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What kind of agents we have in mind, and what aspects of
knowledge we want to model?

I A prototypical agent — a scientist (cf. scientific or rational
scepticism),

I working with collections of data — those might be incomplete
and inconsistent.

I The agent (e.g. by weighting the evidence) eventually accepts
some available data as knowledge,

I but only confirmed data might be accepted (certified
knowledge).
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I A background propositional logic to model collections of data
— information states — (containing a reasonable negation),

I collections of data are modeled as theories — information
states.

I We allow for some information states to act as reliable sources
of confirmation of data available at the current state.

I Modal part consists of epistemic diamond operators of
confirmed knowledge and confirmed belief.

I We start from a basic system, allowing for further modularity
(distributive non-associative commutative Lambek calculus
with a negation).



Logical formalism
Department of Logic

F F  U K

I A background propositional logic to model collections of data
— information states — (containing a reasonable negation),

I collections of data are modeled as theories — information
states.

I We allow for some information states to act as reliable sources
of confirmation of data available at the current state.

I Modal part consists of epistemic diamond operators of
confirmed knowledge and confirmed belief.

I We start from a basic system, allowing for further modularity
(distributive non-associative commutative Lambek calculus
with a negation).



Logical formalism
Department of Logic

F F  U K

I A background propositional logic to model collections of data
— information states — (containing a reasonable negation),

I collections of data are modeled as theories — information
states.

I We allow for some information states to act as reliable sources
of confirmation of data available at the current state.

I Modal part consists of epistemic diamond operators of
confirmed knowledge and confirmed belief.

I We start from a basic system, allowing for further modularity
(distributive non-associative commutative Lambek calculus
with a negation).



Logical formalism
Department of Logic

F F  U K

I A background propositional logic to model collections of data
— information states — (containing a reasonable negation),

I collections of data are modeled as theories — information
states.

I We allow for some information states to act as reliable sources
of confirmation of data available at the current state.

I Modal part consists of epistemic diamond operators of
confirmed knowledge and confirmed belief.

I We start from a basic system, allowing for further modularity
(distributive non-associative commutative Lambek calculus
with a negation).



Logical formalism
Department of Logic

F F  U K

I A background propositional logic to model collections of data
— information states — (containing a reasonable negation),

I collections of data are modeled as theories — information
states.

I We allow for some information states to act as reliable sources
of confirmation of data available at the current state.

I Modal part consists of epistemic diamond operators of
confirmed knowledge and confirmed belief.

I We start from a basic system, allowing for further modularity
(distributive non-associative commutative Lambek calculus
with a negation).



Results
Department of Logic

F F  U K

I A concept of confirmed belief or knowledge can be modeled as
a diamond modality over relational semantics for substructural
logics.

I Strong completeness, canonicity, correspondence, FMP via
filtration.

I Structural (display) proof theory, cut elimination.
I Common knowledge and common belief as fixed points,

infinitary, strongly complete, proof systems.
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ϕ ::= p | t | ϕ⊗ ϕ | ϕ→ ϕ

> | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ
¬ϕ | 〈k〉ϕ | 〈b〉ϕ

〈k〉 is the confirmed knowledge operator,
〈b〉 is the confirmed belief operator.
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A frame F = (X ,≤,R, L,C ), where
I (X ,≤) is a poset of information states,

I R is a ternary monotone relation on X :

Rxyz ∧ x ′ ≤ x ∧ y ′ ≤ y ∧ z ′ ≥ z −→ Rx ′y ′z ′,

satisfying Rxyz −→ Ryxz .
I L, the set of logical states, is a nonempty upwards closed

subset of (X ,≤), satisfying

x ≤ y iff (∃z ∈ L) Rzxy iff (∃z ∈ L) Rxzy

I C is a binary compatibility monotone relation on X :

xCy ∧ x ′ ≤ x ∧ y ′ ≤ y −→ x ′Cy ′,

we consider C to be symetric.
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Interpreting the propositional part
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A valuation is a map V : Prop −→ UX
I x  p iff x ∈ V (p)

