Neighborhood semantics for non-classical logics with modalities

Petr Cintula¹ Carles Noguera²

¹Institute of Computer Science Czech Academy of Sciences

²Institute of Information Theory and Automation Czech Academy of Sciences

SYSMICS'16

Petr Cintula and Carles Noguera (CAS)

Neighborhood Semantics

SYSMICS'16 1 / 20

The goal of this presentation

To study neighborhood semantics for modal many-valued logics

Neighborhood semantics (Scott–Montague 1970) provides,

in the classical case, a possible-worlds semantics for logics where the usual Kripke semantics is not adequate

In particular we will

- define it for a very wide class of logics
- describe its relation with Kripke-style semantics
- axiomatize global consequence relations (w.r.t. all models)

Future work:

- axiomatize global consequence relations w.r.t. classes of models (i.e. extensions with modal axioms)
- study local consequence relations

イロト 不得 トイヨト イヨト

Modal many-valued logics - 1

Many-valued logics: logics complete w.r.t. an intended semantics of algebras with more than two truth-values (typically FL_{ew} -algebras).

Modal many-valued logics: expansions of many-valued logics with modal operators

- Fitting 1992
- Hájek 1998
- Caicedo, Rodríguez 2010
- Bou, Esteva, Godo, Rodríguez 2011
- Marti, Metcalfe 2014
- Vidal 2015
- Caicedo, Metcalfe, Rodríguez, Rogger 2016
- Godo, Rodríguez 2016
- Cintula, Noguera, Rogger 2016

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modal many-valued logics - 2

Modal many-valued logics are endowed with a Kripke-style semantics based on a many-valued scale which provides:

- truth-values of propositions at each possible world
- egree of accessibility from one world to another.

< 回 > < 三 > < 三 >

Modal many-valued logics - 2

Modal many-valued logics are endowed with a Kripke-style semantics based on a many-valued scale which provides:

- truth-values of propositions at each possible world
- egree of accessibility from one world to another.

Problems:

- Axiomatizing a Kripke-style semantics over a given algebra (or class of algebras) of truth-values is in general a difficult problem.
- Conversely, proof systems with natural syntactic conditions may fail to be complete with any such Kripke-style semantics.

Classical neighborhood semantics

SM-model: $\mathfrak{M} = \langle W, N, V \rangle$, where

- $W \neq \emptyset$ (worlds)
- $N: W \rightarrow 2^{2^W}$ (neighborhood function)
- V: Var × W → 2 (classical evaluation), extended to all formulas, in particular:

 $V^{\mathfrak{M}}(\Box \varphi, x) = 1$ iff $\llbracket \varphi \rrbracket_{\mathfrak{M}} \in N(x),$

where $\llbracket \varphi \rrbracket_{\mathfrak{M}} = \{ y \in W \mid V^{\mathfrak{M}}(\varphi, y) = 1 \}$ the set of worlds where " φ is true".

 $\varphi \in Fm_{\Box \diamondsuit}$ is valid in \mathfrak{M} if $\llbracket \varphi \rrbracket_{\mathfrak{M}} = W$.

Global SM-consequence: $\Gamma \models_{SM} \varphi$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Classical Kripke semantics

K-model: $\mathcal{M} = \langle W, R, V \rangle$, where

- $W \neq \emptyset$ (worlds)
- $R \subseteq W^2$ (accessibility relation)
- V: Var × W → 2 (classical evaluation), extended to all formulas, in particular:

 $V^{\mathcal{M}}(\Box \varphi, x) = 1$ iff $R[x] \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}$

where $R[x] = \{y \in W \mid Rxy\}$ and $\llbracket \varphi \rrbracket_{\mathcal{M}} = \{y \in W \mid V^{\mathcal{M}}(\varphi, y) = 1\}.$

K-validity and global K-consequence are defined analogously to SM-validity and SM-consequence.

Given any K-model $\mathcal{M} = \langle W, R, V \rangle$, we obtain an SM-model $\mathfrak{M} = \langle W, N_R, V \rangle$ by setting for all $x \in W$,

 $X \in N_R(x)$ iff $R[x] \subseteq X$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given any K-model $\mathcal{M} = \langle W, R, V \rangle$, we obtain an SM-model $\mathfrak{M} = \langle W, N_R, V \rangle$ by setting for all $x \in W$,

 $X \in N_R(x)$ iff $R[x] \subseteq X$.

② Given any SM-model $\mathfrak{M} = \langle W, N, V \rangle$, we can define a K-model $\mathcal{M} = \langle W, R_N, V \rangle$ by setting for all $x, y \in W$,

 $R_N xy$ iff $y \in X$, for each $X \in N(x)$.

