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MTL-algebras

An MTL-algebra is an algebra 〈A, ∗,→,∧,∨, 0, 1〉. such that:

1 〈A,∧,∨, 0, 1〉 is a bounded lattice with minimum 0 and maximum 1.

2 〈A, ∗, 1〉 is a commutative monoid.

3 〈∗,→〉 forms a residuated pair: z ∗ x ≤ y iff z ≤ x → y for all x , y , z ∈ A. In
particular, it holds that x → y = max{z ∈ A : z ∗ x ≤ y}.

4 The following equation holds.

(Prelinearity) (x → y) ∨ (y → x) = 1.

A totally ordered MTL-algebra is called MTL-chain.

The class of MTL-algebras forms a variety, called MTL. The logic corresponding to
MTL-algebras is called MTL .

An axiomatic extension of MTL is a logic obtained by adding other axioms to it.

Every axiomatic extension of MTL is algebraizable in the sense of
[Blok and Pigozzi, 1989], and hence every subvariety of MTL induces a logic.
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Linear varieties of MTL-algebras

Definition

A variety L of MTL-algebras is said to be linear whenever its lattice of (non-trivial)
subvarieties forms a totally ordered set.

Observe that the lattice of the (non-trivial) subvarieties of L ordered by inclusion has B
as minimum, and L as maximum.

Examples of linear varieties of MTL-algebras are given by G and P (we will see more of
them).

In this talk:

We will study some general properties of linear varieties.

We will classify all the linear varieties of BL-algebras.

We will classify all the linear varieties of WNM-algebras.

We will discuss a special case of linear varieties, the almost minimal varieties,
providing a characterization theorem for the finite case.
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A first result

Definition ([Montagna, 2011])

An axiomatic extension L of MTL has the single chain completeness, whenever there is
an L-chain A such that L is complete w.r.t. it. In other terms, L = V(A).

Theorem

Let L be a variety of MTL-algebras. Then L is linear if and only if for every subvariety L′
of L there is a chain A ∈ L such that L′ = V(A), for some chain A ∈ L.
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On cardinality and order type of linear varieties

Theorem

Let L be a linear variety of MTL-algebras having the FMP, and containing at least an
infinite chain. Then:

For every infinite chain A ∈ L, V(A) = L.

The only proper varieties of L are those generated by a finite chain.

The order type of the lattice of the subvarieties of L, ordered by inclusion, is ω + 1.

Let C be the class of all chains in L. Then either every member of C is simple or
every member of C is bipartite . This holds even if L contains only finite chains.

Interestingly, all the linear varieties that we found up to now have a lattice of subvarieties
which is finite, or that has an order type of ω + 1. This includes also the ones in BL and
WNM.
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BL-algebras

BL-algebras were introduced in [Hájek, 1998]. They are axiomatized as MTL-algebras
plus x ∧ y = x ∗ (x → y).

Some examples are given by Gödel algebras, product algebras and MV-algebras.

There is a well know characterization theorem, for BL-chains.

Theorem ([Aglianò and Montagna, 2003])

Every BL-chain A can be uniquely decomposed as an ordinal sum
⊕

i∈I Wi of totally

ordered Wajsberg hoops whose first component Wi0 is bounded.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive (xn = xn−1) BL-chain is isomorphic to an ordinal sum of finite
MV-chains, each of them having at most n elements.

With Lk we will denote the variety generated by the k-element MV-chain Lk , whose
lattice reduct is 0 < 1

k−1
< · · · ≤ 1.
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Linear varieties of BL-algebras

Theorem

The linear subvarieties of BL are exactly the following ones.

G and {Gk}k≥2.

The family of varieties {Lk : k − 1 = hn, 1 ≤ h is prime and n ≥ 1} and
{V(2⊕ Lk) : k − 1 = hn, 1 ≤ h is prime and n ≥ 1}.
The variety C generated by Chang’s MV-algebra.

P (the variety of product algebras), P∞, and {Pk}k≥2.

Where:

P∞ is the variety whose class of chains is given by all the chains of the form
2⊕

⊕
i∈I Ci , where every Ci is a cancellative hoop.

For k ≥ 2, Pk is the variety whose class of (non-trivial) chains is given by all the
chains of the form 2⊕

⊕
i∈I Ci , where |I | ≤ k, and every Ci is a cancellative hoop.
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Linear varieties of BL-algebras - sketch of the proof

Theorem ([Bianchi and Montagna, 2009, Lemma 7])

Let L be a variety of BL-algebras which is not n-contractive, for any n. Then L contains
P or C.