I x  t iff x ∈ L

I x  > and x 1 ⊥
I x  ϕ ∧ ψ iff x  ϕ and x  ψ

I x  ϕ ∨ ψ iff x  ϕ or x  ψ
I x  ¬ϕ iff for all y , xCy implies y 1 ϕ

I x  ϕ⊗ ψ iff there are y , z , Ryzx and y  ϕ and z  ψ

I x  ϕ← ψ iff for all y , z , Rxyz and y  ϕ implies z  ψ
I x  ϕ→ ψ iff for all y , z , Ryxz and y  ϕ implies z  ψ



Basic semantical notions
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I Frame validity: F ,V  ϕ iff (∀x ∈ L) x  ϕ

I Local consequence: ϕ �F ,V ψ iff (∀x) x  ϕ implies x  ψ

I Valid implications: � ϕ→ ψ iff (∀F ,V ) ϕ �F ,V ψ

I A set {ϕ | x  ϕ} is a prime theory.
For all ϕ, {x | x  ϕ} is upward closed.

I Dual connection between distributive non-associative FLe
algebras and the frames defined above.



Adding epistemic source relations
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Sk and Sb are binary monotone relations on (X ,≤):

x ′ ≤ xSky ≤ y ′ implies x ′Sky ′

x ′ ≤ xSby ≤ y ′ implies x ′Sby ′,

satisfying (all or some of) the conditions:

sSbx and s ′Sbx implies sCs ′ (1)
sSkx implies sSbx (2)
sSkx implies s ≤ x (3)
sSkx implies xCs (4)

We read sSkx as s is a reliable source confirming knowledge in x .
Similarly for belief.



Interpreting the modal part
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I x  〈k〉ϕ iff ∃s (sSkx ∧ s  ϕ) confirmed knowledge

I x  〈b〉ϕ iff ∃s (sSbx ∧ s  ϕ) confirmed belief



Properties of the source relations
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I Sources of belief are mutually compatible,
I Sk ⊆ Sb (as well as Sk ⊆ ≤ ∩ C ) implies that sources for

knowledge are mutually compatible (do not contradict each
other).

I Sources are self-compatible (therefore consistent).
I Sk ⊆ ≤ implies that what is known is satisfied in the current

state.

Knowledge implies belief, is consistent and factive. Belief is
consistent.
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x [ϕ, 〈k〉ϕ, 〈b〉ϕ,ψ, 〈b〉ψ,¬ψ]
55 6>

Sb

iiKS

Sk Sb

y [ψ]
C

C

s[ϕ]

C

C

WW

z [¬ψ]
C



Axioms and corresponding classes of frames
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Axiom or rule condition
〈k〉ϕ→ ϕ sSkx −→ s ≤ x
〈k〉ϕ→ 〈b〉ϕ sSkx −→ sSbx

〈b〉ϕ ∧ 〈b〉¬ϕ→ ⊥ sSbx ∧ s ′Sbx −→ sCs ′

〈k〉ϕ ∧ ¬ϕ→ ⊥ sSkx −→ sCx

〈k〉ϕ→ 〈k〉〈k〉ϕ sSkx −→ ∃s ′ (sSks ′Skx)
〈b〉ϕ→ 〈b〉〈b〉ϕ sSbx −→ ∃s ′ (sSbs ′Sbx)
〈b〉ϕ→ 〈b〉〈k〉ϕ sSbx −→ ∃s ′ (sSks ′Sbx)

〈k〉ϕ ∧ 〈k〉ψ → 〈k〉(ϕ ∧ ψ) sSkx ∧ tSkx −→ ∃v (vSkx ∧ s, t ≤ v)
` ϕ/ ` 〈k〉ϕ (∀x ∈ L)(∃s ∈ L) sSkx



Further modularity - negation
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axiom condition
¬> → ⊥ (∀x)(∃y)xCy

ϕ ∧ ¬ϕ→ ⊥ xCx
> → ϕ ∨ ¬ϕ xCy → y ≤ x

Example: in presence of > → ϕ ∨ ¬ϕ, the factivity scheme
〈k〉ϕ→ ϕ is derivable from the stronger consistency scheme
〈k〉ϕ ∧ ¬ϕ→ ⊥. In presence of ϕ ∧ ¬ϕ→ ⊥, it is the other way
round.



