\right)$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$
- F_{1} given F_{2}
- a client C seeks to extract/reconstruct an IP H with respect to a whole bunch of IPs G_{1}, \ldots, G_{n} maintained by the server \mathbf{S} : Notation: $G_{1}, \ldots, G_{n} \triangleright H$

C/S-games - the basic idea

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom $\perp=$ elementary inconsistency) or structured according to access options:
- any_of $\left(F_{1}, \ldots, F_{n}\right)$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$
- F_{1} given F_{2}
- a client C seeks to extract/reconstruct an IP H with respect to a whole bunch of IPs G_{1}, \ldots, G_{n} maintained by the server \mathbf{S} : Notation: $G_{1}, \ldots, G_{n} \triangleright H$
- extraction proceeds stepwise, in rounds, initiated by \mathbf{C}

C/S-games - the basic idea

- we identify formulas with "information packages" (IPs)
- IPs (for the moment) are either atomic (including atom $\perp=$ elementary inconsistency) or structured according to access options:
- any_of $\left(F_{1}, \ldots, F_{n}\right)$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$
- F_{1} given F_{2}
- a client C seeks to extract/reconstruct an IP H with respect to a whole bunch of IPs G_{1}, \ldots, G_{n} maintained by the server \mathbf{S} : Notation: $G_{1}, \ldots, G_{n} \triangleright H$
- extraction proceeds stepwise, in rounds, initiated by \mathbf{C}
- C succeeds (wins) if H is atomic and $\in\left\{G_{1}, \ldots, G_{n}\right\}$ the final state. We are interested in winning strategies for \mathbf{C}.

Two types of rounds

Two types of rounds

in each state $\Gamma \triangleright H$ the client \mathbf{C} may request one of two actions from \mathbf{S} :

- UnPack one of your (S's) IP
- Check my (C's) current IP

Two types of rounds

in each state $\Gamma \triangleright H$ the client \mathbf{C} may request one of two actions from \mathbf{S} :

- UnPack one of your (S's) IP
- Check my (C's) current IP

Unpack-rules: \mathbf{C} picks $G \in \Gamma$ ($=$ bunch of IPs provided by \mathbf{S})
$\left(U_{\text {any }}^{*}\right) G=$ any_of $\left(F_{1}, \ldots, F_{n}\right)$: Chooses i, \mathbf{S} adds F_{i} to Γ
$\left(U_{\text {some }}^{*}\right) G=$ some_of $\left(F_{1}, \ldots, F_{n}\right)$: S chooses i and adds F_{i} to Γ
$\left(U_{\text {given }}^{*}\right) G=\left(F_{1}\right.$ given $\left.F_{2}\right)$: either \mathbf{S} adds F_{1} to Γ or F_{2} replaces H
$\left(U_{\perp}^{+}\right) G=\perp$: game ends, \mathbf{C} wins
Check-rules: depend on C's current IP H.
$\left(C_{\text {any }}\right) H=$ any_of $\left(F_{1}, \ldots, F_{n}\right)$: \mathbf{S} chooses i, F_{i} replaces H
$\left(C_{\text {some }}\right) H=$ some_of $\left(F_{1}, \ldots, F_{n}\right)$: Chooses i, F_{i} replaces H
$\left(C_{\text {given }}\right) H=\left(F_{1}\right.$ given $\left.F_{2}\right): \mathbf{S}$ adds F_{2} to Γ, F_{1} replaces H
($C_{\text {atom }}^{+}$) H is atomic: game ends, C wins if $H \in \Gamma$

A simple example

A simple example

A simple example

$$
\overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d)
$$

A simple example

$$
\begin{gathered}
\overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \operatorname{some_ of(b,d)} \\
\downarrow C_{\text {some }}
\end{gathered}
$$

A simple example

$$
\begin{gathered}
\overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
\downarrow C_{\text {some }} \\
{[(a, b),(b, c)] \triangleright b}
\end{gathered}
$$

A simple example

$$
\begin{gathered}
\overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
\quad \downarrow C_{\text {some }}
\end{gathered}
$$

A simple example

$$
\begin{aligned}
& \overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
& \downarrow C_{\text {some }} \\
& {[(a, b),(b, c)] \triangleright b} \\
& \text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \quad \text { any_of }(b, c),[(a, b),(b, c)] \triangleright b
\end{aligned}
$$

A simple example

$$
\begin{gathered}
\overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
\downarrow C_{\text {some }} \\
{[(a, b),(b, c)] \triangleright b} \\
\swarrow \begin{array}{l}
\text { some }
\end{array} \\
\text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \\
\downarrow U_{\text {any }}^{*} \\
\text { any_of }(b, c),[(a, b),(b, c)] \triangleright b \\
\downarrow U_{\text {any }}^{*}
\end{gathered}
$$