By using the chain decomposition theorem it can be shown that the only linear varieties
of BL-algebras being n-contractive are G, {Gk}k≥2,
{Lk : k − 1 = hn, 1 ≤ h is prime and n ≥ 1} and
{V(2⊕ Lk) : k − 1 = hn, 1 ≤ h is prime and n ≥ 1}.

Assume now that L is linear, and P ⊆ L. Then the only possibility is that every
(non-trivial) chain is L has the form 2⊕

⊕
i∈I Ci , where every Ci is a cancellative hoop.

Then, a direct inspection shows that the only varieties with such properties are P, P∞,
and {Pk}k≥2.

Finally, if L is linear, and C ⊆ L, then necessarily L ⊂ MV.

Using the Komori’s classification, we can show that L = C.
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WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized
as those MTL-algebras satisfying ¬(x ∗ y) ∨ ((x ∧ y)→ (x ∗ y)) = 1.

The operations ∗,→ of a WNM-chain A are defined in the following way.

x ∗ y =

{
0 if x ≤ n(y),

min{x , y} otherwise.
x → y =

{
1 if x ≤ y ,

max{n(x), y} otherwise.

Where n : A→ A is a negation function, i.e. n(1) = 0, n(n(x)) ≥ x , and if x < y , then
n(x) ≥ n(y). A negation fixpoint is an element x such that n(x) = x .

Examples:

Gödel-chains are those WNM-chains such that n(x) = 0, for every x > 0.

NM−-chains are those WNM-chain with an involutive negation (n(n(x)) = x), and
without negation fixpoint.

DP-chains (with more than two elements) are those WNM-chains having a coatom c
such that n(c) = c, and n(x) = c, for every 0 < x < c.

F-chains (with more than two elements) are those WNM-chains having a coatom c such
that n(c) is its predecessor, and n(x) = c, for every 0 < x < n(c).
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Gödel-chains are those WNM-chains such that n(x) = 0, for every x > 0.

NM−-chains are those WNM-chain with an involutive negation (n(n(x)) = x), and
without negation fixpoint.

DP-chains (with more than two elements) are those WNM-chains having a coatom c
such that n(c) = c, and n(x) = c, for every 0 < x < c.

F-chains (with more than two elements) are those WNM-chains having a coatom c such
that n(c) is its predecessor, and n(x) = c, for every 0 < x < n(c).

( reset ) September, 2016 9 / 14



WNM-algebras

WNM-algebras were firstly introduced in [Esteva and Godo, 2001]. They are axiomatized
as those MTL-algebras satisfying ¬(x ∗ y) ∨ ((x ∧ y)→ (x ∗ y)) = 1.

The operations ∗,→ of a WNM-chain A are defined in the following way.

x ∗ y =

{
0 if x ≤ n(y),

min{x , y} otherwise.
x → y =

{
1 if x ≤ y ,

max{n(x), y} otherwise.

Where n : A→ A is a negation function, i.e. n(1) = 0, n(n(x)) ≥ x , and if x < y , then
n(x) ≥ n(y). A negation fixpoint is an element x such that n(x) = x .

Examples:
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Linear varieties of WNM-algebras

Theorem

The linear subvarieties of WNM are exactly the following ones.

G and its subvarieties.

DP and its subvarieties.

NM− and its subvarieties.

F and its subvarieties.

In particular, the only proper subvarieties of L ∈ {G,DP,NM−,F} are the ones of the
form V(A), where A is a finite chain in L. Moreover, the order type of the lattice of
subvarieties of L is ω + 1.
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Linear varieties of WNM-algebras - sketch of the proof

The fact that G,DP,NM−,F are linear is a consequence of the way in which the
operations ∗ and → are defined.

If a chain belongs to WNM \ {G∪DP∪NM− ∪ F}, then we can show that it generates a
non-linear variety, using the following theorem:

Theorem

Let A be a WNM-chain having an element 0 < x < 1 with ∼x = 0. If A /∈ G, then
V(A) is not linear.

Let A be a WNM-chain with a negation fixpoint. If |A| > 3 and A is not a
DP-chain, then V(A) is not linear.

Let A be a WNM-chain such that there is 0 < x < 1 with ∼∼x = x and ∼x 6= x . If
A /∈ NM ∪ F, then V(A) is not linear.
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Linear and almost minimal varieties

Definition

A variety of MTL-algebras is said almost minimal whenever the variety of Boolean
algebras is its only proper non-trivial subvariety.

Clearly, every almost minimal variety L of MTL-algebras is linear, and hence we have the
following Corollary.

