Residuated lattices and twist-products

Manuela Busaniche based on a joint work with R. Cignoli

Instituto de Matemática Aplicada del Litoral
Santa Fe, Argentina
Syntax Meets Semantics 2016 Barcelona, 9th September

Twist-structures

- J. Kalman, Lattices with involution, Trans. Amer. Math. Soc. 87 (1958), 485-491.
- M. Kracht, On extensions of intermediate logics by strong negation, J. Philos. Log. 27 (1998), 49-73.

Given a lattice $\mathbf{L}=\langle L, \vee, \wedge\rangle$ the twist constructions are obtained by considering

$$
\mathbf{L}^{\text {twist }}=\langle L \times L, \sqcup, \sqcap, \sim\rangle
$$

with the operations \sqcup, \sqcap given by

$$
\begin{gather*}
(a, b) \sqcup(c, d)=(a \vee c, b \wedge d) \tag{1}\\
(a, b) \sqcap(c, d)=(a \wedge c, b \vee d) \tag{2}\\
\sim(a, b)=(b, a) \tag{3}
\end{gather*}
$$

The operation \sim satisfies:

(1) $\sim \sim x=x$
(2) $\sim(x \sqcap y)=\sim x \sqcup \sim y$
(3) $\sim(x \sqcup y)=\sim x \sqcap \sim y$

When the lattice \mathbf{L} has some additional operations, the construction $\mathbf{L}^{\text {twist }}$ can also be endowed with some additional operations.

This construction has been used to represent some well-known algebras:

This construction has been used to represent some well-known algebras:

- Nelson algebras

Fidel, Vakarelov, Sendlewski,Cignoli, ...

This construction has been used to represent some well-known algebras:

- Nelson algebras

Fidel, Vakarelov, Sendlewski,Cignoli, ...

- Involutive residuated lattices

Tsinakis, Wille
Galatos, Raftery, ...

Ginsberg, Fitting,
Avron, Rivieccio,

This construction has been used to represent some well-known algebras:

- Nelson algebras

Fidel, Vakarelov, Sendlewski,Cignoli, ...

- Involutive residuated lattices

Tsinakis, Wille
Galatos, Raftery, ...

- N4-lattices

Odintsov

- Bilattices

Ginsberg, Fitting,
Avron, Rivieccio,

This construction has been used to represent some well-known algebras:

- Nelson algebras

Fidel, Vakarelov, Sendlewski,Cignoli, ...

- Involutive residuated lattices

Tsinakis, Wille
Galatos, Raftery, ...

- N4-lattices

Odintsov

- Bilattices

Ginsberg, Fitting,
Avron, Rivieccio, ...

We will deal with commutative residuated lattices, i.e, structures of the form

$$
\mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e\rangle
$$

such that

We will deal with commutative residuated lattices, i.e, structures of the form

$$
\mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e\rangle
$$

such that

- $\langle L, \cdot, e\rangle$ is a commutative monoid;
- $\langle L, \vee, \wedge\rangle$ is a lattice;
- (\cdot, \rightarrow) is a residuated pair:

$$
x \leq y \rightarrow z \quad \text { iff } \quad x \cdot y \leq z
$$

An involution on \mathbf{L} is a unary operation \sim satisfying the equations

$$
\sim \sim x=x
$$

and

$$
x \rightarrow \sim y=y \rightarrow \sim x
$$

An involution on \mathbf{L} is a unary operation \sim satisfying the equations

$$
\sim \sim x=x
$$

and

$$
x \rightarrow \sim y=y \rightarrow \sim x
$$

If $f:=\sim e$, then $\sim x=x \rightarrow f$ and f satisfies the equation

$$
\begin{equation*}
(x \rightarrow f) \rightarrow f=x . \tag{4}
\end{equation*}
$$

The element f is called a dualizing element.

Conversely, if $f \in L$ is a dualizing element and we define $\sim x=x \rightarrow f$ for all $x \in L$, then \sim is an involution on \mathbf{L} and
$\sim e=f$.

Conversely, if $f \in L$ is a dualizing element and we define $\sim x=x \rightarrow f$ for all $x \in L$, then \sim is an involution on \mathbf{L} and $\sim e=f$.

