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Background

substructural logics are often motivated by resource consciousness
this motivation usually remains metaphorical
think of Girard’s cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro”
“but also”: multiplicative in contrast to additive conjunction
Gentzen’s sequent calculus (LK/LI) is the natural starting point
for connecting inference and resource consciousness – this leads to
(fragments of) linear logic, possibly even Lambek calculus
to breathe life into the resource metaphor, we need dynamics
=⇒ game semantics for substructural sequent calculi
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Different types of game semantics

(1) “propositions as games / connectives as game operators”
(since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, . . . )
– abstract semantic models of (fragments and variants) of linear logic
– leads to a fully abstract semantic model of PCF

(2) “logical dialogue games”
(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, . . . )
– Proponent/Opponent games with logical and structural rules
– proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:

(3) Client/Server games (C/S-games)
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C/S-games - the basic idea

we identify formulas with “information packages” (IPs)
IPs (for the moment) are
either atomic (including atom ⊥ = elementary inconsistency)
or structured according to access options:

I any_of(F1, . . . , Fn)
I some_of(F1, . . . , Fn)
I F1 givenF2

a client C seeks to extract/reconstruct an IP H with respect to
a whole bunch of IPs G1, . . . , Gn maintained by the server S:
Notation: G1, . . . , Gn . H
extraction proceeds stepwise, in rounds, initiated by C
C succeeds (wins) if H is atomic and ∈ {G1, . . . , Gn} the final state.
We are interested in winning strategies for C.
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Two types of rounds

in each state Γ . H the client C may request one of two actions from S:
Unpack one of your (S’s) IP
Check my (C’s) current IP

Unpack-rules: C picks G ∈ Γ (= bunch of IPs provided by S)

(U∗any ) G = any_of(F1, . . . , Fn): C chooses i , S adds Fi to Γ
(U∗some) G = some_of(F1, . . . , Fn): S chooses i and adds Fi to Γ
(U∗given) G = (F1 givenF2): either S adds F1 to Γ or F2 replaces H

(U+
⊥ ) G = ⊥: game ends, C wins

Check-rules: depend on C’s current IP H.
(Cany ) H = any_of(F1, . . . , Fn): S chooses i , Fi replaces H
(Csome) H = some_of(F1, . . . , Fn): C chooses i , Fi replaces H
(Cgiven) H = (F1 givenF2): S adds F2 to Γ, F1 replaces H
(C+

atom) H is atomic: game ends, C wins if H ∈ Γ
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A simple example

[(a,b),(b,c)]︷ ︸︸ ︷
some_of(any_of(a, b), any_of(b, c)) . some_of(b, d)

↓ Csome

[(a, b), (b, c)] . b

↙ ↘ U∗
some

any_of(a, b), [(a, b), (b, c)] . b any_of(b, c), [(a, b), (b, c)] . b

↓ U∗
any ↓ U∗

any

b, any_of(a, b), [(a, b), (b, c)] . b b, any_of(b, c), [(a, b), (b, c)] . b
C wins C wins

Note: (winning) strategies for C are trees of states
that branch for all choices of S
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Logical connectives in disguise

any_of(F1, . . . , Fn) corresponds to F1 ∧ . . . ∧ Fn
some_of(F1, . . . , Fn) corresponds to F1 ∨ . . . ∨ Fn
F1 givenF2 corresponds to F2 → F1

Sequent calculus proofs in disguise
C’s winning strategy for [(a, b), (b, c)] . some_of(b, d) corresponds to

b, a ∧ b, (a ∧ b) ∨ (b ∧ c) ` b
a ∧ b, (a ∧ b) ∨ (b ∧ c) ` b

(∧, l)
b, a ∧ b, (a ∧ b) ∨ (b ∧ c) ` b

a ∧ b, (a ∧ b) ∨ (b ∧ c) ` b
(∧, l)

(a ∧ b) ∨ (b ∧ c) ` b
(∨, l)

(a ∧ b) ∨ (b ∧ c) ` b ∨ d
(∨, r)

Note:
intuitionistic rules
no structural rules
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Gentzen’s original LI/LK
Initial sequents: A ` A Cut rule: Γ ` ∆, A A, Γ ` ∆

Γ ` ∆ (cut)
Structural rules:

Γ ` ∆
Γ ` ∆, A (w , r) Γ ` ∆

A, Γ ` ∆ (w , l) Γ ` ∆, A, A
Γ ` ∆, A (c, r) A, A, Γ ` ∆

A, Γ ` ∆ (c, l)

Logical rules: A, Γ ` ∆
Γ ` ∆,¬A (¬, r) Γ ` ∆, A

¬A, Γ ` ∆ (¬, r)

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧ B (∧, r) A, B, Γ ` ∆

A ∧ B, Γ ` ∆ (∧, l)

Γ ` ∆, A, B
Γ ` ∆, A ∨ B (∨, r) A, Γ ` ∆ B, Γ ` ∆

A ∨ B, Γ ` ∆ (∨, l)