Given any K-model $\mathcal{M} = \langle W, R, V \rangle$, we obtain an SM-model $\mathfrak{M} = \langle W, N_R, V \rangle$ by setting for all $x \in W$,

 $X \in N_R(x)$ iff $R[x] \subseteq X$.

② Given any SM-model $\mathfrak{M} = \langle W, N, V \rangle$, we can define a K-model $\mathcal{M} = \langle W, R_N, V \rangle$ by setting for all $x, y \in W$,

 $R_N xy$ iff $y \in X$, for each $X \in N(x)$.

To preserve the truth of all formulas at each world, \mathfrak{M} has to be augmented, i.e., satisfy two additional conditions:

- N(x) contains its core, i.e. the set $(\bigcap_{X \in N(x)} X) \in N(x)$,
- N(x) is closed under taking supersets, i.e. if X ∈ N(x) and X ⊆ Y, then Y ∈ N(x).

Theorem 1

- (a) Let $\mathcal{M} = \langle W, R, V \rangle$ be a K-model. Then $\mathfrak{M} = \langle W, N_R, V \rangle$ is an augmented SM-model, $R_{N_R} = R$, and $V^{\mathfrak{M}} = V^{\mathcal{M}}$.
- (b) Let $\mathfrak{M} = \langle W, N, V \rangle$ be an augmented SM-model. Then $\mathcal{M} = \langle W, R_N, V \rangle$ is a K-model, $N_{R_N} = N$, and $V^{\mathcal{M}} = V^{\mathfrak{M}}$.

 \models_{ASM} : semantical consequence of augmented SM-models.

Corollary 2

For any subset $\Gamma \subseteq Fm_{\Box \diamondsuit}$ and formula $\varphi \in Fm_{\Box \diamondsuit}$,

 $\Gamma \models_{\mathsf{ASM}} \varphi \qquad \textit{iff} \qquad \Gamma \models_{\mathsf{K}} \varphi.$

Petr Cintula and Carles Noguera (CAS)

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

The logic of classical neighborhood models

Let SM be the expansion of classical logic with

$$(E) \qquad \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}$$

 Theorem 3

 Let $\Gamma \cup \{\varphi\} \subseteq Fm_{\Box \diamondsuit}$, then

 $\Gamma \vdash_{SM} \varphi$ iff $\Gamma \models_{SM} \varphi$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FL_{ew}-algebras

An FL_{ew}-algebra is a structure $A = \langle A, \wedge, \vee, \&, \rightarrow, \overline{0}, \overline{1} \rangle$ such that:

- (1) $\langle A, \wedge, \vee, \overline{0}, \overline{1} \rangle$ is a bounded lattice,
- (2) $\langle B, \&, \overline{1} \rangle$ is a commutative monoid,
- (3) $z \le x \to y$ iff $x \& z \le y$, (residuation)

A (10) A (10)

Many-valued Kripke semantics (for a fixed complete FLe,w-alg. A)

K(A)-model: $\mathcal{M} = \langle W, R, V \rangle$ such that

- $W \neq \emptyset$ (worlds)
- $R: W \times W \rightarrow A$ (accessibility relation)
- V: Var × W → A (evaluation), extended to formulas inductively: using operations of A for the non-modal connectives and

$$V^{\mathcal{M}}(\Box\varphi, x) = \bigwedge \{ Rxy \to V(\varphi, y) \mid y \in W \} = (R[x] \subseteq \llbracket \varphi \rrbracket_{\mathcal{M}}).$$

 $V^{\mathcal{M}}(\diamond \varphi, x) = \bigvee \{ Rxy \& V(\varphi, y) \mid y \in W \} = (R[x] \& \llbracket \varphi \rrbracket_{\mathcal{M}}).$

where we define:

the A-valued subsets of Wto which y belongs to the degree $R[x] = \{y \in W \mid Rxy\}$ it is accessible from x $\llbracket \varphi \rrbracket_{\mathcal{M}} = \{y \in W \mid V^{\mathcal{M}}(\varphi, y)\}$ the formula φ is valid in x

A-valued neighborhood semantics (for a fixed FLew-algebra A)

SM(*A*)-model: $\mathfrak{M} = \langle W, N^{\Box}, N^{\diamondsuit}, V \rangle$ such that

• $W \neq \emptyset$ (worlds)

• $N^{\Box}, N^{\diamondsuit} \colon W \to A^{A^W}$ (neighborhood functions)

 V: Var × W → A (evaluation), extended to formulas inductively: using operations of A for the non-modal connectives and

$$\begin{split} V^{\mathfrak{M}}(\Box\varphi, x) &= (\llbracket\varphi\rrbracket_{\mathfrak{M}} \in N^{\Box}(x)), \\ V^{\mathfrak{M}}(\Diamond\varphi, x) &= (\llbracket\varphi\rrbracket_{\mathfrak{M}} \in N^{\Diamond}(x)). \end{split}$$

where, as before, $\llbracket \varphi \rrbracket_{\mathfrak{M}} = \{ y \in W \mid V^{\mathfrak{M}}(\varphi, y) \}.$