Therefore involutive residuated lattices are of the form:

$$
\begin{aligned}
& \mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e, \sim\rangle \\
& \mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e, f\rangle .
\end{aligned}
$$

Conversely, if $f \in L$ is a dualizing element and we define $\sim x=x \rightarrow f$ for all $x \in L$, then \sim is an involution on L and $\sim e=f$.

Therefore involutive residuated lattices are of the form:

$$
\begin{aligned}
& \mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e, \sim\rangle \\
& \mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e, f\rangle .
\end{aligned}
$$

We will deal with

$$
\mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e\rangle
$$

with e a dualizing element or equivalent $\sim x=x \rightarrow e$ an involution.

e-lattices.

By an e-lattice we mean a commutative residuated lattice \mathbf{A} which satisfies the equation:

$$
\begin{equation*}
(x \rightarrow e) \rightarrow e=x . \tag{5}
\end{equation*}
$$

By an e-lattice we mean a commutative residuated lattice \mathbf{A} which satisfies the equation:

$$
\begin{equation*}
(x \rightarrow e) \rightarrow e=x . \tag{5}
\end{equation*}
$$

The involution \sim given by the prescription $\sim x=x \rightarrow e$ for all $x \in A$, satisfies the following properties:
$\mathrm{M}_{1} \sim \sim x=x$,
$\mathrm{M}_{2} \sim(x \vee y)=\sim x \wedge \sim y$,
$\mathrm{M}_{3} \sim(x \wedge y)=\sim x \vee \sim y$,
$\mathrm{M}_{4} \sim(x \cdot y)=x \rightarrow \sim y$,
$\mathrm{M}_{5} \sim e=e$.

Lattice-ordered abelian groups with

$$
\begin{aligned}
& x \cdot y=x+y \\
& x \rightarrow y=y-x
\end{aligned}
$$

and $e=0$ are examples of e-lattices.

Let $\mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e\rangle$ be an integral commutative residuated lattice.

Let $\mathbf{L}=\langle L, \vee, \wedge, \cdot, \rightarrow, e\rangle$ be an integral commutative residuated lattice.

$$
\mathbf{K}(\mathbf{L})=\langle L \times L, \sqcup, \sqcap, \cdot K(L), \rightarrow K(L),(e, e)\rangle
$$

with the operations $\sqcup, \sqcap, \cdot, \rightarrow$ given by

$$
\begin{gather*}
(a, b) \sqcup(c, d)=(a \vee c, b \wedge d) \tag{6}\\
(a, b) \sqcap(c, d)=(a \wedge c, b \vee d) \tag{7}\\
(a, b) \cdot K(L)(c, d)=(a \cdot c,(a \rightarrow d) \wedge(c \rightarrow b)) \tag{8}\\
(a, b) \rightarrow_{K(L)}(c, d)=((a \rightarrow c) \wedge(d \rightarrow b), a \cdot d) \tag{9}
\end{gather*}
$$

The involution in pairs is given by

$$
\begin{equation*}
\sim(a, b)=(a, b) \rightarrow_{K(L)}(e, e)=(b, a) \tag{10}
\end{equation*}
$$

The involution in pairs is given by

$$
\begin{equation*}
\sim(a, b)=(a, b) \rightarrow_{K(L)}(e, e)=(b, a) \tag{10}
\end{equation*}
$$

$K(L)$ is an e-lattice.

Definition

We call $\mathbf{K}(\mathbf{L})$ the full twist-product obtained from \mathbf{L}, and every subalgebra \mathbf{A} of $\mathbf{K}(\mathbf{L})$ containing the set $\{(a, e): a \in L\}$ is called twist-product obtained from \mathbf{L}.

Recall that given a commutative residuated lattice $\mathbf{A}=(A, \vee, \wedge, \cdot, \rightarrow, e)$ its negative cone is given by

$$
A^{-}=\{x \in A: x \leq e\}
$$

and if we define

$$
x \rightarrow_{e} y=(x \rightarrow y) \wedge e
$$

then $\left\langle\boldsymbol{A}^{-}, \vee, \wedge, \cdot, \rightarrow_{e}, e\right\rangle$ is an integral commutative residuated lattice.

