Logic of knowledge and belief for Sceptical Agents (a substructural epistemic logic) the waxioms and rules of inference are al FFUK Andrey Marta Bílková & Ondrej Majer

 A prototypical agent — a scientist (cf. scientific or rational scepticism),

- A prototypical agent a scientist (cf. scientific or rational scepticism),
- working with collections of data those might be *incomplete* and *inconsistent*.

- A prototypical agent a scientist (cf. scientific or rational scepticism),
- working with collections of data those might be *incomplete* and *inconsistent*.
- The agent (e.g. by weighting the evidence) eventually accepts some available data as knowledge,

- A prototypical agent a scientist (cf. scientific or rational scepticism),
- working with collections of data those might be *incomplete* and *inconsistent*.
- The agent (e.g. by weighting the evidence) eventually accepts some available data as knowledge,
- but only confirmed data might be accepted (certified knowledge).

A background propositional logic to model collections of data

 information states — (containing a reasonable negation),

- A background propositional logic to model collections of data — information states — (containing a reasonable negation),
- collections of data are modeled as theories information states.

- A background propositional logic to model collections of data — information states — (containing a reasonable negation),
- collections of data are modeled as theories information states.
- We allow for some information states to act as reliable sources of confirmation of data available at the current state.

- A background propositional logic to model collections of data — information states — (containing a reasonable negation),
- collections of data are modeled as theories information states.
- We allow for some information states to act as reliable sources of confirmation of data available at the current state.
- Modal part consists of epistemic diamond operators of confirmed knowledge and confirmed belief.

- A background propositional logic to model collections of data — information states — (containing a reasonable negation),
- collections of data are modeled as theories information states.
- We allow for some information states to act as reliable sources of confirmation of data available at the current state.
- Modal part consists of epistemic diamond operators of confirmed knowledge and confirmed belief.
- We start from a basic system, allowing for further modularity (distributive non-associative commutative Lambek calculus with a negation).

- A concept of confirmed belief or knowledge can be modeled as a diamond modality over relational semantics for substructural logics.
- Strong completeness, canonicity, correspondence, FMP via filtration.
- Structural (display) proof theory, cut elimination.
- Common knowledge and common belief as fixed points, infinitary, strongly complete, proof systems.

The language

$$\begin{split} \varphi ::= & p \mid t \mid \varphi \otimes \varphi \mid \varphi \to \varphi \\ \top \mid \bot \mid \varphi \lor \varphi \mid \varphi \land \varphi \\ \neg \varphi \mid \langle k \rangle \varphi \mid \langle b \rangle \varphi \end{split}$$

 $\langle k \rangle$ is the confirmed knowledge operator, $\langle b \rangle$ is the confirmed belief operator.

The frames

A frame $F = (X, \leq, R, L, C)$, where \blacktriangleright (X, \leq) is a poset of information states,

The frames

A frame
$$F = (X, \leq, R, L, C)$$
, where

- (X, \leq) is a poset of information states,
- ► *R* is a ternary monotone relation on *X*:

$$Rxyz \wedge x' \leq x \wedge y' \leq y \wedge z' \geq z \longrightarrow Rx'y'z',$$

satisfying $Rxyz \longrightarrow Ryxz$.

► L, the set of *logical states*, is a nonempty upwards closed subset of (X, ≤), satisfying

$$x \leq y$$
 iff $(\exists z \in L)$ Rzxy iff $(\exists z \in L)$ Rxzy

• *C* is a binary *compatibility* monotone relation on *X*:

$$xCy \wedge x' \leq x \wedge y' \leq y \longrightarrow x'Cy',$$

we consider C to be symetric.