Augmented SM-frames

An SM(*A*)-frame $\langle W, N^{\Box}, N^{\diamond} \rangle$ is augmented if for each $x \in W$ there is an *A*-valued subset C_x of *W* (the core of $N^{\Box}(x)$ and $N^{\diamond}(x)$) such that

 $(C_x \subseteq Y) = (Y \in N^{\square}(x))$ $(C_x \not 0 Y) = (Y \in N^{\diamondsuit}(x))$

Given a K(*A*)-frame $\langle W, R \rangle$, we define an SM(*A*)-frame $\langle W, N_R^{\Box}, N_R^{\diamond} \rangle$:

$$N_R^{\Box}(x) = \{X \in A^W \mid R[x] \subseteq X\},$$

$$N_R^{\diamondsuit}(x) = \{X \in A^W \mid R[x] \ \emptyset \ X\}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a K(*A*)-frame $\langle W, R \rangle$, we define an SM(*A*)-frame $\langle W, N_R^{\Box}, N_R^{\diamond} \rangle$:

$$N_R^{\Box}(x) = \{X \in A^W \mid R[x] \subseteq X\},\$$

$$N_R^{\diamondsuit}(x) = \{X \in A^W \mid R[x] \ \emptyset \ X\}.$$

② Given an SM(A)-frame ⟨W,N[□], N[◊]⟩, we define two accessibility relations:

$$R_{N^{\square}}(x, y) = (\forall X)(X \in N^{\sqcup}(x) \to y \in X),$$

$$R_{N^{\diamond}}(x, y) = (\forall X)(y \in X \to X \in N^{\diamond}(x)).$$

Petr Cintula and Carles Noguera (CAS)

Given a K(*A*)-frame $\langle W, R \rangle$, we define an SM(*A*)-frame $\langle W, N_R^{\Box}, N_R^{\diamond} \rangle$:

$$N_R^{\Box}(x) = \{X \in A^W \mid R[x] \subseteq X\},\$$

$$N_R^{\diamondsuit}(x) = \{X \in A^W \mid R[x] \ \emptyset \ X\}.$$

② Given an SM(A)-frame ⟨W,N[□], N[◊]⟩, we define two accessibility relations:

$$R_{N^{\Box}}(x, y) = (\forall X)(X \in N^{\Box}(x) \to y \in X),$$

$$R_{N^{\diamond}}(x, y) = (\forall X)(y \in X \to X \in N^{\diamond}(x)).$$

Lemma 4

If $\langle W, N^{\Box}, N^{\diamond} \rangle$ is augmented, then $\forall x \in W$, $C_x = R_{N^{\Box}}[x] = R_{N^{\diamond}}[x]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 5

(a) Given a K(A)-model $\mathcal{M} = \langle W, R, V \rangle$, define the augmented SM(A)-model $\mathfrak{M} = \langle W, N_R^{\Box}, N_R^{\diamondsuit}, V \rangle$.

Then $R_{N_R^{\Box}} = R_{N_R^{\diamond}} = R$ and for all $\varphi \in Fm_{\Box \diamond}$ and all $x \in W$:

$$V^{\mathfrak{M}}(\varphi, x) = V^{\mathcal{M}}(\varphi, x).$$

(b) Given an augmented SM(A)-model M = ⟨W, N[□], N[◊], V⟩, define the K(A)-model M = ⟨W, R = R_{N[□]} = R_{N[◊]}, V⟩. Then N_R[□] = N[□], N_R[◊] = N[◊], and for all φ ∈ Fm_{□◊} and all x ∈ W:
V^M(φ, x) = V^M(φ, x).

Corollary 6 For all subsets $\Gamma \cup \{\varphi\} \subseteq Fm_{\Box \diamondsuit}$, $\Gamma \models_{K(A)} \varphi$ iff $\mathfrak{M} \models_{SM(A)} \varphi$ for all augmented SM(A)-models \mathfrak{M} such that $\mathfrak{M} \models_{SM(A)} \Gamma$.