Recall that given a commutative residuated lattice $\mathbf{A}=(A, \vee, \wedge, \cdot, \rightarrow, e)$ its negative cone is given by

$$
A^{-}=\{x \in A: x \leq e\}
$$

and if we define

$$
x \rightarrow_{e} y=(x \rightarrow y) \wedge e
$$

then $\left\langle\boldsymbol{A}^{-}, \vee, \wedge, \cdot, \rightarrow_{e}, e\right\rangle$ is an integral commutative residuated lattice.

We aim to characterize the e-lattices that can be represented as twist-products obtained from their negative cones; i.e.,

If \mathbf{A} is an e-lattice....
when does it happen that \mathbf{A} is isomorphic to a subalgebra of $\mathbf{K}\left(\mathbf{A}^{-}\right)$?

Definition

We say that a commutative residuated lattice
$\mathbf{L}=(L, \vee, \wedge, \cdot, \rightarrow, e)$ satisfies distributivity at e if the distributive laws

$$
\begin{align*}
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \tag{11}\\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \tag{12}
\end{align*}
$$

hold whenever any of x, y, z is replaced by e.

Example: \mathbf{L} is distributive at e, then it satisfies

$$
\begin{align*}
& e \vee(y \wedge z)=(e \vee y) \wedge(e \vee z) \tag{13}\\
& x \wedge(e \vee z)=(x \wedge e) \vee(x \wedge z) \tag{14}
\end{align*}
$$

A K-lattice is an e-lattice satisfying distributivity at e and

$$
\begin{gather*}
(x \cdot y) \wedge e=(x \wedge e) \cdot(y \wedge e) \tag{15}\\
((x \wedge e) \rightarrow y) \wedge((\sim y \wedge e) \rightarrow \sim x)=x \rightarrow y \tag{16}
\end{gather*}
$$

For every integral commutative residuated lattice \mathbf{L} the twist-products $\mathbf{K}(\mathbf{L})$ are K-lattices.

It follows from the definition that K-lattices form a variety that we denote by \mathbb{K}.

It follows from the definition that K -lattices form a variety that we denote by \mathbb{K}.

Lattice-ordered abelian groups are e-lattices that are not K-lattices.

It is well known and easy to verify that distributivity at e implies the quasiequation:

$$
\begin{equation*}
x \wedge e=y \wedge e \text { and } x \vee e=y \vee e \text { imply } x=y \tag{17}
\end{equation*}
$$

This is equivalent to:

$$
\begin{equation*}
\text { if } x \wedge e=y \wedge e \text { and } \sim x \wedge e=\sim y \wedge e, \quad \text { then } x=y \tag{18}
\end{equation*}
$$

Theorem

Let \mathbf{A} be a K-lattice. The $\operatorname{map} \phi_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{K}\left(\mathbf{A}^{-}\right)$given by

$$
x \mapsto(x \wedge e, \sim x \wedge e)
$$

is an injective homomorphism.
$\phi_{\mathbf{A}}$ is a homomorphism.

- The preservation of the lattice operations relies on $\sim(x \vee y)=\sim x \wedge \sim y$ and distributivity at e. For $x, y \in A$

$$
\begin{gathered}
\phi_{\mathbf{A}}(x \wedge y)=((x \wedge y) \wedge e, \sim(x \wedge y) \wedge e)= \\
((x \wedge e) \wedge(y \wedge e),(\sim x \vee \sim y) \wedge e)= \\
((x \wedge e) \wedge(y \wedge e),(\sim x \wedge e) \vee(\sim y \wedge e))= \\
(x \wedge e, \sim x \wedge e) \sqcap(y \wedge e, \sim y \wedge e)=\phi_{\mathbf{A}}(x) \sqcap \phi_{\mathbf{A}}(y) .
\end{gathered}
$$

With similar ideas one can prove that $\phi_{\mathbf{A}}$ preserves the supremum.