A valuation is a map $V : \mathsf{Prop} \longrightarrow \mathcal{U}X$

- $x \Vdash p$ iff $x \in V(p)$
- ▶ $x \Vdash t$ iff $x \in L$
- $x \Vdash \top$ and $x \nvDash \bot$
- $x \Vdash \varphi \land \psi$ iff $x \Vdash \varphi$ and $x \Vdash \psi$
- $x \Vdash \varphi \lor \psi$ iff $x \Vdash \varphi$ or $x \Vdash \psi$
- $x \Vdash \neg \varphi$ iff for all y, xCy implies $y \nvDash \varphi$
- $x \Vdash \varphi \otimes \psi$ iff there are y, z, *Ryzx* and $y \Vdash \varphi$ and $z \Vdash \psi$
- $x \Vdash \varphi \leftarrow \psi$ iff for all y, z, Rxyz and $y \Vdash \varphi$ implies $z \Vdash \psi$
- $x \Vdash \varphi \rightarrow \psi$ iff for all y, z, Ryxz and $y \Vdash \varphi$ implies $z \Vdash \psi$

- ▶ Frame validity: $F, V \Vdash \varphi$ iff $(\forall x \in L) x \Vdash \varphi$
- ► Local consequence: $\varphi \vDash_{F,V} \psi$ iff $(\forall x) x \Vdash \varphi$ implies $x \Vdash \psi$
- ▶ Valid implications: $\vDash \varphi \rightarrow \psi$ iff ($\forall F, V$) $\varphi \vDash_{F, V} \psi$
- A set {φ | x ⊨ φ} is a prime theory. For all φ, {x | x ⊨ φ} is upward closed.
- ► Dual connection between distributive non-associative *FL_e* algebras and the frames defined above.

 S^k and S^b are binary monotone relations on (X, \leq) :

$$\begin{aligned} x' &\leq x S^k y \leq y' & \text{implies} \quad x' S^k y' \\ x' &\leq x S^b y \leq y' & \text{implies} \quad x' S^b y', \end{aligned}$$

satisfying (all or some of) the conditions:

$$sS^{b}x \text{ and } s'S^{b}x \text{ implies } sCs' \tag{1}$$

$$sS^{k}x \text{ implies } sS^{b}x \tag{2}$$

$$sS^{k}x \text{ implies } s \leq x \tag{3}$$

$$sS^{k}x \text{ implies } xCs \tag{4}$$

We read sS^kx as s is a reliable source confirming knowledge in x. Similarly for belief.

- ► $x \Vdash \langle k \rangle \varphi$ iff $\exists s (sS^k x \land s \Vdash \varphi)$ confirmed knowledge
- ► $x \Vdash \langle b \rangle \varphi$ iff $\exists s (sS^b x \land s \Vdash \varphi)$ confirmed belief

- Sources of belief are mutually compatible,
- S^k ⊆ S^b (as well as S^k ⊆ ≤ ∩ C) implies that sources for knowledge are mutually compatible (*do not contradict each other*).
- Sources are self-compatible (therefore *consistent*).
- S^k ⊆ ≤ implies that what is known is satisfied in the current state.

Knowledge implies belief, is consistent and factive. Belief is consistent.

Example

Axiom or rule	condition
$\langle k angle arphi ightarrow arphi$	$sS^kx \longrightarrow s \leq x$
$\langle k angle arphi ightarrow \langle b angle arphi$	$sS^kx \longrightarrow sS^bx$
$\langle b angle arphi \wedge \langle b angle eg arphi ightarrow ot$	$sS^bx \wedge s'S^bx \longrightarrow sCs'$
$\langle \mathbf{k} angle arphi ightarrow \bot$	$sS^kx \longrightarrow sCx$
$\langle k angle arphi ightarrow \langle k angle \langle k angle arphi$	$sS^kx \longrightarrow \exists s' \ (sS^ks'S^kx)$
$\langle b angle arphi ightarrow \langle b angle \langle b angle arphi$	$sS^bx \longrightarrow \exists s' \ (sS^bs'S^bx)$
$\langle b angle arphi ightarrow \langle b angle \langle k angle arphi$	$sS^bx \longrightarrow \exists s' \ (sS^ks'S^bx)$
$\langle k angle arphi \wedge \langle k angle \psi ightarrow \langle k angle (arphi \wedge \psi)$	$sS^kx \wedge tS^kx \longrightarrow \exists v \ (vS^kx \wedge s, t \leq v)$
$\vdash \varphi / \vdash \langle k angle \varphi$	$(orall x \in L)(\exists s \in L) \ sS^k x$

Example: in presence of $\top \rightarrow \varphi \lor \neg \varphi$, the factivity scheme $\langle k \rangle \varphi \rightarrow \varphi$ is derivable from the stronger consistency scheme $\langle k \rangle \varphi \land \neg \varphi \rightarrow \bot$. In presence of $\varphi \land \neg \varphi \rightarrow \bot$, it is the other way round.