A simple example

$$
\begin{aligned}
& \overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
& \downarrow C_{\text {some }} \\
& {[(a, b),(b, c)] \triangleright b} \\
& \text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \\
& \downarrow U_{\text {any }}^{*} \\
& \text { any_of }(b, c),[(a, b),(b, c)] \triangleright b \\
& \downarrow U_{\text {any }}^{*} \\
& b, \text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \\
& \text { C wins } \\
& b, \text { any_of }(b, c),[(a, b),(b, c)] \triangleright b \\
& \text { C wins }
\end{aligned}
$$

A simple example

$$
\begin{aligned}
& \overbrace{\text { some_of }(\text { any_of }(a, b), \text { any_of }(b, c))}^{[(a, b),(b, c)]} \triangleright \text { some_of }(b, d) \\
& \downarrow C_{\text {some }} \\
& {[(a, b),(b, c)] \triangleright b} \\
& \swarrow \quad \searrow U_{\text {some }}^{*} \\
& \text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \quad \text { any_of }(b, c),[(a, b),(b, c)] \triangleright b \\
& \downarrow U_{\text {any }}^{*} \\
& \downarrow U_{a n y}^{*} \\
& b, \text { any_of }(a, b),[(a, b),(b, c)] \triangleright b \\
& \text { C wins } \\
& b, \text { any_of }(b, c),[(a, b),(b, c)] \triangleright b \\
& \text { C wins }
\end{aligned}
$$

Note: (winning) strategies for \mathbf{C} are trees of states that branch for all choices of S

Logical connectives in disguise

Logical connectives in disguise

- any_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \wedge \ldots \wedge F_{n}$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \vee \ldots \vee F_{n}$
- F_{1} given F_{2} corresponds to $F_{2} \rightarrow F_{1}$

Logical connectives in disguise

- any_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \wedge \ldots \wedge F_{n}$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \vee \ldots \vee F_{n}$
- F_{1} given F_{2} corresponds to $F_{2} \rightarrow F_{1}$

Sequent calculus proofs in disguise

C's winning strategy for $[(a, b),(b, c)] \triangleright$ some_of (b, d) corresponds to

$$
\frac{b, a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}{\frac{a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}{}(\wedge, l) \quad \frac{b, a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}{a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}(\wedge, l)} \frac{(a \wedge b) \vee(b \wedge c) \vdash b}{(a \wedge b) \vee(b \wedge c) \vdash b \vee d}(\vee, r) \frac{l}{(\vee)}
$$

Logical connectives in disguise

- any_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \wedge \ldots \wedge F_{n}$
- some_of $\left(F_{1}, \ldots, F_{n}\right)$ corresponds to $F_{1} \vee \ldots \vee F_{n}$
- F_{1} given F_{2} corresponds to $F_{2} \rightarrow F_{1}$

Sequent calculus proofs in disguise

C's winning strategy for $[(a, b),(b, c)] \triangleright$ some_of (b, d) corresponds to

$$
\frac{\frac{b, a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}{a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}(\wedge, l) \quad \frac{b, a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}{a \wedge b,(a \wedge b) \vee(b \wedge c) \vdash b}(\wedge, l)}{\frac{(a \wedge b) \vee(b \wedge c) \vdash b}{(a \wedge b) \vee(b \wedge c) \vdash b \vee d}(\vee, r)}(\vee, I)
$$

Note:

- intuitionistic rules
- no structural rules

Gentzen's original LI/LK

Initial sequents: $A \vdash A$
Cut rule: $\frac{\Gamma \vdash \Delta, A \quad A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}(c u t)$
Structural rules:

$$
\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A}(w, r) \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta}(w, l) \quad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A}(c, r) \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta}(c, l)
$$

Logical rules:

$$
\begin{array}{lc}
\text { Ales: } & \frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A}(\neg, r) \\
\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \wedge B}(\wedge, r) & \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta}(\neg, r) \\
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B, \Gamma \vdash \Delta}(\vee, r) & \frac{A, \Gamma \vdash \Delta}{A \vee B, \Gamma \vdash \Delta}(\wedge, l) \\
\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B}(\rightarrow, r) & \frac{\Gamma \vdash \Delta, A}{A \rightarrow B, \Gamma \vdash \Delta}(\vee, l) \\
& B+\Gamma \vdash \Delta \\
\hline \vdash, I)
\end{array}
$$