Intuitionistic epistemic logic
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(i) Simplest way of arriving at intuitionistic epistemic
logic is given by FLewc and its corresponding class of
frames putting Rxxx and Rxyz −→ x ≤ z .



Intuitionistic epistemic logic
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(ii) From the standard semantics of intuitionistic logic:
for a poset (X ,≤), put L = X , let Sk to be any
monotone relation satisfying Sk ⊆ ≤, and define the
remaining relations as follows:

Rxyz iff x ≤ z and y ≤ z

Cxy iff ∃z(x ≤ z and y ≤ z)

The modality is not trivial (ϕ 0 〈k〉ϕ), and neither it
commutes with the conjunction nor distributes to the
implication.



Intuitionistic epistemic logic
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(iii) Consider (X ,≤) to be a rooted tree with the root r .
Put rSkx for all x ∈ X (the root r is a universal
source).
In this class of frames, 〈k〉 commutes with
conjunction, distributes to implication, positive
introspection axiom becomes valid, as well as
negative introspection axiom.



What about classical negation?
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Consider frames validating > ` ϕ ∨ ¬ϕ:
I The corresponding frame condition together with the

symmetry of C entail that xCy implies x = y ,
I together with the scheme ϕ ∧ ¬ϕ ` ⊥ and the corresponding

condition xCx we obtain that C is the equality.
I By the condition that Sk ⊆ C , also xSky implies x = y

(self-sources only). The positive introspection axiom becomes
valid, while the negative introspection may fail.

I By the weaker mutual compatibility condition x , zSky implies
x = z (one source only). Introspection axioms may fail.



Box or Diamond?
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I Consider a monotone neighborhood model
(W ,N : PW −→ PW ), where ||2α|| = N||α|| (knowledge)

I define a frame (PW ,⊇) with a relation:

xSy ≡df N(x) ⊇ y

I put x  p ⇔ x ⊆ ||p||
I Then (∧,∨,¬,2) translates to (∧,t,¬, 〈k〉)

where t is the inquisitive disjunction, and ¬ is interpreted by

xCy ≡df x 6⊆ y



Axiomatization (dFLe + modal axioms)
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ϕ→ ψ

〈k〉ϕ→ 〈k〉ψ 〈k〉(ϕ ∨ ψ)→ 〈k〉ϕ ∨ 〈k〉ψ 〈k〉⊥ → ⊥

ϕ→ ψ

〈b〉ϕ→ 〈b〉ψ 〈b〉(ϕ ∨ ψ)→ 〈b〉ϕ ∨ 〈b〉ψ 〈b〉⊥ → ⊥

〈k〉ϕ→ ϕ 〈k〉ϕ→ 〈b〉ϕ 〈b〉ϕ ∧ 〈b〉¬ϕ→ ⊥



Additional modal axioms
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Strong consistency: 〈k〉ϕ ∧ ¬ϕ→ ⊥

Stalnaker’s axiom: 〈b〉ϕ→ 〈b〉〈k〉ϕ

Belief introspection: 〈b〉ϕ→ 〈b〉〈b〉ϕ

Knowledge introspection: 〈k〉ϕ→ 〈k〉〈k〉ϕ



Completeness via canonical model
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Theorem (Strong Completeness) The axiomatization
(+ Ax) is strongly complete with respect to the class of
corresponding epistemic frames.