(i) Simplest way of arriving at intuitionistic epistemic logic is given by FL_{ewc} and its corresponding class of frames putting Rxxx and $Rxyz \longrightarrow x \le z$.

(ii) From the standard semantics of intuitionistic logic: for a poset (X, \leq) , put L = X, let S^k to be any monotone relation satisfying $S^k \subseteq \leq$, and define the remaining relations as follows:

$$\begin{array}{ll} Rxyz & \text{iff} & x \leq z \text{ and } y \leq z \\ Cxy & \text{iff} & \exists z (x \leq z \text{ and } y \leq z) \end{array}$$

The modality is not trivial ($\varphi \nvDash \langle k \rangle \varphi$), and neither it commutes with the conjunction nor distributes to the implication.

- (iii) Consider (X, ≤) to be a rooted tree with the root r. Put rS^kx for all x ∈ X (the root r is a universal source). In this class of frames, ⟨k⟩ commutes with conjunction, distributes to implication, positive
 - introspection axiom becomes valid, as well as negative introspection axiom.

Consider frames validating $\top \vdash \varphi \lor \neg \varphi$:

- The corresponding frame condition together with the symmetry of C entail that xCy implies x = y,
- together with the scheme φ ∧ ¬φ ⊢ ⊥ and the corresponding condition xCx we obtain that C is the equality.
- By the condition that S^k ⊆ C, also xS^ky implies x = y (self-sources only). The positive introspection axiom becomes valid, while the negative introspection may fail.
- ► By the weaker mutual compatibility condition x, zS^ky implies x = z (one source only). Introspection axioms may fail.

Box or Diamond?

► Consider a monotone neighborhood model $(W, N : PW \longrightarrow PW)$, where $||\Box \alpha|| = N||\alpha||$ (knowledge)

• define a frame (PW, \supseteq) with a relation:

 $xSy \equiv_{df} N(x) \supseteq y$

- ▶ put $x \Vdash p \Leftrightarrow x \subseteq ||p||$
- Then (∧, ∨, ¬, □) translates to (∧, □, ¬, ⟨k⟩) where □ is the inquisitive disjunction, and ¬ is interpreted by

$$xCy \equiv_{df} x \not\subseteq \overline{y}$$

Axiomatization (dFLe + modal axioms)

$$\frac{\varphi \to \psi}{\langle k \rangle \varphi \to \langle k \rangle \psi} \quad \langle k \rangle (\varphi \lor \psi) \to \langle k \rangle \varphi \lor \langle k \rangle \psi \quad \langle k \rangle \bot \to \bot$$

FF UK

$$\frac{\varphi \to \psi}{\langle b \rangle \varphi \to \langle b \rangle \psi} \quad \langle b \rangle (\varphi \lor \psi) \to \langle b \rangle \varphi \lor \langle b \rangle \psi \quad \langle b \rangle \bot \to \bot$$

 $\langle k \rangle \varphi \to \varphi \qquad \langle k \rangle \varphi \to \langle b \rangle \varphi \qquad \langle b \rangle \varphi \land \langle b \rangle \neg \varphi \to \bot$

Strong consistency: $\langle k \rangle \varphi \land \neg \varphi \rightarrow \bot$ Stalnaker's axiom: $\langle b \rangle \varphi \rightarrow \langle b \rangle \langle k \rangle \varphi$ Belief introspection: $\langle b \rangle \varphi \rightarrow \langle b \rangle \langle b \rangle \varphi$ Knowledge introspection: $\langle k \rangle \varphi \rightarrow \langle k \rangle \langle k \rangle \varphi$

Theorem (Strong Completeness) The axiomatization (+ Ax) is strongly complete with respect to the class of corresponding epistemic frames.

$$\Gamma \nvDash \varphi \text{ implies } \Gamma \nvDash_{\mathcal{F}(A_X)} \varphi$$

Proof — the canonical model construction. Canonical states = prime theories ordered by inclusion, canonical relations defined as usual. All axioms listed above are canonical.

