On linear varieties of MTL-algebras

Matteo Bianchi
Università degli Studi di Milano
Department of Computer Science matteo.bianchi@unimi.it
joint work with
Stefano Aguzzoli

MTL-algebras

An MTL-algebra is an algebra $\langle A, *, \rightarrow, \wedge, \vee, 0,1\rangle$. such that:
(1) $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded lattice with minimum 0 and maximum 1 .
(2) $\langle A, *, 1\rangle$ is a commutative monoid.
(3) $\langle *, \rightarrow\rangle$ forms a residuated pair: $z * x \leq y$ iff $z \leq x \rightarrow y$ for all $x, y, z \in A$. In particular, it holds that $x \rightarrow y=\max \{z \in A: z * x \leq y\}$.
(9) The following equation holds.
(Prelinearity)

$$
(x \rightarrow y) \vee(y \rightarrow x)=1
$$

A totally ordered MTL-algebra is called MTL-chain.

- The class of MTL-algebras forms a variety, called $\mathbb{M T L}$. The logic corresponding to MTL-algebras is called
- An axiomatic extension of MTL is a logic obtained by adding other axioms to it.
- Every axiomatic extension of MTL is algebraizable in the sense of [Blok and Pigozzi, 1989], and hence every subvariety of $\mathbb{M T L}$ induces a logic.

Linear varieties of MTL-algebras

Definition

A variety \mathbb{L} of MTL-algebras is said to be linear whenever its lattice of (non-trivial) subvarieties forms a totally ordered set.

Linear varieties of MTL-algebras

Definition

A variety \mathbb{L} of MTL-algebras is said to be linear whenever its lattice of (non-trivial) subvarieties forms a totally ordered set.

Observe that the lattice of the (non-trivial) subvarieties of \mathbb{L} ordered by inclusion has \mathbb{B} as minimum, and \mathbb{L} as maximum.

Linear varieties of MTL-algebras

Definition

A variety \mathbb{L} of MTL-algebras is said to be linear whenever its lattice of (non-trivial) subvarieties forms a totally ordered set.

Observe that the lattice of the (non-trivial) subvarieties of \mathbb{L} ordered by inclusion has \mathbb{B} as minimum, and \mathbb{L} as maximum.

- Examples of linear varieties of MTL-algebras are given by \mathbb{G} and \mathbb{P} (we will see more of them).

Linear varieties of MTL-algebras

Definition

A variety \mathbb{L} of MTL-algebras is said to be linear whenever its lattice of (non-trivial) subvarieties forms a totally ordered set.

Observe that the lattice of the (non-trivial) subvarieties of \mathbb{L} ordered by inclusion has \mathbb{B} as minimum, and \mathbb{L} as maximum.

- Examples of linear varieties of MTL-algebras are given by \mathbb{G} and \mathbb{P} (we will see more of them).

In this talk:

- We will study some general properties of linear varieties.
- We will classify all the linear varieties of BL-algebras.
- We will classify all the linear varieties of WNM-algebras.
- We will discuss a special case of linear varieties, the almost minimal varieties, providing a characterization theorem for the finite case.

A first result

Definition ([Montagna, 2011])

An axiomatic extension L of MTL has the single chain completeness, whenever there is an L -chain \mathcal{A} such that L is complete w.r.t. it. In other terms, $\mathbb{L}=\mathbf{V}(\mathcal{A})$.

A first result

Definition ([Montagna, 2011])

An axiomatic extension L of MTL has the single chain completeness, whenever there is an L -chain \mathcal{A} such that L is complete w.r.t. it. In other terms, $\mathbb{L}=\mathbf{V}(\mathcal{A})$.

Theorem

Let \mathbb{L} be a variety of MTL-algebras. Then \mathbb{L} is linear if and only if for every subvariety \mathbb{L}^{\prime} of \mathbb{L} there is a chain $\mathcal{A} \in \mathbb{L}$ such that $\mathbb{L}^{\prime}=\mathbb{V}(\mathcal{A})$, for some chain $\mathcal{A} \in \mathbb{L}$.

