On Paraconsistent Weak Kleene Logic and Involutive Bisemilattices

Stefano Bonzio

University of Cagliari
(Joint work with J. Gil-Férez, L. Peruzzi, and F. Paoli)
Barcelona, SYSMICS 2016

Outline

1 Paraconsistent Weak Kleene Logic

2 Involutive bisemilattices

3 AAL approach to Paraconsistent Weak Kleene

Paraconsistent Week Kleene: Introduction

- The language: $\wedge, \vee, \neg, 0,1$

Paraconsistent Week Kleene: Introduction

- The language: $\wedge, \vee, \neg, 0,1$
- The algebra WK

Paraconsistent Week Kleene:
 Introduction

- The language: $\wedge, \vee, \neg, 0,1$
- The algebra WK

\wedge	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	0
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

\vee	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	1	$\frac{1}{2}$	1

\neg	
1	0
$\frac{1}{2}$	$\frac{1}{2}$
0	1

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

A closer look to WK

$$
\begin{aligned}
& \mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle \\
& a \leqslant b \Longleftrightarrow a \vee b=b \\
& \\
& \quad \begin{array}{l}
\frac{1}{2} \\
\mid \\
1 \\
\mid \\
0
\end{array}
\end{aligned}
$$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

$$
a \leqslant b \quad \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \quad \Longleftrightarrow a \wedge b=a
$$

A closer look to WK

$\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle$

$$
a \leqslant b \quad \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \quad \Longleftrightarrow a \wedge b=a
$$

$$
a \leqslant b \Longleftrightarrow \neg b \leq \neg a
$$

A closer look to WK

$$
\mathbf{W K}=\left\langle\left\{0,1, \frac{1}{2}\right\}, \vee, \wedge, \neg, 0,1\right\rangle
$$

$$
a \leqslant b \quad \Longleftrightarrow a \vee b=b \quad \text { and } \quad a \leq b \quad \Longleftrightarrow a \wedge b=a
$$

$$
a \leqslant b \Longleftrightarrow \neg b \leq \neg a
$$

Counterexample to absorption:

$$
1 \wedge\left(1 \vee \frac{1}{2}\right)=\frac{1}{2} \neq 1
$$

Paraconsistent Weak Kleene: the logic

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$

Paraconsistent Weak Kleene: the logic

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$
$\Gamma \vDash_{\text {PWK }} \alpha \Longleftrightarrow$ for every $v, \quad v[\Gamma] \subseteq\{1,1 / 2\} \Rightarrow v(\alpha) \in\{1,1 / 2\}$

Paraconsistent Weak Kleene: the logic

- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$

$$
\Gamma \vDash_{\mathrm{PWK}} \alpha \Longleftrightarrow \text { for every } v, \quad v[\Gamma] \subseteq\{1,1 / 2\} \Rightarrow v(\alpha) \in\{1,1 / 2\}
$$

- Hilbert system: any set of axioms for Classical Logic and

$$
[\mathrm{RMP}] \frac{\alpha \quad \alpha \rightarrow \beta}{\beta} \quad \text { provided that } \operatorname{var}(\alpha) \subseteq \operatorname{var}(\beta)
$$

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

I1 $x \vee x \approx x$;
I2 $x \vee y \approx y \vee x$;
I3 $x \vee(y \vee z) \approx(x \vee y) \vee z$;
$170 \vee x \approx x$;

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

$$
\begin{aligned}
& \text { I1 } x \vee x \approx x \\
& \text { I2 } x \vee y \approx y \vee x ; \\
& \text { I3 } x \vee(y \vee z) \approx(x \vee y) \vee z ; \\
& \text { I4 } \neg \neg x \approx x ;
\end{aligned}
$$

$$
170 \vee x \approx x
$$

$$
181 \approx \neg 0
$$

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

```
I1 \(x \vee x \approx x\);
I2 \(x \vee y \approx y \vee x\);
I3 \(x \vee(y \vee z) \approx(x \vee y) \vee z\);
\(14 \neg \neg x \approx x\);
I5 \(x \wedge y \approx \neg(\neg x \vee \neg y)\);
```

$170 \vee x \approx x$;
I8 $1 \approx \neg 0$.

Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

```
I1 \(x \vee x \approx x\);
I2 \(x \vee y \approx y \vee x\);
I3 \(x \vee(y \vee z) \approx(x \vee y) \vee z\);
\(14 \neg \neg x \approx x\);
I5 \(x \wedge y \approx \neg(\neg x \vee \neg y)\);
I6 \(x \wedge(\neg x \vee y) \approx x \wedge y\);
\(170 \vee x \approx x\);
I8 \(1 \approx \neg 0\).
```


Involutive bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \vee, \wedge, \neg, 0,1\rangle$ of type ($2,2,1,0,0$), satisfying:

```
I1 \(x \vee x \approx x\);
I2 \(x \vee y \approx y \vee x\);
I3 \(x \vee(y \vee z) \approx(x \vee y) \vee z\);
\(14 \neg \neg x \approx x\);
I5 \(x \wedge y \approx \neg(\neg x \vee \neg y)\);
I6 \(x \wedge(\neg x \vee y) \approx x \wedge y\);
\(170 \vee x \approx x\);
I8 \(1 \approx \neg 0\).
```

We denote by $\mathcal{I B S L}$ the variety of involutive bisemilattices.