Observe that
$\phi_{\mathbf{A}}(\sim x)=(\sim x \wedge e, \sim \sim x \wedge e)=(\sim x \wedge e, x \wedge e)=\sim(x \wedge e, \sim x \wedge e)$.

Due to $\sim(x \cdot y)=x \rightarrow \sim y$, it is only left to check that $\phi_{\mathbf{A}}$ preserves .

Notice that

$$
\phi_{\mathbf{A}}(x \cdot y)=((x \cdot y) \wedge e, \sim(x \cdot y) \wedge e)
$$

that can be rewritten as

$$
\begin{equation*}
((x \wedge e) \cdot(y \wedge e),(x \rightarrow \sim y) \wedge e) \tag{19}
\end{equation*}
$$

Notice that

$$
\phi_{\mathbf{A}}(x \cdot y)=((x \cdot y) \wedge e, \sim(x \cdot y) \wedge e)
$$

that can be rewritten as

$$
\begin{equation*}
((x \wedge e) \cdot(y \wedge e),(x \rightarrow \sim y) \wedge e) \tag{19}
\end{equation*}
$$

On the other hand,

$$
\begin{gather*}
\phi_{\mathbf{A}}(x) \cdot \phi_{\mathbf{A}}(y)= \\
\left((x \wedge e) \cdot(y \wedge e),\left((x \wedge e) \rightarrow_{e}(\sim y \wedge e)\right) \wedge\left((y \wedge e) \rightarrow_{e}(\sim x \wedge e)\right)\right) . \tag{20}
\end{gather*}
$$

Notice that

$$
\phi_{\mathbf{A}}(x \cdot y)=((x \cdot y) \wedge e, \sim(x \cdot y) \wedge e)
$$

that can be rewritten as

$$
\begin{equation*}
((x \wedge e) \cdot(y \wedge e),(x \rightarrow \sim y) \wedge e) \tag{19}
\end{equation*}
$$

On the other hand,

$$
\phi_{\mathbf{A}}(x) \cdot \phi_{\mathbf{A}}(y)=
$$

$\left((x \wedge e) \cdot(y \wedge e),\left((x \wedge e) \rightarrow_{e}(\sim y \wedge e)\right) \wedge\left((y \wedge e) \rightarrow_{e}(\sim x \wedge e)\right)\right)$.

To see that $\phi_{\mathbf{A}}(x \cdot y)=\phi_{\mathbf{A}}(x) \cdot \phi_{\mathbf{A}}(y)$ it remains to prove that the second components coincide.

We have

$$
\begin{gathered}
\left((x \wedge e) \rightarrow_{e}(\sim y \wedge e)\right) \wedge\left((y \wedge e) \rightarrow_{e}(\sim x \wedge e)\right)= \\
((x \wedge e) \rightarrow(\sim y \wedge e)) \wedge((y \wedge e) \rightarrow(\sim x \wedge e)) \wedge e= \\
((x \wedge e) \rightarrow(\sim y)) \wedge e \wedge((y \wedge e) \rightarrow(\sim x))= \\
(x \rightarrow \sim y) \wedge e
\end{gathered}
$$

We have

$$
\begin{gathered}
\left((x \wedge e) \rightarrow_{e}(\sim y \wedge e)\right) \wedge\left((y \wedge e) \rightarrow_{e}(\sim x \wedge e)\right)= \\
((x \wedge e) \rightarrow(\sim y \wedge e)) \wedge((y \wedge e) \rightarrow(\sim x \wedge e)) \wedge e= \\
((x \wedge e) \rightarrow(\sim y)) \wedge e \wedge((y \wedge e) \rightarrow(\sim x))= \\
(x \rightarrow \sim y) \wedge e
\end{gathered}
$$

Finally, the injectivity of $\phi_{\mathbf{A}}$ follows at once from

$$
x \wedge e=y \wedge e \text { and } \sim x \wedge e=\sim y \wedge e \quad \text { imply } \quad x=y
$$

So $\phi_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{K}\left(\mathbf{A}^{-}\right)$given by

$$
x \mapsto(x \wedge e, \sim x \wedge e)
$$

is an injective homomorphism.