On cardinality and order type of linear varieties

Theorem

Let \mathbb{L} be a linear variety of MTL-algebras having the FMP, and containing at least an infinite chain. Then:

- For every infinite chain $\mathcal{A} \in \mathbb{L}, \mathbf{V}(\mathcal{A})=\mathbb{L}$.
- The only proper varieties of \mathbb{L} are those generated by a finite chain.
- The order type of the lattice of the subvarieties of \mathbb{L}, ordered by inclusion, is $\omega+1$.
- Let C be the class of all chains in \mathbb{L}. Then either every member of C is simple or every member of C is bipartite . This holds even if \mathbb{L} contains only finite chains.

On cardinality and order type of linear varieties

Theorem

Let \mathbb{L} be a linear variety of MTL-algebras having the FMP, and containing at least an infinite chain. Then:

- For every infinite chain $\mathcal{A} \in \mathbb{L}, \mathbf{V}(\mathcal{A})=\mathbb{L}$.
- The only proper varieties of \mathbb{L} are those generated by a finite chain.
- The order type of the lattice of the subvarieties of \mathbb{L}, ordered by inclusion, is $\omega+1$.
- Let C be the class of all chains in \mathbb{L}. Then either every member of C is simple or every member of C is bipartite. This holds even if \mathbb{L} contains only finite chains.

Interestingly, all the linear varieties that we found up to now have a lattice of subvarieties which is finite, or that has an order type of $\omega+1$. This includes also the ones in $\mathbb{B L}$ and WNM.

BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras plus $x \wedge y=x *(x \rightarrow y)$.

BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras plus $x \wedge y=x *(x \rightarrow y)$.

Some examples are given by Gödel algebras, product algebras and MV-algebras.

BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras plus $x \wedge y=x *(x \rightarrow y)$.

Some examples are given by Gödel algebras, product algebras and MV-algebras.
There is a well know characterization theorem, for BL-chains.

Theorem ([Aglianò and Montagna, 2003])

Every BL-chain \mathcal{A} can be uniquely decomposed as an ordinal sum $\bigoplus_{i \in I} \mathcal{W}_{i}$ of totally ordered Wajsberg hoops whose first component $\mathcal{W}_{i_{0}}$ is bounded.

BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras plus $x \wedge y=x *(x \rightarrow y)$.

Some examples are given by Gödel algebras, product algebras and MV-algebras.
There is a well know characterization theorem, for BL-chains.

Theorem ([Aglianò and Montagna, 2003])

Every BL-chain \mathcal{A} can be uniquely decomposed as an ordinal sum $\bigoplus_{i \in 1} \mathcal{W}_{i}$ of totally ordered Wajsberg hoops whose first component $\mathcal{W}_{i_{0}}$ is bounded.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive ($x^{n}=x^{n-1}$) BL-chain is isomorphic to an ordinal sum of finite MV-chains, each of them having at most n elements.

BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras plus $x \wedge y=x *(x \rightarrow y)$.

Some examples are given by Gödel algebras, product algebras and MV-algebras.
There is a well know characterization theorem, for BL-chains.

Theorem ([Aglianò and Montagna, 2003])

Every BL-chain \mathcal{A} can be uniquely decomposed as an ordinal sum $\bigoplus_{i \in I} \mathcal{W}_{i}$ of totally ordered Wajsberg hoops whose first component $\mathcal{W}_{i_{0}}$ is bounded.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive ($x^{n}=x^{n-1}$) BL-chain is isomorphic to an ordinal sum of finite MV-chains, each of them having at most n elements.

With \mathbb{L}_{k} we will denote the variety generated by the k-element MV-chain \mathbf{L}_{k}, whose lattice reduct is $0<\frac{1}{k-1}<\cdots \leq 1$.

Linear varieties of BL-algebras

Theorem

The linear subvarieties of $\mathbb{B L}$ are exactly the following ones.

- \mathbb{G} and $\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$.
- The family of varieties $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and $\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.
- The variety \mathbb{C} generated by Chang's MV-algebra.
- \mathbb{P} (the variety of product algebras), \mathbb{P}_{∞}, and $\left\{\mathbb{P}_{k}\right\}_{k \geq 2}$.

Where:

- \mathbb{P}_{∞} is the variety whose class of chains is given by all the chains of the form $\mathbf{2} \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where every \mathcal{C}_{i} is a cancellative hoop.
- For $k \geq 2, \mathbb{P}_{k}$ is the variety whose class of (non-trivial) chains is given by all the chains of the form $\mathbf{2} \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where $|I| \leq k$, and every \mathcal{C}_{i} is a cancellative hoop.

