
Residuated lattices and twist-products

Manuela Busaniche
based on a joint work with R. Cignoli
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Given a lattice L = 〈L,∨,∧〉 the twist constructions are obtained
by considering

Ltwist = 〈L× L,t,u,∼〉

with the operations t,u given by

(a,b) t (c,d) = (a ∨ c,b ∧ d) (1)

(a,b) u (c,d) = (a ∧ c,b ∨ d) (2)

∼ (a,b) = (b,a) (3)
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The operation ∼ satisfies:

1 ∼∼ x = x
2 ∼ (x u y) =∼ xt ∼ y
3 ∼ (x t y) =∼ xu ∼ y
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When the lattice L has some additional operations, the
construction Ltwist can also be endowed with some additional
operations.

Manuela Busaniche Residuated lattices and twist-products



This construction has been used to represent some well-known
algebras:

Nelson algebras
Fidel, Vakarelov,
Sendlewski,Cignoli, . . .

Involutive residuated lattices
Tsinakis, Wille
Galatos, Raftery, . . .

N4-lattices
Odintsov

Bilattices
Ginsberg, Fitting,
Avron, Rivieccio, . . .
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We will deal with commutative residuated lattices, i.e,
structures of the form

L = 〈L,∨,∧, ·,→,e〉

such that

〈L, ·,e〉 is a commutative monoid;
〈L,∨,∧〉 is a lattice;
(·,→) is a residuated pair:

x ≤ y → z iff x · y ≤ z.
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An involution on L is a unary operation ∼ satisfying the
equations

∼∼ x = x

and
x →∼ y = y →∼ x .

If f :=∼ e, then ∼ x = x → f and f satisfies the equation

(x → f )→ f = x . (4)

The element f is called a dualizing element.
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Conversely, if f ∈ L is a dualizing element and we define
∼ x = x → f for all x ∈ L, then ∼ is an involution on L and
∼ e = f .

Therefore involutive residuated lattices are of the form:

L = 〈L,∨,∧, ·,→,e,∼〉

L = 〈L,∨,∧, ·,→,e, f 〉.

We will deal with
L = 〈L,∨,∧, ·,→,e〉

with e a dualizing element or equivalent ∼ x = x → e an
involution.
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e-lattices.

By an e-lattice we mean a commutative residuated lattice A
which satisfies the equation:

(x → e)→ e = x . (5)

The involution ∼ given by the prescription ∼ x = x → e for all
x ∈ A, satisfies the following properties:
M1 ∼∼ x = x ,
M2 ∼ (x ∨ y) = ∼ x∧ ∼ y ,
M3 ∼ (x ∧ y) = ∼ x∨ ∼ y ,
M4 ∼ (x · y) = x → ∼ y ,
M5 ∼ e = e.
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Lattice-ordered abelian groups with

x · y = x + y ,

x → y = y − x

and e = 0 are examples of e-lattices.
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Let L = 〈L,∨,∧, ·,→,e〉 be an integral commutative residuated
lattice.

K(L) = 〈L× L,t,u, ·K (L),→K (L), (e,e)〉

with the operations t,u, ·,→ given by

(a,b) t (c,d) = (a ∨ c,b ∧ d) (6)

(a,b) u (c,d) = (a ∧ c,b ∨ d) (7)

(a,b) ·K (L) (c,d) = (a · c, (a→ d) ∧ (c → b)) (8)

(a,b)→K (L) (c,d) = ((a→ c) ∧ (d → b),a · d) (9)
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The involution in pairs is given by

∼ (a,b) = (a,b)→K (L) (e,e) = (b,a). (10)

K(L) is an e-lattice.
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Definition
We call K(L) the full twist-product obtained from L, and every
subalgebra A of K(L) containing the set {(a,e) : a ∈ L} is
called twist-product obtained from L.
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Recall that given a commutative residuated lattice
A = (A,∨,∧, ·,→,e) its negative cone is given by

A− = {x ∈ A : x ≤ e}

and if we define
x →e y = (x → y) ∧ e

then 〈A−,∨,∧, ·,→e,e〉 is an integral commutative residuated
lattice.