Γ 0 ϕ implies Γ 2F(Ax) ϕ

Proof — the canonical model construction. Canonical states =
prime theories ordered by inclusion, canonical relations defined as
usual. All axioms listed above are canonical.

The logic has the finite model property:



FMP via filtration
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Given a finite set of formulas Σ (closed under subformulas) and a
model M, we define a preorder

x � y iff (∀ϕ ∈ Σ) x  ϕ −→ y  ϕ

and an equivalence relation

x ≡ y iff x � y ∧ y � x .

We define a new model on {[x ] | x ∈ X} with a valuation defined
by:

[x ]  p iff x  p.



FMP via filtration
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On ≡-equivalence classes we define the partial order and monotone
relations as follows:

[x ] ≤ [y ] ⇔ x � y

[x ]C [y ] ⇔ x � x ′Cy ′ � y

[x ]Sb[y ] ∧ ⇔ [x ]C [z ] ∧ x � x ′Sby ′ � y
[z ]Sb[y ] ∧ z � z ′Sby ′′ � y

[x ]Sk [y ] ⇔ x � x ′Sky ′ � y
(∧ [x ]C [y ])

Remark: all the properties of relations mentioned above are
preserved, except of Sk -density, when the blue condition is present.

(∀ϕ ∈ Σ) [x ]  ϕ iff x  ϕ.



Display calculus over (bi-)intuitionistic base
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X ` ]ϕ
X ` ¬ϕ

X ` ϕ
¬ϕ ` ]X

X ` ]Y
Y ` ]X

X ` ϕ
•bX ` 〈b〉ϕ

•bϕ ` X

〈b〉ϕ ` X

•bX ` Y

X ` ◦bY

X ` ϕ
•kX ` 〈k〉ϕ

•kϕ ` X

〈k〉ϕ ` X

•kX ` Y

X ` ◦kY



Axioms via Structural rules
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X ` Y

•kX ` Y
〈k〉ϕ→ ϕ

•bX ` Y

•kX ` Y
〈k〉ϕ→ 〈b〉ϕ

•b •k X ` Y

•bX ` Y
〈b〉ϕ→ 〈b〉〈k〉ϕ

X ` ]Y
X ` ◦b(•bY > I )

〈b〉ϕ ∧ 〈b〉¬ϕ→ ⊥

X ` ]Y
X ` ◦k(•kY > I )

〈k〉ϕ ∧ 〈k〉¬ϕ→ ⊥

X ` ]Y
X ` •kY > I
〈k〉ϕ ∧ ¬ϕ→ ⊥

Modularity, completeness, cut elimination, subformula property.



Example of a proof
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p ` p

¬p ` ]p
¬p ` ◦b(•bp > I )

•b¬p ` •bp > I

•bp, •b¬p ` I
...

〈b〉p, 〈b〉¬p ` ⊥
〈b〉p ∧ 〈b〉¬p ` ⊥



Common belief and knowledge
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I The algebraic counterpart of the frame semantics (a complete
lattice) + Knaster-Tarski theorem ⇒ fixed points.

I Common knowledge of ϕ can be expressed as the greatest
fixed point

Cϕ ≡ νx .
∧
i∈I
〈k〉i (ϕ ∧ x).

I Obvious axiom and rule yield a non-compact logic, weak
completeness remains an open problem.



Infinitary proof theory for ν
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I One can turn to infinitary proof theory for fixed point logics,
using finite approximations of fixed points.

νx1.α[x ] = α[>] νxn+1.α[x ] = α[νxn.α[x ]]

I adopt axioms
νx .α[x ] ` νxn.α[x ]

and an infinitary rule

{νxn.α[x ] | n ∈ N} ` νx .α[x ]

I consider the resulting Scott type consequence relation Γ ` ∆
(Γ proves a finite disjunction of flas in ∆), and prove
strong completeness via a canonical model
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