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])
Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

September, 2016

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

By using the chain decomposition theorem it can be shown that the only linear varieties of BL-algebras being n-contractive are $\mathbb{G},\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$, $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and $\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

By using the chain decomposition theorem it can be shown that the only linear varieties of BL-algebras being n-contractive are $\mathbb{G},\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$, $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and $\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.

Assume now that \mathbb{L} is linear, and $\mathbb{P} \subseteq \mathbb{L}$. Then the only possibility is that every (non-trivial) chain is \mathbb{L} has the form $2 \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where every \mathcal{C}_{i} is a cancellative hoop.

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

By using the chain decomposition theorem it can be shown that the only linear varieties of BL-algebras being n-contractive are $\mathbb{G},\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$, $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and $\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.

Assume now that \mathbb{L} is linear, and $\mathbb{P} \subseteq \mathbb{L}$. Then the only possibility is that every (non-trivial) chain is \mathbb{L} has the form $2 \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where every \mathcal{C}_{i} is a cancellative hoop. Then, a direct inspection shows that the only varieties with such properties are $\mathbb{P}, \mathbb{P}_{\infty}$, and $\left\{\mathbb{P}_{k}\right\}_{k \geq 2}$.

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

By using the chain decomposition theorem it can be shown that the only linear varieties of BL-algebras being n-contractive are $\mathbb{G},\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$, $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and
$\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.

Assume now that \mathbb{L} is linear, and $\mathbb{P} \subseteq \mathbb{L}$. Then the only possibility is that every (non-trivial) chain is \mathbb{L} has the form $2 \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where every \mathcal{C}_{i} is a cancellative hoop. Then, a direct inspection shows that the only varieties with such properties are $\mathbb{P}, \mathbb{P}_{\infty}$, and $\left\{\mathbb{P}_{k}\right\}_{k \geq 2}$.

Finally, if \mathbb{L} is linear, and $\mathbb{C} \subseteq \mathbb{L}$, then necessarily $\mathbb{L} \subset \mathbb{M V}$.

Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let \mathbb{L} be a variety of BL-algebras which is not n-contractive, for any n. Then \mathbb{L} contains \mathbb{P} or \mathbb{C}.

By using the chain decomposition theorem it can be shown that the only linear varieties of BL-algebras being n-contractive are $\mathbb{G},\left\{\mathbb{G}_{k}\right\}_{k \geq 2}$, $\left\{\mathbb{L}_{k}: k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$ and
$\left\{\mathbf{V}\left(\mathbf{2} \oplus \mathbf{L}_{k}\right): k-1=h^{n}, 1 \leq h\right.$ is prime and $\left.n \geq 1\right\}$.

Assume now that \mathbb{L} is linear, and $\mathbb{P} \subseteq \mathbb{L}$. Then the only possibility is that every (non-trivial) chain is \mathbb{L} has the form $2 \oplus \bigoplus_{i \in I} \mathcal{C}_{i}$, where every \mathcal{C}_{i} is a cancellative hoop. Then, a direct inspection shows that the only varieties with such properties are $\mathbb{P}, \mathbb{P}_{\infty}$, and $\left\{\mathbb{P}_{k}\right\}_{k \geq 2}$.

Finally, if \mathbb{L} is linear, and $\mathbb{C} \subseteq \mathbb{L}$, then necessarily $\mathbb{L} \subset \mathbb{M V}$. Using the Komori's classification, we can show that $\mathbb{L}=\mathbb{C}$.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise. }
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y, \\
\max \{n(x), y\} & \text { otherwise } .\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise. }
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y, \\
\max \{n(x), y\} & \text { otherwise } .\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

Examples:

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise } .
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\
\max \{n(x), y\} & \text { otherwise }\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

Examples:
Gödel-chains are those WNM-chains such that $n(x)=0$, for every $x>0$.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise } .
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\
\max \{n(x), y\} & \text { otherwise }\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

Examples:
Gödel-chains are those WNM-chains such that $n(x)=0$, for every $x>0$.
NM^{-}-chains are those WNM-chain with an involutive negation $(n(n(x))=x)$, and without negation fixpoint.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise } .
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\
\max \{n(x), y\} & \text { otherwise }\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

Examples:
Gödel-chains are those WNM-chains such that $n(x)=0$, for every $x>0$.
NM^{-}-chains are those WNM-chain with an involutive negation $(n(n(x))=x)$, and without negation fixpoint.
DP-chains (with more than two elements) are those WNM-chains having a coatom c such that $n(c)=c$, and $n(x)=c$, for every $0<x<c$.

WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized as those MTL-algebras satisfying $\neg(x * y) \vee((x \wedge y) \rightarrow(x * y))=1$.

The operations $*, \rightarrow$ of a WNM-chain \mathcal{A} are defined in the following way.

$$
x * y=\left\{\begin{array}{ll}
0 & \text { if } x \leq n(y), \\
\min \{x, y\} & \text { otherwise } .
\end{array} \quad x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\
\max \{n(x), y\} & \text { otherwise }\end{cases}\right.
$$

Where $n: A \rightarrow A$ is a negation function, i.e. $n(1)=0, n(n(x)) \geq x$, and if $x<y$, then $n(x) \geq n(y)$. A negation fixpoint is an element x such that $n(x)=x$.

Examples:
Gödel-chains are those WNM-chains such that $n(x)=0$, for every $x>0$.
NM^{-}-chains are those WNM-chain with an involutive negation $(n(n(x))=x)$, and without negation fixpoint.
DP-chains (with more than two elements) are those WNM-chains having a coatom c such that $n(c)=c$, and $n(x)=c$, for every $0<x<c$.
F-chains (with more than two elements) are those WNM-chains having a coatom c such that $n(c)$ is its predecessor, and $n(x)=c$, for every $0<x<n(c)$.

Linear varieties of WNM-algebras

Theorem

The linear subvarieties of WNM are exactly the following ones.

- \mathbb{G} and its subvarieties.
- $\mathbb{D P}$ and its subvarieties.
- $\mathbb{N M}^{-}$and its subvarieties.
- \mathbb{F} and its subvarieties.

In particular, the only proper subvarieties of $\mathbb{L} \in\left\{\mathbb{G}, \mathbb{D P}, \mathbb{N M}^{-}, \mathbb{F}\right\}$ are the ones of the form $\mathbf{V}(\mathcal{A})$, where \mathcal{A} is a finite chain in \mathbb{L}. Moreover, the order type of the lattice of subvarieties of \mathbb{L} is $\omega+1$.

Linear varieties of WNM-algebras - sketch of the proof

The fact that $\mathbb{G}, \mathbb{D P}, \mathbb{N M}^{-}, \mathbb{F}$ are linear is a consequence of the way in which the operations $*$ and \rightarrow are defined.

If a chain belongs to $\mathbb{W} \mathbb{N M} \backslash\left\{\mathbb{G} \cup \mathbb{D P} \cup \mathbb{N M}^{-} \cup \mathbb{F}\right\}$, then we can show that it generates a non-linear variety, using the following theorem:

Theorem

- Let \mathcal{A} be a WNM-chain having an element $0<x<1$ with $\sim x=0$. If $\mathcal{A} \notin \mathbb{G}$, then $\mathbf{V}(\mathcal{A})$ is not linear.
- Let \mathcal{A} be a $W N M$-chain with a negation fixpoint. If $|A|>3$ and \mathcal{A} is not a $D P$-chain, then $\mathbf{V}(\mathcal{A})$ is not linear.
- Let \mathcal{A} be a $W N M$-chain such that there is $0<x<1$ with $\sim \sim x=x$ and $\sim x \neq x$. If $\mathcal{A} \notin \mathbb{N M} \cup \mathbb{F}$, then $\mathbf{V}(\mathcal{A})$ is not linear.

Linear and almost minimal varieties

Definition

A variety of MTL-algebras is said almost minimal whenever the variety of Boolean algebras is its only proper non-trivial subvariety.

Linear and almost minimal varieties

Definition

A variety of MTL-algebras is said almost minimal whenever the variety of Boolean algebras is its only proper non-trivial subvariety.

Clearly, every almost minimal variety \mathbb{L} of MTL-algebras is linear, and hence we have the following Corollary.