The logic has the *finite model property*:

Given a finite set of formulas Σ (closed under subformulas) and a model *M*, we define a preorder

$$x \preceq y \quad \text{iff} \quad (\forall \varphi \in \Sigma) \ x \Vdash \varphi \longrightarrow y \Vdash \varphi$$

and an equivalence relation

 $x \equiv y$ iff $x \preceq y \land y \preceq x$.

We define a new model on $\{[x] \mid x \in X\}$ with a valuation defined by:

 $[x] \Vdash p$ iff $x \Vdash p$.

On $\equiv\mbox{-equivalence classes}$ we define the partial order and monotone relations as follows:

$[x] \leq [y]$	\Leftrightarrow	$x \preceq y$
[x]C[y]	\Leftrightarrow	$x \preceq x' C y' \succeq y$
$[x]S^{b}[y] \wedge$	\Leftrightarrow	$[x]C[z] \land x \preceq x'S^{b}y' \preceq y$
$[z]S^{b}[y]$		$\land z \preceq z' S^b y'' \preceq y$
$[x]S^k[y]$	\Leftrightarrow	$x \preceq x' S^k y' \preceq y$
		$(\wedge [x]C[y])$

Remark: all the properties of relations mentioned above are preserved, except of S^k -density, when the blue condition is present.

 $(\forall \varphi \in \Sigma) [x] \Vdash \varphi \text{ iff } x \Vdash \varphi.$

Display calculus over (bi-)intuitionistic base

$$\frac{X \vdash \sharp \varphi}{X \vdash \neg \varphi} \quad \frac{X \vdash \varphi}{\neg \varphi \vdash \sharp X} \quad \frac{X \vdash \sharp Y}{Y \vdash \sharp X}$$

$$\frac{X \vdash \varphi}{\bullet^{b} X \vdash \langle b \rangle \varphi} \quad \frac{\bullet^{b} \varphi \vdash X}{\langle b \rangle \varphi \vdash X} \quad \frac{\bullet^{b} X \vdash Y}{X \vdash \circ^{b} Y}$$

$$\frac{X \vdash \varphi}{\bullet^{k} X \vdash \langle k \rangle \varphi} \quad \frac{\bullet^{k} \varphi \vdash X}{\langle k \rangle \varphi \vdash X} \quad \frac{\bullet^{k} X \vdash Y}{X \vdash \circ^{k} Y}$$

Axioms via Structural rules

Modularity, completeness, cut elimination, subformula property.

Example of a proof

- ► The algebraic counterpart of the frame semantics (a complete lattice) + Knaster-Tarski theorem ⇒ fixed points.
- \blacktriangleright Common knowledge of φ can be expressed as the greatest fixed point

$$C\varphi \equiv \nu x. \bigwedge_{i\in I} \langle k \rangle_i (\varphi \wedge x).$$

 Obvious axiom and rule yield a non-compact logic, weak completeness remains an open problem. Infinitary proof theory for ν

 One can turn to infinitary proof theory for fixed point logics, using finite approximations of fixed points.

$$\nu x^{1}.\alpha[x] = \alpha[\top] \quad \nu x^{n+1}.\alpha[x] = \alpha[\nu x^{n}.\alpha[x]]$$

adopt axioms

$$\nu x.\alpha[x] \vdash \nu x^n.\alpha[x]$$

and an infinitary rule

$$\{\nu x^n.\alpha[x] \mid n \in N\} \vdash \nu x.\alpha[x]$$

consider the resulting Scott type consequence relation Γ ⊢ Δ (Γ proves a finite disjunction of flas in Δ), and prove strong completeness via a canonical model

References

- M. Bílková, O. Majer and M. Peliš. Epistemic logics for sceptical agents. Journal of Logic and Computation, first published online March 21, 2015.
- G. Greco, Minghui Ma, A. Palmigiano, A. Tzimoulis and Z. Zhao. Unified Correspondence as a Proof-Theoretic Tool. Journal of Logic and Computation, Special Issue on Canonicity and Correspondence for Nonclassical Logics (2016).
- G. Renardel de Lavalette, B. Kooi, R. Verbrugge. Strong Completeness and Limited Canonicity for PDL. Journal of Logic, Language and Information, 2008, Volume 17, Issue 1, pp. 69-87.
- G. Jäger, M. Kretz, T. Studer. Canonical completeness of infinitary μ. The Journal of Logic and Algebraic Programming 76 (2008). 270–292.

THANK YOU!