Examples

Every Boolean algebra, in particular the 2-element Boolean algebra \mathbf{B}_{2}, is an involutive bisemilattice.

Examples

Every Boolean algebra, in particular the 2-element Boolean algebra \mathbf{B}_{2}, is an involutive bisemilattice.

Also, the 2-element semilattice with zero, endowed with identity as its unary fundamental operation, is an involutive bisemilattice.

Examples

Every Boolean algebra, in particular the 2-element Boolean algebra \mathbf{B}_{2}, is an involutive bisemilattice.

Also, the 2-element semilattice with zero, endowed with identity as its unary fundamental operation, is an involutive bisemilattice.

WK and $\mathcal{I B S L}$

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK, \mathbf{S}_{2}, and \mathbf{B}_{2}, up to isomorphism.

WK and $\mathcal{I B S L}$

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK, \mathbf{S}_{2}, and \mathbf{B}_{2}, up to isomorphism.

Corollary
$\mathbb{V}(\mathbf{W K})=\mathcal{I B S} \mathcal{L}$.

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$,
$\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$,
$\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i \neq j \in I$, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$,
$\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i \neq j \in I$, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sum over T is the algebra $\mathbf{T}=\left\langle\bigcup_{I} A_{i},\left\{g^{\mathbf{T}}: g \in \nu\right\}\right\rangle$,

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$,
$\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i \neq j \in I$, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sum over T is the algebra $\mathbf{T}=\left\langle\bigcup_{I} A_{i},\left\{g^{\mathbf{T}}: g \in \nu\right\}\right\rangle$,

- for every n-ary $g \in \nu$, and $a_{1}, \ldots, a_{n} \in T$, where $n \geqslant 1$ and $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$ and define

$$
g^{\mathbf{T}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right)
$$

Płonka sums: definition

A direct system of algebras: $\mathrm{T}=\left\langle\mathbf{A}_{i},\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice with least element i_{0};
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$,
$\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i \neq j \in I$, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sum over T is the algebra $\mathbf{T}=\left\langle\bigcup_{I} A_{i},\left\{g^{\mathbf{T}}: g \in \nu\right\}\right\rangle$,

- for every n-ary $g \in \nu$, and $a_{1}, \ldots, a_{n} \in T$, where $n \geqslant 1$ and $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$ and define

$$
g^{\mathbf{T}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right)
$$

- if $g \in \nu$ is a constant, then $g^{\mathbf{T}}=g^{\mathbf{A}_{i_{0}}}$.

Płonka sums: example

Płonka sums representation

Theorem

1. If T is a direct system of Boolean algebras, then the Płonka sum \mathbf{T} over T is an involutive bisemilattice.

Płonka sums representation

Theorem

1. If T is a direct system of Boolean algebras, then the Płonka sum \mathbf{T} over T is an involutive bisemilattice.

2 If \mathbf{B} is an involutive bisemilattice, then \mathbf{B} is isomorphic to the Płonka sum over a direct system of Boolean algebras.

Płonka sums representation

Theorem

1. If T is a direct system of Boolean algebras, then the Płonka sum \mathbf{T} over T is an involutive bisemilattice.

2 If \mathbf{B} is an involutive bisemilattice, then \mathbf{B} is isomorphic to the Płonka sum over a direct system of Boolean algebras.

Corollary
$\mathcal{I B S L}$ is the variety satisfying exactly the regular identities satisfied by $\mathcal{B A}$.

Leibniz Hierarchy

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.
$\Omega^{\mathbf{A} F}$

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.

$$
\Omega^{\mathbf{A}} F
$$

- Given a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$, we define \vDash_{M} as follows:
$\Gamma \vDash_{\mathbf{M}} \alpha \Longleftrightarrow$ for every valuation v on \mathbf{A}, $v[\Gamma] \subseteq F$ implies $v(\alpha) \in F$.

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.
- Given a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$, we define \vDash_{M} as follows:
$\Gamma \vDash_{\mathbf{M}} \alpha \Longleftrightarrow$ for every valuation v on \mathbf{A}, $v[\Gamma] \subseteq F$ implies $v(\alpha) \in F$.
- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is a model of a logic L if $\Gamma \vdash_{\mathrm{L}} \alpha$ implies $\quad \Gamma \vDash_{\mathbf{M}} \alpha$.