So $\phi_{\mathbf{A}}: \mathbf{A} \rightarrow \mathbf{K}\left(\mathbf{A}^{-}\right)$given by

$$
x \mapsto(x \wedge e, \sim x \wedge e)
$$

is an injective homomorphism.
Since for each $a \in A^{-}$,

$$
\phi_{\mathbf{A}}(a)=(a, e)
$$

it follows that by restriction, $\phi_{\mathbf{A}}$ defines an isomorphism from

$$
\mathbf{A}^{-} \rightarrow \phi_{\mathbf{A}}(\mathbf{A})^{-}
$$

Theorem

Every K-lattice A is isomorphic to a twist-product obtained from its negative cone.

Categories

The application

$$
\mathbf{L} \mapsto \mathbf{K}(\mathbf{L})
$$

and

$$
f \mapsto(f, f)
$$

from

$\mathbb{I C R L} \rightarrow$ K-lattices

defines a functor.

The application

$$
\mathbf{A} \mapsto \mathbf{A}^{-}
$$

and

$$
f \mapsto f \upharpoonright_{\mathbf{A}^{-}}
$$

from

K-lattices $\rightarrow \mathbb{I} \mathbb{C} \mathbb{R} \mathbb{L}$

is also a functor which is left adjoint to the first.

Categories

Let \mathcal{T} be the full subcategory of K-lattices whose objects are the total K-lattices, i.e.,

$$
\mathbf{A} \cong \mathbf{K}\left(\mathbf{A}^{-}\right)
$$

Categories

Let \mathcal{T} be the full subcategory of K-lattices whose objects are the total K-lattices, i.e.,

$$
\mathbf{A} \cong \mathbf{K}\left(\mathbf{A}^{-}\right)
$$

then

Theorem

The categories of integral commutative residuated lattices and \mathcal{T} are equivalent categories.

Given a K-lattice \mathbf{A} isomorphic to a subalgebra of $\mathbf{K}\left(\mathbf{A}^{-}\right)$, how can we use information of the negative cone \mathbf{A}^{-}to deduce some properties of \mathbf{A} ?

Congruences

A first general result (not only for K-lattices) is that
The lattices $\operatorname{Cong}(\mathbf{A})$ and $\operatorname{Cong}\left(\mathbf{A}^{-}\right)$are isomorphic.

Translating equations

A K-lattice satisfies a lattice identity τ if and only if its negative cone satisfies τ and τ^{d}. In particular, a K-lattice is distributive if and only if its negative cone is distributive.

Representable K-lattices

A residuated lattice is representable if it is a subdirect product of linearly ordered residuated lattices. Given a subvariety $\mathbb{V} \subseteq \mathbb{C R L}$, the representable residuated lattices in \mathbb{V} form a subvariety of \mathbb{V} characterized by the equations

$$
\begin{equation*}
e \wedge(x \vee y)=(e \wedge x) \vee(e \wedge y) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
e \wedge((x \rightarrow y) \vee(y \rightarrow x))=e . \tag{22}
\end{equation*}
$$

Representable K-lattices

We introduce the following K-lattices:

Representable K-lattices

We introduce the following K-lattices:

Representable K-lattices

We introduce the following K-lattices:

(1) Every three-element K-lattice is isomorphic to \mathbf{P}_{3}.
(2) \mathbf{P}_{3} is the only nontrivial K-lattice in which every element is comparable with e.
(3) The K-lattice \mathbf{P}_{3} is the only nontrivial totally ordered K-lattice.

Twist-products

For each integral commutative residuated lattice \mathbf{L} we have a family of twist-products

$$
\mathcal{K}_{\mathbf{L}}=\{\mathbf{S} \subseteq \mathbf{K}(\mathbf{L}): \text { for all } x \in L,(x, e) \in S\} .
$$

Twist-products

For each integral commutative residuated lattice \mathbf{L} we have a family of twist-products

$$
\mathcal{K}_{\mathbf{L}}=\{\mathbf{S} \subseteq \mathbf{K}(\mathbf{L}): \text { for all } x \in L,(x, e) \in S\} .
$$

We aim to classify these twist-products.