We aim to characterize the e-lattices that can be represented
as twist-products obtained from their negative cones; i.e.,
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If A is an e-lattice....

when does it happen that A is isomorphic to a subalgebra of
K(A−)?

Manuela Busaniche Residuated lattices and twist-products



Definition
We say that a commutative residuated lattice
L = (L,∨,∧, ·,→,e) satisfies distributivity at e if the distributive
laws

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (11)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (12)

hold whenever any of x , y , z is replaced by e.
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Example: L is distributive at e, then it satisfies

e ∨ (y ∧ z) = (e ∨ y) ∧ (e ∨ z) (13)

x ∧ (e ∨ z) = (x ∧ e) ∨ (x ∧ z) (14)
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A K-lattice is an e-lattice satisfying distributivity at e and

(x · y) ∧ e = (x ∧ e) · (y ∧ e) (15)

((x ∧ e)→ y) ∧ ((∼ y ∧ e)→∼ x) = x → y , (16)
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For every integral commutative residuated lattice L the
twist-products K(L) are K-lattices.
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It follows from the definition that K-lattices form a variety that
we denote by K.

Lattice-ordered abelian groups are e-lattices that are not
K-lattices.
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It is well known and easy to verify that distributivity at e implies
the quasiequation:

x ∧ e = y ∧ e and x ∨ e = y ∨ e imply x = y . (17)

This is equivalent to:

if x ∧ e = y ∧ e and ∼ x ∧ e = ∼ y ∧ e, then x = y . (18)
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Theorem

Let A be a K-lattice. The map φA : A→ K(A−) given by

x 7→ (x ∧ e,∼ x ∧ e)

is an injective homomorphism.
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φA is a homomorphism.
The preservation of the lattice operations relies on
∼ (x ∨ y) = ∼ x∧ ∼ y and distributivity at e. For x , y ∈ A

φA(x ∧ y) = ((x ∧ y) ∧ e,∼ (x ∧ y) ∧ e) =

((x ∧ e) ∧ (y ∧ e), (∼ x∨ ∼ y) ∧ e) =

((x ∧ e) ∧ (y ∧ e), (∼ x ∧ e) ∨ (∼ y ∧ e)) =

(x ∧ e,∼ x ∧ e) u (y ∧ e,∼ y ∧ e) = φA(x) u φA(y).

With similar ideas one can prove that φA preserves the
supremum.
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Observe that

φA(∼ x) = (∼ x∧e,∼∼ x∧e) = (∼ x∧e, x∧e) =∼ (x∧e,∼ x∧e).

Due to ∼ (x · y) = x → ∼ y , it is only left to check that φA
preserves ·.
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Notice that

φA(x · y) = ((x · y) ∧ e,∼ (x · y) ∧ e),

that can be rewritten as

((x ∧ e) · (y ∧ e), (x →∼ y) ∧ e). (19)

On the other hand,
φA(x) · φA(y) =

((x ∧e) · (y ∧e), ((x ∧e)→e (∼ y ∧e))∧ ((y ∧e)→e (∼ x ∧e))).
(20)

To see that φA(x · y) = φA(x) · φA(y) it remains to prove that the
second components coincide.
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We have

((x ∧ e)→e (∼ y ∧ e)) ∧ ((y ∧ e)→e (∼ x ∧ e)) =

((x ∧ e)→ (∼ y ∧ e)) ∧ ((y ∧ e)→ (∼ x ∧ e)) ∧ e =

((x ∧ e)→ (∼ y)) ∧ e ∧ ((y ∧ e)→ (∼ x)) =

(x →∼ y) ∧ e.

Finally, the injectivity of φA follows at once from

x ∧ e = y ∧ e and ∼ x ∧ e = ∼ y ∧ e imply x = y .
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So φA : A→ K(A−) given by

x 7→ (x ∧ e,∼ x ∧ e)

is an injective homomorphism.