Gentzen's original LI/LK

Initial sequents: $A \vdash A$
Cut rule: $\frac{\Gamma \vdash \Delta, A \quad A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}(c u t)$
Structural rules:

$$
\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A}(w, r) \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta}(w, l) \quad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A}(c, r) \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta}(c, l)
$$

Logical rules:

$$
\begin{aligned}
& \frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A}(\neg, r) \quad \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta}(\neg, r) \\
& \frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \wedge B}(\wedge, r) \quad \frac{A, B, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta}(\wedge, I) \\
& \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B}(\vee, r) \\
& \frac{A, \Gamma \vdash \Delta \quad B, \Gamma \vdash \Delta}{A \vee B, \Gamma \vdash \Delta}(\vee, I) \\
& \frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \rightarrow B}(\rightarrow, r) \\
& \frac{\Gamma \vdash \Delta, A \quad B, \Gamma \vdash \Delta}{A \rightarrow B, \Gamma \vdash \Delta}(\rightarrow, I)
\end{aligned}
$$

LIp - a proof search friendly version of LI:

- Initial sequents: $A, \Gamma \vdash \Delta, A / \perp, \Gamma \vdash \Delta \Rightarrow$ no weakening
- contraction built into logical rules, cut-free

Adequateness of the basic C/S-game

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of LIp:
Theorem
C has a winning strategy for $G_{1}, \ldots, G_{n} \triangleright F$ iff
$G_{1}, \ldots, G_{n} \models F$ holds in intuitionistic logic.

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of LIp:
Theorem
C has a winning strategy for $G_{1}, \ldots, G_{n} \triangleright F$ iff
$G_{1}, \ldots, G_{n} \models F$ holds in intuitionistic logic.

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of LIp:
Theorem
C has a winning strategy for $G_{1}, \ldots, G_{n} \triangleright F$ iff
$G_{1}, \ldots, G_{n} \models F$ holds in intuitionistic logic.

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Where to go from here?

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of LIp:
Theorem
C has a winning strategy for $G_{1}, \ldots, G_{n} \triangleright F$ iff $G_{1}, \ldots, G_{n} \models F$ holds in intuitionistic logic.

Proof:

- by translating winning strategies into Llp-proofs and vice versa
- in fact: isomorphism between cut-free Llp-derivations and strategies

Where to go from here?
intuitionistic logic is hardly 'substructural'
\Rightarrow find versions of the game that model resource consciousness

Eliminating implicit contraction

Eliminating implicit contraction

Recall the Unpack-rules:
C picks $G \in \Gamma$ (= bunch of IPs provided by \mathbf{S})
$\left(U_{\text {any }}^{*}\right) G=$ any_of $\left(F_{1}, \ldots, F_{n}\right): \mathbf{C}$ chooses i, \mathbf{S} adds F_{i} to Γ
$\left(U_{\text {some }}^{*}\right) G=$ some_of $\left(F_{1}, \ldots, F_{n}\right)$: S chooses i and adds F_{i} to Γ
$\left(U_{\text {given }}^{*}\right) G=\left(F_{1}\right.$ given $\left.F_{2}\right)$: either \mathbf{S} adds F_{2} to Γ or F_{2} replaces H
$\left(U_{\perp}^{+}\right) G=\perp$: game ends, \mathbf{C} wins

Eliminating implicit contraction

Recall the Unpack-rules:
C picks $G \in \Gamma$ (= bunch of IPs provided by \mathbf{S})
$\left(U_{\text {any }}^{*}\right) G=$ any_of $\left(F_{1}, \ldots, F_{n}\right)$: Chooses i, \mathbf{S} adds F_{i} to Γ
$\left(U_{\text {some }}^{*}\right) G=$ some_of $\left(F_{1}, \ldots, F_{n}\right)$: S chooses i and adds F_{i} to Γ
$\left(U_{\text {given }}^{*}\right) G=\left(F_{1}\right.$ given $\left.F_{2}\right)$: either \mathbf{S} adds F_{2} to Γ or F_{2} replaces H
$\left(U_{\perp}^{+}\right) G=\perp$: game ends, \mathbf{C} wins