Corollary

- The almost minimal varieties in $\mathbb{B L}$ are $\mathbb{G}_{3}, \mathbb{P}, \mathbb{C}$, and $\left\{\mathbb{L}_{k}: k>2\right.$ and $k-1$ is prime $\}$.
- The almost minimal varieties in $\mathbb{W N M}$ are $\mathbb{G}_{3}, \mathbb{L}_{3}, \mathbb{N M}_{4}$.

Almost minimal varieties - some theorems

Theorem

Let \mathbb{L} be an almost minimal variety of MTL-algebras. Then, every chain in \mathbb{L} such is simple or every chain in \mathbb{L} is bipartite.

Almost minimal varieties - some theorems

Theorem

Let \mathbb{L} be an almost minimal variety of MTL-algebras. Then, every chain in \mathbb{L} such is simple or every chain in \mathbb{L} is bipartite.

Theorem (Characterization of generic chains, finite case)

Given a finite MTL-chain \mathcal{A}, let $\mathbb{L}=\mathbf{V}(\mathcal{A})$. Then \mathbb{L} is almost minimal if and only if $|\mathcal{A}|>2$, and every element $a \in \mathcal{A} \backslash\{0,1\}$ generates \mathcal{A}.

Open problems

- Is it true that given a linear variety \mathbb{L}, every chain in \mathbb{L} is linear or every chain in \mathbb{L} is bipartite?

Open problems

- Is it true that given a linear variety \mathbb{L}, every chain in \mathbb{L} is linear or every chain in \mathbb{L} is bipartite?
- Are there examples of linear varieties, containing infinite chains, whose lattice of subvarieties (ordered by inclusion) is infinite, and with order type different from $\omega+1$?

Open problems

- Is it true that given a linear variety \mathbb{L}, every chain in \mathbb{L} is linear or every chain in \mathbb{L} is bipartite?
- Are there examples of linear varieties, containing infinite chains, whose lattice of subvarieties (ordered by inclusion) is infinite, and with order type different from $\omega+1$?
- How about the almost minimal varieties of MTL-algebras? Is there a way to classify them, at least in the finite case?

Open problems

- Is it true that given a linear variety \mathbb{L}, every chain in \mathbb{L} is linear or every chain in \mathbb{L} is bipartite?
- Are there examples of linear varieties, containing infinite chains, whose lattice of subvarieties (ordered by inclusion) is infinite, and with order type different from $\omega+1$?
- How about the almost minimal varieties of MTL-algebras? Is there a way to classify them, at least in the finite case?
- How about the computational complexity and the first-order case?

Bibliography I

Aglianò, P., Ferreirim, I., and Montagna, F. (2007). Basic Hoops: an Algebraic Study of Continuous t-norms. Studia Logica, 87:73-98.
doi:10.1007/s11225-007-9078-1.
R- Aglianò, P. and Montagna, F. (2003). Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra, 181(2-3):105-129. doi:10.1016/S0022-4049(02)00329-8.

国 Bianchi, M. and Montagna, F. (2009). Supersound many-valued logics and Dedekind-MacNeille completions. Arch. Math. Log., 48(8):719-736. doi:10.1007/s00153-009-0145-3.
R Bianchi, M. and Montagna, F. (2011). n-contractive BL-logics. Arch. Math. Log., 50(3-4):257-285. doi:10.1007/s00153-010-0213-8.
Blok, W. and Pigozzi, D. (1989). Algebraizable logics, volume 77 of Memoirs of The American Mathematical Society. American Mathematical Society. tinyurl.com/o89ug5o.
R Blok, W. J. and Ferreirim, I. M. A. (2000). On the structure of hoops. Alg. Univers., 43(2-3):233-257. doi:10.1007/s000120050156.

Bibliography II

Esteva, F. and Godo, L. (2001). Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets Syst., 124(3):271-288.
doi:10.1016/S0165-0114(01)00098-7.
Ferreirim, I. (1992). On Varieties and Quasivarieties of Hoops and Their Reducts. PhD thesis, University of Illinois at Chicago.

- Hecht, T. and Katriňák, T. (1972). Equational classes of relative Stone algebras. Notre Dame J. Form. Log., 13(2):248-254. doi:10.1305/ndjfl/1093894723.
Hájek, P. (1998). Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer Academic Publishers, paperback edition.
國 Montagna, F. (2011). Completeness with respect to a chain and universal models in fuzzy logic. Arch. Math. Log., 50(1-2):161-183. doi:10.1007/s00153-010-0207-6.