Petr Cintula and Carles Noguera (CAS)

Neighborhood Semantics

SYSMICS'16 16/20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

K-valued neighborhood semantics (K a class of FLew-algebras)

 $\mathrm{SM}(\mathbb{K})$ -model: $\mathfrak{M} = \langle W, \langle A_w \rangle_{w \in W}, N^{\Box}, N^{\diamondsuit}, V \rangle$ such that

• $W \neq \emptyset$ (worlds)

• $A_w \in \mathbb{K}$ for each $w \in W$ (scales)

• $N^{\Box}, N^{\diamond} : W \to (\bigcup_{v \in W} A_v)^{v \in W}$ (neighborhood functions), such that $rg(N^{\Box}(w)), rg(N^{\diamond}(w)) \subseteq A_w$

• $V: Var \times W \to \bigcup_{v \in W} A_v$ (evaluation), such that $V[Var \times \{w\}] \subseteq A_w$ and is extended to formulas inductively: using operations of A for the non-modal connectives and

$$\begin{split} V^{\mathfrak{M}}(\Box\varphi, x) &= (\llbracket\varphi\rrbracket_{\mathfrak{M}} \in N^{\Box}(x)), \\ V^{\mathfrak{M}}(\Diamond\varphi, x) &= (\llbracket\varphi\rrbracket_{\mathfrak{M}} \in N^{\Diamond}(x)). \end{split}$$

where, as before, $\llbracket \varphi \rrbracket_{\mathfrak{M}} = \{x \in W \mid V^{\mathfrak{M}}(\varphi, x)\}.$

Completeness of a many-valued logic w.r.t. a class $\mathbb K$ of algebras

Let L be an axiomatic extension of FL_{ew} and $\mathbb K$ a class of L-algebras.

- L is strongly complete with respect to K if for every Γ ∪ {φ} ⊆ Fm we have: Γ ⊢_L φ iff Γ ⊨_K φ.
- L is finitely strongly complete with respect to K if the same property holds for each *finite* set Γ ∪ {φ} ⊆ *Fm*.
- L is complete with respect to \mathbb{K} if for every $\Gamma \cup \{\varphi\} \subseteq Fm$ we have: $\vdash_{L} \varphi$ iff $\models_{\mathbb{K}} \varphi$.

An axiomatization of the global logic of $SM(\mathbb{K})$ -models

Theorem 7

Let L be an axiomatic extension of FL_{ew} and \mathbb{K} a class of L-algebras. Let LSM be the expansion of L with the additional rules:

$$(E) \qquad \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi} \qquad \frac{\varphi \leftrightarrow \psi}{\Diamond \varphi \leftrightarrow \Diamond \psi}$$

If L is (finitely) strongly complete with respect to \mathbb{K} , then for each (finite) $\Gamma \cup \{\varphi\} \subseteq Fm_{\Box \diamondsuit}$ we have:

$$\Gamma \vdash_{\mathsf{LSM}} \varphi \qquad \textit{iff} \qquad \Gamma \models_{\mathsf{SM}(\mathbb{K})} \varphi.$$

Petr Cintula and Carles Noguera (CAS)

く 戸 と く ヨ と く ヨ と …

An axiomatization of the global logic of $\mathrm{SM}(\mathbb{K})\text{-models}$ —in a general framework

Theorem 8

Let L be a finitary protoalgebraic logic in a countable language \mathcal{L} and $\mathbb{K} \subseteq \text{MOD}^*(L)$. Let LSM be the expansion of L with the rules:

$$(E) \qquad \frac{\varphi \Leftrightarrow \psi}{\Box \varphi \Leftrightarrow \Box \psi} \qquad \frac{\varphi \Leftrightarrow \psi}{\Diamond \varphi \Leftrightarrow \Diamond \psi}$$

If L is strongly complete with respect to \mathbb{K} , then for each $\Gamma \cup \{\varphi\} \subseteq Fm_{\Box \diamondsuit}$ we have:

 $\Gamma \vdash_{\mathsf{LSM}} \varphi \qquad \textit{iff} \qquad \Gamma \models_{\mathsf{SM}(\mathbb{K})} \varphi.$

Petr Cintula and Carles Noguera (CAS)

3

イロン イ理 とくほ とくほ とう

An axiomatization of the global logic of $\mathrm{SM}(\mathbb{K})\text{-models}$ —in a general framework

Theorem 8

Let L be a finitary protoalgebraic logic in a countable language \mathcal{L} and $\mathbb{K} \subseteq \text{MOD}^*(L)$. Let LSM be the expansion of L with the rules:

$$(E) \qquad \frac{\varphi \Leftrightarrow \psi}{\Box \varphi \Leftrightarrow \Box \psi} \qquad \frac{\varphi \Leftrightarrow \psi}{\Diamond \varphi \Leftrightarrow \Diamond \psi}$$

If L is finitely strongly complete with respect to \mathbb{K} and \mathcal{L} is finite, then for each finite $\Gamma \cup \{\varphi\} \subseteq Fm_{\Box \diamondsuit}$ we have:

 $\Gamma \vdash_{\mathsf{LSM}} \varphi \qquad \textit{iff} \qquad \Gamma \models_{\mathsf{SM}(\mathbb{K})} \varphi.$

3

イロン イ理 とくほ とくほ とう