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.
- Given a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$, we define \vDash_{M} as follows:
$\Gamma \vDash_{\mathbf{M}} \alpha \Longleftrightarrow$ for every valuation v on \mathbf{A}, $v[\Gamma] \subseteq F$ implies $v(\alpha) \in F$.
- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is a model of a logic L if
$\Gamma \vdash_{\mathrm{L}} \alpha$ implies $\quad \Gamma \vDash_{\mathbf{M}} \alpha$.
- $\mathcal{F}_{\mathrm{i}} \mathbf{A}=\{F \subseteq A:\langle\mathbf{A}, F\rangle$ is a model of L$\}$.

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.
- Given a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$, we define \vDash_{M} as follows:
$\Gamma \vDash_{\mathbf{M}} \alpha \Longleftrightarrow$ for every valuation v on \mathbf{A}, $v[\Gamma] \subseteq F$ implies $v(\alpha) \in F$.
- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is a model of a logic L if
$\Gamma \vdash_{\mathrm{L}} \alpha$ implies $\quad \Gamma \vDash_{\mathbf{M}} \alpha$.
- $\mathcal{F}_{\mathrm{i}} \mathbf{A}=\{F \subseteq A:\langle\mathbf{A}, F\rangle$ is a model of L$\}$.

AAL

- The Leibniz congruence of a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is the largest congruence of \mathbf{A} that is compatible with F.
- Given a matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$, we define \vDash_{M} as follows:

$$
\begin{aligned}
\Gamma \vDash_{\mathbf{M}} \alpha \Longleftrightarrow & \text { for every valuation } v \text { on } \mathbf{A}, \\
& v[\Gamma] \subseteq F \text { implies } v(\alpha) \in F .
\end{aligned}
$$

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is a model of a logic L if $\Gamma \vdash_{\mathrm{L}} \alpha$ implies $\quad \Gamma \vDash_{\mathbf{M}} \alpha$.
- $\mathcal{F}_{\mathrm{i}} \mathbf{A}=\{F \subseteq A:\langle\mathbf{A}, F\rangle$ is a model of L$\}$.

Theorem (Iso Thm)
If L is an algebraizable logic with equivalent algebraic semantics \mathcal{K}, then for every $\mathbf{A} \in \mathcal{K}$,

$$
\Omega^{\mathbf{A}}: \mathcal{F}_{\mathrm{i}} \mathbf{A} \rightarrow \mathrm{Co}_{\mathcal{K}} \mathbf{A}
$$

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

Theorem
IBSL is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L .

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F}_{\mathrm{i}_{\mathrm{L}}} \mathbf{C} \rightarrow \mathrm{Co}_{\mathcal{I} \mathcal{B S L}} \mathbf{C}$.

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathrm{C}}: \mathcal{F}_{\mathrm{i}_{\mathrm{L}}} \mathbf{C} \rightarrow \mathrm{Co}_{\mathcal{I} \mathcal{B S L}} \mathbf{C}$.
- $\{2\}$ is the only subset of C such that $\Omega^{\mathbf{C}}\{2\}=\theta_{2}$, and hence it is an L-filter.

Theorem

$\mathcal{I B S} \mathcal{L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose $\mathcal{I B S L}$ is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F i}_{\mathrm{L}} \mathbf{C} \rightarrow \operatorname{Co}_{\mathcal{I B S L}} \mathbf{C}$.
- $\{2\}$ is the only subset of C such that $\Omega^{\mathbf{C}}\{2\}=\theta_{2}$, and hence it is an L-filter.
- It follows that \emptyset is also an L-filter, L is purely inferential, and this leads to a contradiction.

Theorem
PWK is not protoalgebraic.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:
$1 \vDash_{\text {PWK }} p \Rightarrow p$,

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

1) $\vDash_{\text {PWK }} p \Rightarrow p$,

2 $p, p \Rightarrow q \vDash_{\text {PWK }} q$.

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

2 $p, p \Rightarrow q \vDash_{\text {PWK }} q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

1) $\vDash_{\text {PWK }} p \Rightarrow p$,
(2) $p, p \Rightarrow q \vDash_{\text {PWK }} q$.

- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- Thus, $v[\{p\} \cup p \Rightarrow q]=\{1 / 2\}$, while $v(q)=0$, which is a contradiction.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p \not \#_{\mathrm{PWK}} \neg q \vee q$.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p=\#_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p=\#_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- $v(\neg(\neg p \vee p))=1 / 2$.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p=\equiv_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- $v(\neg(\neg p \vee p))=1 / 2$.
- $v(\neg(\neg q \vee q))=0$.