Noguera, C., Esteva, F., and Gispert, J. (2005). On Some Varieties of MTL-algebras. Log. J. IGPL, 13(4):443-466. doi:10.1093/jigpal/jzi034.

APPENDIX

Semihoops and hoops

Definition

A semihoop is a structure $\mathcal{A}=\langle A, *, \sqcap, \Rightarrow, 1\rangle$ such that $\langle A, \sqcap, 1\rangle$ is an inf-semilattice with upper bound $1, *$ is a binary operation on A with unit 1 , and \Rightarrow is a binary operation such that:

- $x \leq y$ iff $x \Rightarrow y=1$,
- $(x * y) \Rightarrow z=x \Rightarrow(y \Rightarrow z)$.

A bounded semihoop is a semihoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

- A hoop is a semihoop satisfying $x *(x \Rightarrow y)=y *(y \Rightarrow x)$.
- A Wajsberg hoop is a hoop satisfying $x \Rightarrow(x \Rightarrow y)=y \Rightarrow(y \Rightarrow x)$.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered semihoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \left\lvert\, \quad x \rightarrow y= \begin{cases}x \rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \right. \\
& A_{i} \left\lvert\, \quad x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases} \right.
\end{aligned}
$$

- As a consequence, if $x \in A_{i} \backslash\{1\}, y \in A_{j}$ and $i<j$ then $x<y$.

n-contractive logics

Definition

A variety \mathbb{L} of MTL-algebras is said to be n-contractive ($n \geq 2$), whenever $L \models x^{n}=x^{n-1}$.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive BL-chain is isomorphic to an ordinal sum of finite MV-chains, each of them having at most n elements.

September, 2016

Axiomatization of MTL

The basic connective are $\{\wedge, \&, \rightarrow, \perp\}$ (formulas built inductively: a theory is a set of formulas). Useful derived connectives are the following ones:
(negation)
(disjunction)
(top)

$$
\begin{aligned}
\neg \varphi & \stackrel{\text { def }}{=} \varphi \rightarrow \perp \\
\varphi \vee \psi & \stackrel{\text { def }}{=}((\varphi \rightarrow \psi) \rightarrow \psi) \wedge((\psi \rightarrow \varphi) \rightarrow \varphi) \\
& \top \stackrel{\text { def }}{=} \neg \perp
\end{aligned}
$$

MTL can be axiomatized by using these axioms and modus ponens: $\frac{\varphi \rightarrow \psi}{\psi}$.
(A1)
$(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2)
$(\varphi \& \psi) \rightarrow \varphi$
(A3)
$(\varphi \& \psi) \rightarrow(\psi \& \varphi)$
(A4)
$(\varphi \wedge \psi) \rightarrow \varphi$
(A5)
(A6)
$(\varphi \wedge \psi) \rightarrow(\psi \wedge \varphi)$
$(\varphi \&(\varphi \rightarrow \psi)) \rightarrow(\psi \wedge \varphi)$
(A7a)
$(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \& \psi) \rightarrow \chi)$
(A7b)
$((\varphi \& \psi) \rightarrow \chi) \rightarrow(\varphi \rightarrow(\psi \rightarrow \chi))$
(A8)
$((\varphi \rightarrow \psi) \rightarrow \chi) \rightarrow(((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi)$
(A9)
$\perp \rightarrow \varphi$

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x)
$$

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x) .
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Ferreirim, 1992, Blok and Ferreirim, 2000, Aglianò et al., 2007])

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x) .
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Ferreirim, 1992, Blok and Ferreirim, 2000, Aglianò et al., 2007])

- A hoop is Wajsberg iff it satisfies the equation $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$.

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x) .
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Ferreirim, 1992, Blok and Ferreirim, 2000, Aglianò et al., 2007])

- A hoop is Wajsberg iff it satisfies the equation $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$.
- A hoop is cancellative iff it satisfies the equation $x=y \rightarrow(x * y)$.

Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure $\mathcal{A}=\langle A, *, \rightarrow, 1\rangle$ such that $\langle A, *, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x * y) \rightarrow z \quad \text { and } \quad x *(x \rightarrow y)=y *(y \rightarrow x)
$$

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a hoop without minimum.