Since for each a ∈ A−,

φA(a) = (a,e),

it follows that by restriction, φA defines an isomorphism from

A− → φA(A)−

.
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Theorem
Every K-lattice A is isomorphic to a twist-product obtained from
its negative cone.
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Categories

The application
L 7→ K(L)

and
f 7→ (f , f )

from
ICRL→ K-lattices

defines a functor.

Manuela Busaniche Residuated lattices and twist-products



The application
A 7→ A−

and
f 7→ f �A−

from
K-lattices→ ICRL

is also a functor which is left adjoint to the first.
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Categories

Let T be the full subcategory of K-lattices whose objects are
the total K-lattices, i.e.,

A ∼= K(A−)

then

Theorem
The categories of integral commutative residuated lattices and
T are equivalent categories.

Manuela Busaniche Residuated lattices and twist-products



Categories

Let T be the full subcategory of K-lattices whose objects are
the total K-lattices, i.e.,

A ∼= K(A−)

then

Theorem
The categories of integral commutative residuated lattices and
T are equivalent categories.

Manuela Busaniche Residuated lattices and twist-products



Given a K-lattice A isomorphic to a subalgebra of K(A−),

how can we use information of the negative cone A− to deduce
some properties of A?
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Congruences

A first general result (not only for K-lattices) is that

The lattices Cong(A) and Cong(A−) are isomorphic.
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Translating equations

A K-lattice satisfies a lattice identity τ if and only if its negative
cone satisfies τ and τd . In particular, a K-lattice is distributive if
and only if its negative cone is distributive.
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Representable K-lattices

A residuated lattice is representable if it is a subdirect product
of linearly ordered residuated lattices. Given a subvariety
V ⊆ CRL, the representable residuated lattices in V form a
subvariety of V characterized by the equations

e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y) (21)

and
e ∧ ((x → y) ∨ (y → x)) = e. (22)
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Representable K-lattices

We introduce the following K-lattices:

B 1

0

K(B)

(1,1) (0,0)

(0,1)

(1,0)
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P3

(1,1)

(0,1)

(1,0)

Manuela Busaniche Residuated lattices and twist-products



1 Every three-element K-lattice is isomorphic to P3.

2 P3 is the only nontrivial K-lattice in which every element is
comparable with e.

3 The K-lattice P3 is the only nontrivial totally ordered
K-lattice.
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Twist-products

For each integral commutative residuated lattice L we have a
family of twist-products

KL = {S ⊆ K(L) : for all x ∈ L, (x ,e) ∈ S}.

We aim to classify these twist-products.
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S. P. Odintsov, Algebraic semantics for paraconsistent
Nelson’s logic, J. Log. Comput. 13 (2003), 453–468.
S. P. Odintsov, On the representation of N4-lattices, Stud.
Log. 76 (2004), 385–405.
S. P. Odintsov, Constructive Negations and
Paraconsistency, Trends in Logic–Studia Logica Library
26. Springer. Dordrecht (2008)
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K(L)

subalgebra of K(L) : K(L)− ∼= L

subalgebra of K(L) : K(L)− ∼= L

subalgebra of K(L) : K(L)− ∼= L

L
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(L,F1) −→ K(L)

(L,F2) −→ subalgebra of K(L) : K(L)− ∼= L

(L,F3) −→ subalgebra of K(L) : K(L)− ∼= L

...
...

(L,Fn) −→ subalgebra of K(L) : K(L)− ∼= L
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The finite MV-chain L3 given by

L3 =

{
0,

1
2
,1

}
with the operations given by

x · y = max{0, x + y − 1} x → y = min{1,1− x + y}.

Recall that ¬x = x → 0. One can always define
x ⊕ y = ¬(¬x · ¬y) which is

x ⊕ y = min(0, x + y).