Eliminating implicit contraction

Recall the Unpack-rules:
C picks $G \in \Gamma$ (= bunch of IPs provided by \mathbf{S})

$$
\begin{aligned}
\left(U_{a n y}^{*}\right) G & =\text { any_of }\left(F_{1}, \ldots, F_{n}\right): \mathbf{C} \text { chooses } i, \mathbf{S} \text { adds } F_{i} \text { to } \Gamma \\
\left(U_{\text {some }}^{*}\right) G & =\text { some_of }\left(F_{1}, \ldots, F_{n}\right): \mathbf{S} \text { chooses } i \text { and adds } F_{i} \text { to } \Gamma \\
\left(U_{\text {given }}^{*}\right) G & =\left(F_{1} \text { given } F_{2}\right): \text { either } \mathbf{S} \text { adds } F_{2} \text { to } \Gamma \text { or } F_{2} \text { replaces } H \\
\left(U_{\perp}^{+}\right) G & =\perp: \text { game ends, } \mathbf{C} \text { wins }
\end{aligned}
$$

- change adds $F_{i / 2}$ to Γ into replace G by $F_{i / 2}$ in Γ

Eliminating implicit contraction

Recall the Unpack-rules:
C picks $G \in \Gamma$ (= bunch of IPs provided by \mathbf{S})

$$
\begin{aligned}
\left(U_{\text {any }}^{*}\right) G & =\text { any_of }\left(F_{1}, \ldots, F_{n}\right): \mathbf{C} \text { chooses } i, \mathbf{S} \text { adds } F_{i} \text { to } \Gamma \\
\left(U_{\text {some }}^{*}\right) G & =\text { some_of }\left(F_{1}, \ldots, F_{n}\right): \mathbf{S} \text { chooses } i \text { and adds } F_{i} \text { to } \Gamma \\
\left(U_{\text {given }}^{*}\right) G & =\left(F_{1} \text { given } F_{2}\right): \text { either } \mathbf{S} \text { adds } F_{2} \text { to } \Gamma \text { or } F_{2} \text { replaces } H \\
\left(U_{\perp}^{+}\right) G & =\perp \text { : game ends, } \mathbf{C} \text { wins }
\end{aligned}
$$

- change adds $F_{i / 2}$ to Γ into replace G by $F_{i / 2}$ in Γ
- \Rightarrow contraction free intuitionistic logic

Weaking as explicit dismissal

Weaking as explicit dismissal

- instead of always adding to S's bunch of IPs, allow \mathbf{C} to dismiss IPs:
(Dismiss) C chooses $F \in \Gamma$, \mathbf{S} removes F from 「
- corresponds to weakening (w, I) of $\mathbf{L I}$

Weaking as explicit dismissal

- instead of always adding to S's bunch of IPs, allow \mathbf{C} to dismiss IPs:
(Dismiss) C chooses $F \in \Gamma$, \mathbf{S} removes F from 「
- corresponds to weakening (w, I) of $\mathbf{L I}$

Compensating for contraction

Weaking as explicit dismissal

- instead of always adding to S's bunch of IPs, allow \mathbf{C} to dismiss IPs:
(Dismiss) Chooses $F \in \Gamma$, \mathbf{S} removes F from Γ
- corresponds to weakening (w, I) of $\mathbf{L I}$

Compensating for contraction

- new constructor: arbitrary_many (F)

Weaking as explicit dismissal

- instead of always adding to S's bunch of IPs, allow \mathbf{C} to dismiss IPs:
(Dismiss) Chooses $F \in \Gamma$, \mathbf{S} removes F from Γ
- corresponds to weakening (w, I) of $\mathbf{L I}$

Compensating for contraction

- new constructor: arbitrary_many (F)
- game rules for arbitrary_many (F) :
- dismiss arbitrary_many (F)
- replace arbitrary_many (F) by F
- add another copy of arbitrary_many (F)

Weaking as explicit dismissal

- instead of always adding to S's bunch of IPs, allow C to dismiss IPs:
(Dismiss) Chooses $F \in \Gamma$, S removes F from Γ
- corresponds to weakening (w, I) of $\mathbf{L I}$

Compensating for contraction

- new constructor: arbitrary_many (F)
- game rules for arbitrary_many (F) :
- dismiss arbitrary_many (F)
- replace arbitrary_many (F) by F
- add another copy of arbitrary_many (F)
- arbitrary_many (F) corresponds to ! F of linear logic
- dismissing, copying, and replacing correspond to

$$
\frac{\Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta}(w!) \quad \frac{!A,!A, \Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta}(c!) \quad \frac{A, \Gamma \vdash \Delta}{!A, \Gamma \vdash \Delta} L!
$$

Modeling multiplicative conjunction

Modeling multiplicative conjunction

- we want to model/interpret the following sequent rules:

$$
\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta}(\otimes, I) \quad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B}(\otimes, r)
$$

Modeling multiplicative conjunction

- we want to model/interpret the following sequent rules:

$$
\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta}(\otimes, I) \quad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B}(\otimes, r)
$$