A, Γ ` ∆, B
Γ ` ∆, A→ B (→, r) Γ ` ∆, A B, Γ ` ∆

A→ B, Γ ` ∆ (→, l)

LIp – a proof search friendly version of LI:
• Initial sequents: A, Γ ` ∆, A / ⊥, Γ ` ∆ ⇒ no weakening
• contraction built into logical rules, cut-free
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Γ ` ∆, A→ B (→, r) Γ ` ∆, A B, Γ ` ∆

A→ B, Γ ` ∆ (→, l)

LIp – a proof search friendly version of LI:
• Initial sequents: A, Γ ` ∆, A / ⊥, Γ ` ∆ ⇒ no weakening
• contraction built into logical rules, cut-free

8



Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of LIp:

Theorem
C has a winning strategy for G1, . . . , Gn . F iff
G1, . . . , Gn |= F holds in intuitionistic logic.

Proof:
by translating winning strategies into LIp-proofs and vice versa
in fact: isomorphism between cut-free LIp-derivations and strategies

Where to go from here?
intuitionistic logic is hardly ‘substructural’

⇒ find versions of the game that model resource consciousness
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Eliminating implicit contraction

Recall the Unpack-rules:
C picks G ∈ Γ (= bunch of IPs provided by S)

(U∗any ) G = any_of(F1, . . . , Fn): C chooses i , S adds Fi to Γ
(U∗some) G = some_of(F1, . . . , Fn): S chooses i and adds Fi to Γ
(U∗given) G = (F1 givenF2): either S adds F2 to Γ or F2 replaces H

(U+
⊥ ) G = ⊥: game ends, C wins

change adds Fi/2 to Γ into replace G by Fi/2 in Γ
⇒ contraction free intuitionistic logic
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Weaking as explicit dismissal

instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F ∈ Γ, S removes F from Γ

corresponds to weakening (w , l) of LI

Compensating for contraction

new constructor: arbitrary_many(F )
game rules for arbitrary_many(F ):

I dismiss arbitrary_many(F )
I replace arbitrary_many(F ) by F
I add another copy of arbitrary_many(F )

arbitrary_many(F ) corresponds to !F of linear logic
dismissing, copying, and replacing correspond to

Γ ` ∆
!A, Γ ` ∆ (w !) !A, !A, Γ ` ∆

!A, Γ ` ∆ (c!) A, Γ ` ∆
!A, Γ ` ∆ L!
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Modeling multiplicative conjunction

we want to model/interpret the following sequent rules:

A, B, Γ ` ∆
A⊗ B, Γ ` ∆ (⊗, l) Γ1 ` A Γ2 ` B

Γ1, Γ2 ` A⊗ B (⊗, r)

new constructor: each_of(F1, . . . , Fn)
game rules require splitting of the bunch of IPs provided by S:
(Ueach) G = each_of(F1, F2): S replaces G in Γ by F1 and F2
(Ceach) H = each_of(F1, F2): C splits S’s Γ into Γ1 ] Γ2,

S chooses whether to continue with Γ1 . F1 or Γ2 . F2

to obtain a C/S-game for full intuitionistic linear logic (ILL):
I replace (Ugiven) by a ‘splitting version’ of it
I C can always add ∅ (empty IP – corresponding to Girard’s 1) to S’s Γ
I modify the winning conditions:
C wins in the following states: A . A ⊥, Γ . A . ∅

12
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Interpreting Lambek’s calculus:
sequences of IPs instead of multisets

the ‘bunch of information’ provided by S might be a list (sequence)
if S Checks an conditional IP of C, the ‘conditioning IP’ is added
either first or last:
⇒ F1 givenF2 splits into F1 given↘F2, F1 given↗F2 corresponding to

A, Γ ` B
Γ ` A\B

(\, r) Γ, A ` B
Γ ` B/A

(/, r)

Unpacking conditional information provided by S follows

Γ ` A Π, B, Σ ` ∆
Π, Γ, A\B, Σ ` ∆

(\, l) Γ ` A Π, B, Σ ` ∆
Π, A/B, Γ, Σ ` ∆

(/, l)

combined with a ‘sequence version of conjunction’ (fusion) this
leads to an C/S-game for full Lambek calculus FL

13
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Conclusion

interpreting formulas as ‘information packages’ emphasizes resources
a client C seeks to reconstruct an IP form IPs provided by a server S
corresponding game rules are asymmetric:

I C acts as scheduler
I S’s choices can be seen as nondeterministic behavior

games rules correspond to sequent rules directly
sequent proofs are isomorphic to C’s winning strategies
cut-elimination corresponds to composition of strategies
covers all single-conclusion sequent calculi: LI, ILL, FL, . . .

Topics for further investigation
interpreting multi-conclusion calculi, in particular full LL
systematic connections to other game semantics
hypersequent systems modeled by parallel games
. . .
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