PWK in the Frege hierachy

Theorem
PWK is not selfextensional，and therefore it is non－Fregean．
－Notice that $\neg p \vee p \not \#_{\mathrm{PWK}} \neg q \vee q$ ．
－Consider the valuation v on WK：$v(p)=1 / 2, v(q)=0$ ．
－$v(\neg(\neg p \vee p))=1 / 2$ ．
－$v(\neg(\neg q \vee q))=0$ ．
－Therefore $\neg(\neg p \vee p) \not \#_{\mathrm{PWK}} \neg(\neg q \vee q)$ ，does not hold．That is，$\not ⿰ ⿰ 三 丨 ⿰ 丨 三_{\mathrm{PWK}}$ is not a congruence．

AAL

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.

AAL

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.
$\operatorname{Mod}{ }^{*}(\mathrm{~L})=$ class of reduced models of L .

AAL

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.
$\operatorname{Mod}{ }^{*}(\mathrm{~L})=$ class of reduced models of L .
$\operatorname{Alg}^{*}(\mathrm{~L})=\{\mathbf{A}$: there is a reduced model $\langle\mathbf{A}, F\rangle$ of L$\}$.

The Leibniz congruence

Lemma

If \mathbf{A} is an algebra of type of $\mathcal{I B S L}$ and $F \in \mathcal{F} \mathrm{i}_{\text {ip w }} \mathbf{A}$, then for every $a, b \in A,\langle a, b\rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

$$
a \vee c \in F \Longleftrightarrow b \vee c \in F \quad \text { and } \quad \neg a \vee c \in F \Longleftrightarrow \neg b \vee c \in F
$$

The Leibniz congruence

Lemma

If \mathbf{A} is an algebra of type of $\mathcal{I B S L}$ and $F \in \mathcal{F} \mathrm{i}_{\mathrm{PWK}} \mathbf{A}$, then for every $a, b \in A,\langle a, b\rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

$$
a \vee c \in F \Longleftrightarrow b \vee c \in F \quad \text { and } \quad \neg a \vee c \in F \Longleftrightarrow \neg b \vee c \in F
$$

Theorem
$\operatorname{Alg}^{*}(\mathrm{PWK}) \subseteq \mathcal{I B S L}$.

Let $\mathbf{B} \in \mathcal{I B S L}, b \in B$ is positive iff $1 \leqslant b$.

Let $\mathbf{B} \in \mathcal{I B S L}, b \in B$ is positive eff $1 \leqslant b$.
Theorem
$\mathbf{B} \in \mathrm{Alg}^{*}(\mathrm{PWK})$ if and only if $\mathbf{B} \in \mathcal{I B S L}$ and for every $a<b$ positive elements, there is $c \in B$ such that

$$
1 \leqslant \neg b \vee c \quad \text { but } \quad 1 \nless \neg a \vee c \text {. }
$$

Let $\mathbf{B} \in \mathcal{I} \mathcal{B S L}, b \in B$ is positive iff $1 \leqslant b$.
Theorem
$\mathbf{B} \in \mathrm{Alg}^{*}(\mathrm{PWK})$ if and only if $\mathbf{B} \in \mathcal{I B S L}$ and for every $a<b$ positive elements, there is $c \in B$ such that

$$
1 \leqslant \neg b \vee c \text { but } 1 \nless \neg a \vee c \text {. }
$$

Moreover, $\langle\mathbf{B}, F\rangle \in \operatorname{Mod}^{*}(\mathrm{PWK})$ if and only if \mathbf{B} is an involutive bisemilattice satisfying the above condition and $F=P(\mathbf{B})$, the set of positive elements, which is given by:

$$
P(\mathbf{B})=\{c \in B: 1 \vee c=c\}
$$

Let $\mathbf{B} \in \mathcal{I B S L}, b \in B$ is positive iff $1 \leqslant b$.
Theorem
$\mathbf{B} \in \operatorname{Alg}^{*}(\mathrm{PWK})$ if and only if $\mathbf{B} \in \mathcal{I B S L}$ and for every $a<b$ positive elements, there is $c \in B$ such that

$$
1 \leqslant \neg b \vee c \quad \text { but } \quad 1 \nless \neg a \vee c \text {. }
$$

Moreover, $\langle\mathbf{B}, F\rangle \in \operatorname{Mod}(\mathrm{PWK})$ if and only if \mathbf{B} is an involutive bisemilattice satisfying the above condition and $F=P(\mathbf{B})$, the set of positive elements, which is given by:

$$
P(\mathbf{B})=\{c \in B: 1 \vee c=c\}
$$

Corollary
PWK is truth-equational.

PWK in the Leibniz Hierarchy

Work in progress

- Natural duality for involutive bisemilattices (joint with A. Loi and L. Peruzzi)

Work in progress

- Natural duality for involutive bisemilattices (joint with A. Loi and L. Peruzzi)
- Sequent calculi for PWK and Gentzen algebraizability (joint with M. Pra Baldi)

Thank you!