- new constructor: each_of $\left(F_{1}, \ldots, F_{n}\right)$

Modeling multiplicative conjunction

- we want to model/interpret the following sequent rules:

$$
\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta}(\otimes, I) \quad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B}(\otimes, r)
$$

- new constructor: each_of $\left(F_{1}, \ldots, F_{n}\right)$
- game rules require splitting of the bunch of IPs provided by \mathbf{S} :
$\left(U_{\text {each }}\right) G=$ each_of $\left(F_{1}, F_{2}\right): \mathbf{S}$ replaces G in Γ by F_{1} and F_{2}
$\left(C_{\text {each }}\right) H=$ each_of $\left(F_{1}, F_{2}\right)$: C splits S's Γ into $\Gamma_{1} \uplus \Gamma_{2}$,
S chooses whether to continue with $\Gamma_{1} \triangleright F_{1}$ or $\Gamma_{2} \triangleright F_{2}$

Modeling multiplicative conjunction

- we want to model/interpret the following sequent rules:

$$
\frac{A, B, \Gamma \vdash \Delta}{A \otimes B, \Gamma \vdash \Delta}(\otimes, I) \quad \frac{\Gamma_{1} \vdash A \quad \Gamma_{2} \vdash B}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B}(\otimes, r)
$$

- new constructor: each_of $\left(F_{1}, \ldots, F_{n}\right)$
- game rules require splitting of the bunch of IPs provided by \mathbf{S} :
$\left(U_{\text {each }}\right) G=$ each_of $\left(F_{1}, F_{2}\right): \mathbf{S}$ replaces G in Γ by F_{1} and F_{2}
($C_{\text {each }}$) $H=$ each_of $\left(F_{1}, F_{2}\right)$: C splits \mathbf{S} 's Γ into $\Gamma_{1} \uplus \Gamma_{2}$,
S chooses whether to continue with $\Gamma_{1} \triangleright F_{1}$ or $\Gamma_{2} \triangleright F_{2}$
- to obtain a C/S-game for full intuitionistic linear logic (ILL):
- replace ($U_{\text {given }}$) by a 'splitting version' of it
- C can always add \emptyset (empty IP - corresponding to Girard's $\mathbf{1}$) to S's Γ
- modify the winning conditions:

C wins in the following states: $\quad A \triangleright A \quad \perp, \Gamma \triangleright A \quad \triangleright \emptyset$

Interpreting Lambek's calculus:

sequences of IPs instead of multisets

Interpreting Lambek's calculus:

 sequences of IPs instead of multisets- the 'bunch of information' provided by \mathbf{S} might be a list (sequence)

Interpreting Lambek's calculus:

 sequences of IPs instead of multisets- the 'bunch of information' provided by \mathbf{S} might be a list (sequence)
- if S Checks an conditional IP of \mathbf{C}, the 'conditioning IP' is added either first or last:
$\Rightarrow F_{1}$ given F_{2} splits into F_{1} given $\searrow F_{2}, F_{1}$ given $\nearrow F_{2}$ corresponding to

$$
\frac{A, \Gamma \vdash B}{\Gamma \vdash A \backslash B}(\backslash, r) \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash B / A}(/, r)
$$

- Unpacking conditional information provided by \mathbf{S} follows

$$
\frac{\Gamma \vdash A \quad \Pi, B, \Sigma \vdash \Delta}{\Pi, \Gamma, A \backslash B, \Sigma \vdash \Delta}(\backslash, /) \quad \frac{\Gamma \vdash A \quad \Pi, B, \Sigma \vdash \Delta}{\Pi, A / B, \Gamma, \Sigma \vdash \Delta}(/, /)
$$

- combined with a 'sequence version of conjunction' (fusion) this leads to an C/S-game for full Lambek calculus FL

Conclusion

Conclusion

- interpreting formulas as 'information packages' emphasizes resources

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

Conclusion

- interpreting formulas as 'information packages' emphasizes resources
- a client C seeks to reconstruct an IP form IPs provided by a server S
- corresponding game rules are asymmetric:
- C acts as scheduler
- S's choices can be seen as nondeterministic behavior
- games rules correspond to sequent rules directly sequent proofs are isomorphic to C's winning strategies
- cut-elimination corresponds to composition of strategies
- covers all single-conclusion sequent calculi: LI, ILL, FL, ...

Topics for further investigation

- interpreting multi-conclusion calculi, in particular full LL
- systematic connections to other game semantics
- hypersequent systems modeled by parallel games
- ...