Manuela Busaniche Residuated lattices and twist-products



The finite MV-chain L3 given by

L3 =

{
0,

1
2
,1

}
with the operations given by

x · y = max{0, x + y − 1} x → y = min{1,1− x + y}.

Recall that ¬x = x → 0. One can always define
x ⊕ y = ¬(¬x · ¬y) which is

x ⊕ y = min(0, x + y).

Manuela Busaniche Residuated lattices and twist-products



(1,1/2) (1/2,0)

(1/2,1/2)(1,1) (0,0)

(1/2,1) (0,1/2)

(1,0)

(0,1)
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(1,1/2) (1/2,0)

(1/2,1/2)(1,1) (0,0)

(1/2,1) (0,1/2)

(1,0)

(0,1)
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KL3.

S0 = K(L3)

= {(x , y) ∈ L3 × L3 : x ⊕ y ≥ 0}

S1 = {(x , y) ∈ L3 × L3 : x ⊕ y = 1}

S 1
2
= {(x , y) ∈ L3 × L3 : x ⊕ y ≥ 1

2
}.

If we consider the three lattice filters of L3

F1 = {1}, F 1
2
= {1, 1

2
}, F0 = {1, 1

2
,0}
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KL3.

S0 = K = {(x , y) : x ⊕ y ∈ F0}

S1 = {(x , y) : x ⊕ y ∈ F1}

S 1
2
= {(x , y) : x ⊕ y ∈ F 1

2
}.

If we consider the three lattice filters of L3

F1 = {1}, F 1
2
= {1, 1

2
}, F0 = {1, 1

2
,0}
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KL3.

S0 = K = {(x , y) : ¬x → ¬¬y ∈ F0}

S1 = {(x , y) : ¬x → ¬¬y ∈ F1}

S 1
2
= {(x , y) : ¬x → ¬¬y ∈ F 1

2
}.

If we consider the three lattice filters of L3

F1 = {1}, F 1
2
= {1, 1

2
}, F0 = {1, 1

2
,0}
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By an integral bounded commutative residuated lattice we
mean an algebra

B = 〈B,∨,∧, ·,→,e,0〉

such that 〈B,∨,∧, ·,→,e〉 is an integral commutative residuated
lattice and 0 is the lower bound of the lattice structure.

Given an integral bounded commutative residuated lattice B we
can define a negation on B as

¬x = x → 0.
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By a Glivenko residuated lattice we mean an integral bounded
commutative residuated lattice satisfying any of the equivalent
conditions:

¬¬(¬¬ x → x) = e.

¬¬(x → y) = x → ¬¬y .

Manuela Busaniche Residuated lattices and twist-products



Examples of Glivenko residuated lattices

Integral involutive residuated lattices are trivially Glivenko.
Heyting algebras are Glivenko.
Integral bounded commutative residuated lattices that
satisfy the hoop equation

x ∧ y = x · (x → y)

are Glivenko.
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Let B be a Glivenko residuated lattice: there is a bijective
correspondence between

regular lattice filters of B→ admissible subalgebras of K(B)

given by

F 7→ {(x , y) ∈ K (B) : ¬x → ¬¬y ∈ F}

whose inverse map is given by

S 7→ {x ∈ B : (0, x) ∈ S}.
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Conclusions

1 We have characterized the subvariety of e-lattices that can
be represented by twist-products: K-lattices.

2 We have studied representable K-lattices.
3 We have established a bijective correspondence among

pairs of Glivenko residuated lattices and regular lattices
filters and twist-products:

(L,F ) 7→ (S ⊆ K (L)).
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Open problems

We believe that the key to understand K-lattices is the study of
twist-products obtained from an arbitrary commutative integral
residuated lattice L. This is equivalent to the investigation of
admissible subalgebras of K(L).

1 Characterize admissible subalgebras of the full
twist-product K(B) for B an arbitrary bounded integral
commutative residuated lattice.

2 Characterize admissible subalgebras of the full
twist-product K(L) for L an arbitrary integral commutative
residuated lattice.
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Thank you!
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