- S. P. Odintsov, Algebraic semantics for paraconsistent Nelson's logic, J. Log. Comput. 13 (2003), 453-468.
- S. P. Odintsov, On the representation of N4-lattices, Stud. Log. 76 (2004), 385-405.
- S. P. Odintsov, Constructive Negations and Paraconsistency, Trends in Logic-Studia Logica Library 26. Springer. Dordrecht (2008)
$\mathrm{L} \longrightarrow \mathrm{K}(\mathrm{L})$
subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$ subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$ subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$

$\left(\mathbf{L}, F_{1}\right) \longrightarrow \mathbf{K}(\mathbf{L})$

$\left(\mathbf{L}, F_{2}\right) \longrightarrow$ subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$
$\left(\mathbf{L}, F_{3}\right) \longrightarrow$ subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$
$\left(\mathbf{L}, F_{n}\right) \longrightarrow$ subalgebra of $\mathbf{K}(\mathbf{L}): \mathbf{K}(\mathbf{L})^{-} \cong \mathbf{L}$

The finite MV-chain L_{3} given by

$$
L_{3}=\left\{0, \frac{1}{2}, 1\right\}
$$

with the operations given by

$$
x \cdot y=\max \{0, x+y-1\} \quad x \rightarrow y=\min \{1,1-x+y\}
$$

The finite MV-chain \mathbf{L}_{3} given by

$$
L_{3}=\left\{0, \frac{1}{2}, 1\right\}
$$

with the operations given by

$$
x \cdot y=\max \{0, x+y-1\} \quad x \rightarrow y=\min \{1,1-x+y\}
$$

Recall that $\neg x=x \rightarrow 0$. One can always define $x \oplus y=\neg(\neg x \cdot \neg y)$ which is

$$
x \oplus y=\min (0, x+y)
$$

$$
S_{0}=\mathbf{K}\left(\mathbf{L}_{3}\right)
$$

$$
\begin{aligned}
& S_{1}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y=1\right\} \\
& S_{\frac{1}{2}}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y \geq \frac{1}{2}\right\} .
\end{aligned}
$$

$$
\begin{gathered}
S_{0}=\mathbf{K}\left(L_{3}\right)=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y \geq 0\right\} \\
S_{1}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y=1\right\} \\
S_{\frac{1}{2}}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y \geq \frac{1}{2}\right\} .
\end{gathered}
$$

$$
\begin{gathered}
S_{0}=\mathbf{K}\left(\mathbf{L}_{3}\right)=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y \geq 0\right\} \\
S_{1}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y=1\right\} \\
S_{\frac{1}{2}}=\left\{(x, y) \in L_{3} \times L_{3}: x \oplus y \geq \frac{1}{2}\right\}
\end{gathered}
$$

If we consider the three lattice filters of \mathbf{L}_{3}

$$
F_{1}=\{1\}, \quad F_{\frac{1}{2}}=\left\{1, \frac{1}{2}\right\}, \quad F_{0}=\left\{1, \frac{1}{2}, 0\right\}
$$

$$
\begin{gathered}
S_{0}=\mathbf{K}=\left\{(x, y): x \oplus y \in F_{0}\right\} \\
S_{1}=\left\{(x, y): x \oplus y \in F_{1}\right\} \\
S_{\frac{1}{2}}=\left\{(x, y): x \oplus y \in F_{\frac{1}{2}}\right\}
\end{gathered}
$$

If we consider the three lattice filters of \mathbf{L}_{3}

$$
F_{1}=\{1\}, \quad F_{\frac{1}{2}}=\left\{1, \frac{1}{2}\right\}, \quad F_{0}=\left\{1, \frac{1}{2}, 0\right\}
$$

$$
\begin{aligned}
S_{0} & =\mathbf{K}=\left\{(x, y): \neg x \rightarrow \neg \neg y \in F_{0}\right\} \\
S_{1} & =\left\{(x, y): \neg x \rightarrow \neg \neg y \in F_{1}\right\} \\
S_{\frac{1}{2}} & =\left\{(x, y): \neg x \rightarrow \neg \neg y \in F_{\frac{1}{2}}\right\} .
\end{aligned}
$$