Proposition ([Ferreirim, 1992, Blok and Ferreirim, 2000, Aglianò et al., 2007])

- A hoop is Wajsberg iff it satisfies the equation $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$.
- A hoop is cancellative iff it satisfies the equation $x=y \rightarrow(x * y)$.
- Totally ordered cancellative hoops coincide with unbounded totally ordered Wajsberg hoops, whereas bounded Wajsberg hoops coincide with (the 0-free reducts of) MV-algebras.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{gathered}
x \rightarrow y= \begin{cases}x \rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \\
x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{gathered}
$$

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \mid \\
& x \rightarrow y= \begin{cases}x \rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \\
& x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{aligned}
$$

- As a consequence, if $x \in A_{i} \backslash\{1\}, y \in A_{j}$ and $i<j$ then $x<y$.

Ordinal Sums

- Let $\langle I, \leq\rangle$ be a totally ordered set with minimum 0 . For all $i \in I$, let \mathcal{A}_{i} be a totally ordered Wajsberg hoop such that for $i \neq j, A_{i} \cap A_{j}=\{1\}$, and assume that \mathcal{A}_{0} is bounded.
- Then $\bigoplus_{i \in I} \mathcal{A}_{i}$ (the ordinal sum of the family $\left.\left(\mathcal{A}_{i}\right)_{i \in I}\right)$ is the structure whose base set is $\bigcup_{i \in I} A_{i}$, whose bottom is the minimum of \mathcal{A}_{0}, whose top is 1 , and whose operations are

$$
\begin{aligned}
& A_{j} \mid \\
& x \rightarrow y= \begin{cases}x \rightarrow^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
y & \text { if } \exists i>j\left(x \in A_{i} \text { and } y \in A_{j}\right) \\
1 & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\} \text { and } y \in A_{j}\right)\end{cases} \\
& x * y= \begin{cases}x *^{\mathcal{A}_{i}} y & \text { if } x, y \in A_{i} \\
x & \text { if } \exists i<j\left(x \in A_{i} \backslash\{1\}, y \in A_{j}\right) \\
y & \text { if } \exists i<j\left(y \in A_{i} \backslash\{1\}, x \in A_{j}\right)\end{cases}
\end{aligned}
$$

- As a consequence, if $x \in A_{i} \backslash\{1\}, y \in A_{j}$ and $i<j$ then $x<y$.
- Note that, since every bounded Wajsberg hoop is the 0 -free reduct of an MV-algebra, then the previous definition also works with these structures.

Bipartite MTL-algebras

Definition

- Given an MTL-chain \mathcal{A}, with $\operatorname{Rad}(\mathcal{A})$ we denote the largest proper filter of \mathcal{A}.
- An MTL-chain \mathcal{A} is said to be bipartite if $A=\operatorname{Rad}(\mathcal{A}) \cup \overline{\operatorname{Rad}}(\mathcal{A})$, where $\overline{\operatorname{Rad}}(\mathcal{A})=\{a \in A: \sim a \in \operatorname{Rad}(\mathcal{A})\}$.

Bipartite MTL-algebras

Definition

- Given an MTL-chain \mathcal{A}, with $\operatorname{Rad}(\mathcal{A})$ we denote the largest proper filter of \mathcal{A}.
- An MTL-chain \mathcal{A} is said to be bipartite if $A=\operatorname{Rad}(\mathcal{A}) \cup \overline{\operatorname{Rad}}(\mathcal{A})$, where $\overline{\operatorname{Rad}}(\mathcal{A})=\{a \in A: \sim a \in \operatorname{Rad}(\mathcal{A})\}$.

Theorem ([Noguera et al., 2005, Theorem 3.20])

Let \mathcal{A} be an MTL-chain. Then the following conditions are equivalent:

- \mathcal{A} is bipartite.
- $\operatorname{Rad}(\mathcal{A})=A^{+}$and \mathcal{A} does not have a negation fixpoint.
- $\mathcal{A} / \operatorname{Rad}(\mathcal{A}) \simeq 2$.
- \mathcal{A} satisfies the following equation:
$\left(\mathrm{BP}_{0}\right)$

$$
\left(\sim\left((\sim x)^{2}\right)\right)^{2}=\sim\left(\left(\sim\left(x^{2}\right)\right)^{2}\right) .
$$

Linear varieties, examples

