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Introduction

• The language: ∧,∨,¬, 0, 1
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A closer look to WK

WK = 〈{0, 1, 12},∨,∧,¬, 0, 1〉

a 6 b ⇐⇒ a ∨ b = b and a ≤ b ⇐⇒ a ∧ b = a
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Paraconsistent Weak Kleene: the
logic

• The matrix: PWK = 〈WK, {1, 1/2}〉

Γ �PWK α ⇐⇒ for every v, v[Γ] ⊆ {1, 1/2} ⇒ v(α) ∈ {1, 1/2}

• Hilbert system: any set of axioms for Classical Logic and

α α→ β
[RMP] provided that var(α) ⊆ var(β)

β
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Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra B = 〈B,∨,∧,¬, 0, 1〉 of
type (2,2,1,0,0), satisfying:

I1 x ∨ x ≈ x;
I2 x ∨ y ≈ y ∨ x;
I3 x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z;
I4 ¬¬x ≈ x;
I5 x ∧ y ≈ ¬(¬x ∨ ¬y);
I6 x ∧ (¬x ∨ y) ≈ x ∧ y;
I7 0 ∨ x ≈ x;
I8 1 ≈ ¬0.

We denote by IBSL the variety of involutive bisemilattices.
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Examples

Every Boolean algebra, in particular the 2-element Boolean algebra
B2, is an involutive bisemilattice.

Also, the 2-element semilattice with zero, endowed with identity as
its unary fundamental operation, is an involutive bisemilattice.

B2 =

1
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S2 =

a
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WK and IBSL

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK,
S2, and B2, up to isomorphism.

Corollary
V(WK) = IBSL.
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Płonka sums: definition
A direct system of algebras: T = 〈Ai, (ϕij : i 6 j), I〉 such that:

• I = 〈I,6〉 is a join semilattice with least element i0;
• ϕij : Ai → Aj is a homomorphism, for each i 6 j,

ϕii is the identity in Ai and ϕjk ◦ ϕij = ϕik;

• If i 6= j ∈ I, then Ai and Aj are disjoint.

Płonka sum over T is the algebra T = 〈
⋃

I Ai, {gT : g ∈ ν}〉,

• for every n-ary g ∈ ν, and a1, . . . , an ∈ T , where n > 1 and
ar ∈ Air , we set j = i1 ∨ · · · ∨ in and define

gT(a1, . . . , an) = gAj (ϕi1j(a1), . . . , ϕinj(an));

• if g ∈ ν is a constant, then gT = gAi0 .
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Płonka sums: example
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Płonka sums representation

Theorem
1 If T is a direct system of Boolean algebras, then the Płonka

sum T over T is an involutive bisemilattice.

2 If B is an involutive bisemilattice, then B is isomorphic to the
Płonka sum over a direct system of Boolean algebras.

Corollary
IBSL is the variety satisfying exactly the regular identities satisfied
by BA.
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AAL
• The Leibniz congruence of a matrix M = 〈A, F 〉 is the largest

congruence of A that is compatible with F . ΩA F

• Given a matrix M = 〈A, F 〉, we define �M as follows:

Γ �M α ⇐⇒ for every valuation v on A,

v[Γ] ⊆ F implies v(α) ∈ F.
• A matrix M = 〈A, F 〉 is a model of a logic L if

Γ `L α implies Γ �M α.

• F iLA = {F ⊆ A : 〈A, F 〉 is a model of L}.

Theorem (Iso Thm)
If L is an algebraizable logic with equivalent algebraic semantics K,
then for every A ∈ K,

ΩA : F iLA→ CoK A.

is a lattice isomorphism.
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Theorem
IBSL is not the equivalent algebraic semantics of any logic L.

• Suppose IBSL is the equivalent algebraic semantics of an
algebraizable logic L.

• Consider the algebra C ∈ IBSL and its congruence lattice:

C =

3

2

1

0

∇

θ3 : |0, 1|2, 3| θ4 : |0, 1, 2|3|

θ1 : |0|1|2, 3| θ2 : |0, 1|2|3|

∆

• There is a lattice isomorphism ΩC : F iLC→ CoIBSLC.
• {2} is the only subset of C such that ΩC{2} = θ2, and hence
it is an L-filter.

• It follows that ∅ is also an L-filter, L is purely inferential, and
this leads to a contradiction.
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Theorem

PWK is not protoalgebraic.

• Suppose PWK is protoalgebraic.
• Therefore, there is a set of formulas p⇒ q satisfying:

1 �PWK p⇒ p,
2 p, p⇒ q �PWK q.

• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.
• Thus, v[{p} ∪ p⇒ q] = {1/2}, while v(q) = 0, which is a
contradiction.
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PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.
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AAL

• A matrix M = 〈A, F 〉 is reduced if ΩA F = IdA.

Mod*(L) = class of reduced models of L.

Alg*(L) = {A : there is a reduced model 〈A, F 〉 of L}.
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The Leibniz congruence

Lemma

If A is an algebra of type of IBSL and F ∈ F iPWKA, then
for every a, b ∈ A, 〈a, b〉 ∈ ΩA F if and only if for every c ∈ A,

a ∨ c ∈ F ⇐⇒ b ∨ c ∈ F and ¬a ∨ c ∈ F ⇐⇒ ¬b ∨ c ∈ F .

Theorem

Alg*(PWK) ⊆ IBSL.
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Let B ∈ IBSL, b ∈ B is positive iff 1 6 b.

Theorem

B ∈ Alg*(PWK) if and only if B ∈ IBSL and for every a < b
positive elements, there is c ∈ B such that

1 6 ¬b ∨ c but 1 66 ¬a ∨ c .

Moreover, 〈B, F 〉 ∈ Mod*(PWK) if and only if B is an involutive
bisemilattice satisfying the above condition and F = P (B), the set
of positive elements, which is given by:

P (B) = {c ∈ B : 1 ∨ c = c}

Corollary
PWK is truth-equational.
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Work in progress

• Natural duality for involutive bisemilattices (joint with A. Loi
and L. Peruzzi)

• Sequent calculi for PWK and Gentzen algebraizability (joint
with M. Pra Baldi)
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