If we consider the three lattice filters of \mathbf{L}_{3}

$$
F_{1}=\{1\}, \quad F_{\frac{1}{2}}=\left\{1, \frac{1}{2}\right\}, \quad F_{0}=\left\{1, \frac{1}{2}, 0\right\}
$$

By an integral bounded commutative residuated lattice we mean an algebra

$$
\mathbf{B}=\langle B, \vee, \wedge, \cdot, \rightarrow, e, 0\rangle
$$

such that $\langle B, \vee, \wedge, \cdot, \rightarrow, e\rangle$ is an integral commutative residuated lattice and 0 is the lower bound of the lattice structure.

By an integral bounded commutative residuated lattice we mean an algebra

$$
\mathbf{B}=\langle B, \vee, \wedge, \cdot, \rightarrow, e, 0\rangle
$$

such that $\langle B, \vee, \wedge, \cdot, \rightarrow, e\rangle$ is an integral commutative residuated lattice and 0 is the lower bound of the lattice structure.

Given an integral bounded commutative residuated lattice \mathbf{B} we can define a negation on B as

$$
\neg x=x \rightarrow 0
$$

By a Glivenko residuated lattice we mean an integral bounded commutative residuated lattice satisfying any of the equivalent conditions:

- $\neg \neg(\neg \neg x \rightarrow x)=e$.
- $\neg \neg(x \rightarrow y)=x \rightarrow \neg \neg y$.

Examples of Glivenko residuated lattices

- Integral involutive residuated lattices are trivially Glivenko.
- Heyting algebras are Glivenko.
- Integral bounded commutative residuated lattices that satisfy the hoop equation

$$
x \wedge y=x \cdot(x \rightarrow y)
$$

are Glivenko.

Let \mathbf{B} be a Glivenko residuated lattice: there is a bijective correspondence between
regular lattice filters of $B \rightarrow$ admissible subalgebras of $\mathbf{K}(\mathbf{B})$
given by

$$
F \mapsto\{(x, y) \in K(\mathbf{B}): \neg x \rightarrow \neg \neg y \in F\}
$$

whose inverse map is given by

$$
S \mapsto\{x \in B:(0, x) \in S\} .
$$

Conclusions

(1) We have characterized the subvariety of e-lattices that can be represented by twist-products: K-lattices.

Conclusions

(1) We have characterized the subvariety of e-lattices that can be represented by twist-products: K-lattices.
(2) We have studied representable K-lattices.
(1) We have characterized the subvariety of e-lattices that can be represented by twist-products: K-lattices.
(2) We have studied representable K-lattices.
(3) We have established a bijective correspondence among pairs of Glivenko residuated lattices and regular lattices filters and twist-products:

$$
(L, F) \mapsto(S \subseteq K(L))
$$

Open problems

We believe that the key to understand K-lattices is the study of twist-products obtained from an arbitrary commutative integral residuated lattice \mathbf{L}. This is equivalent to the investigation of admissible subalgebras of $\mathbf{K}(\mathbf{L})$.
(1) Characterize admissible subalgebras of the full twist-product $\mathbf{K}(\mathbf{B})$ for \mathbf{B} an arbitrary bounded integral commutative residuated lattice.
(2) Characterize admissible subalgebras of the full twist-product $\mathbf{K}(\mathbf{L})$ for \mathbf{L} an arbitrary integral commutative residuated lattice.

Thank you!

Eivi Busaniche, M., Cignoli, R.: Constructive logic with strong negation as a substructural logic. J. Log. Comput. 20, 761-793 (2010).
(R) Busaniche, M., Cignoli, R.: Residuated lattices as an algebraic semantics for paraconsistent Nelson logic. J. Log. Comput. 19, 1019-1029 (2009).

圄 Busaniche, M., Cignoli, R.: Remarks on an algebraic semantics for paraconsistent Nelson's logic. Manuscrito, Center of Logic, Epistemology and the History of Science 34, 99-114 (2011).

Rusaniche, M., Cignoli, R.: Commutative residuated lattices represented by twist-products, Algebra Universalis 71, 5-22 (2014).