Corollary

The almost minimal varieties in BL are G3, P, C, and
{Lk : k > 2 and k − 1 is prime}.
The almost minimal varieties in WNM are G3, L3, NM4.
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Almost minimal varieties - some theorems

Theorem

Let L be an almost minimal variety of MTL-algebras. Then, every chain in L such is
simple or every chain in L is bipartite.

Theorem (Characterization of generic chains, finite case)

Given a finite MTL-chain A, let L = V(A). Then L is almost minimal if and only if
|A| > 2, and every element a ∈ A \ {0, 1} generates A.
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Open problems

Is it true that given a linear variety L, every chain in L is linear or every chain in L is
bipartite?

Are there examples of linear varieties, containing infinite chains, whose lattice of
subvarieties (ordered by inclusion) is infinite, and with order type different from
ω + 1?

How about the almost minimal varieties of MTL-algebras? Is there a way to classify
them, at least in the finite case?

How about the computational complexity and the first-order case?
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Semihoops and hoops

Definition

A semihoop is a structure A = 〈A, ∗,u,⇒, 1〉 such that 〈A,u, 1〉 is an inf-semilattice
with upper bound 1, ∗ is a binary operation on A with unit 1, and ⇒ is a binary
operation such that:

x ≤ y iff x ⇒ y = 1,

(x ∗ y)⇒ z = x ⇒ (y ⇒ z).

A bounded semihoop is a semihoop with a minimum element; conversely, an unbounded
hoop is a hoop without minimum.

A hoop is a semihoop satisfying x ∗ (x ⇒ y) = y ∗ (y ⇒ x).

A Wajsberg hoop is a hoop satisfying x ⇒ (x ⇒ y) = y ⇒ (y ⇒ x).
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Ordinal Sums

Let 〈I ,≤〉 be a totally ordered set with minimum 0. For all i ∈ I , let Ai be a totally
ordered semihoop such that for i 6= j , Ai ∩Aj = {1}, and assume that A0 is bounded.

Then
⊕

i∈I Ai (the ordinal sum of the family (Ai )i∈I ) is the structure whose base
set is

⋃
i∈I Ai , whose bottom is the minimum of A0, whose top is 1, and whose

operations are

Aj

Ai

x → y =


x →Ai y if x , y ∈ Ai

y if ∃i > j(x ∈ Ai and y ∈ Aj)

1 if ∃i < j(x ∈ Ai \ {1} and y ∈ Aj)

x ∗ y =


x ∗Ai y if x , y ∈ Ai

x if ∃i < j(x ∈ Ai \ {1}, y ∈ Aj)

y if ∃i < j(y ∈ Ai \ {1}, x ∈ Aj)

As a consequence, if x ∈ Ai \ {1}, y ∈ Aj and i < j then x < y .
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n-contractive logics

Definition

A variety L of MTL-algebras is said to be n-contractive (n ≥ 2), whenever
L |= xn = xn−1.

Theorem ([Bianchi and Montagna, 2011])

Every n-contractive BL-chain is isomorphic to an ordinal sum of finite MV-chains, each of
them having at most n elements.

back

( reset ) September, 2016 20 / 14



Axiomatization of MTL

The basic connective are {∧,&,→,⊥} (formulas built inductively: a theory is a set of
formulas). Useful derived connectives are the following ones:

¬ϕ def
=ϕ→ ⊥(negation)

ϕ ∨ ψ def
=((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)(disjunction)

> def
=¬⊥(top)

MTL can be axiomatized by using these axioms and modus ponens: ϕ ϕ→ψ
ψ

.

(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))(A1)

(ϕ&ψ)→ ϕ(A2)

(ϕ&ψ)→ (ψ&ϕ)(A3)

(ϕ ∧ ψ)→ ϕ(A4)

(ϕ ∧ ψ)→ (ψ ∧ ϕ)(A5)

(ϕ&(ϕ→ ψ))→ (ψ ∧ ϕ)(A6)

(ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)(A7a)

((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))(A7b)

((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)(A8)

⊥ → ϕ(A9)
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Hoops

Definition ([Ferreirim, 1992, Blok and Ferreirim, 2000])

A hoop is a structure A = 〈A, ∗,→, 1〉 such that 〈A, ∗, 1〉 is a commutative monoid, and
→ is a binary operation such that

x → x = 1, x → (y → z) = (x ∗ y)→ z and x ∗ (x → y) = y ∗ (y → x).

Definition

A bounded hoop is a hoop with a minimum element; conversely, an unbounded hoop is a
hoop without minimum.

Proposition ([Ferreirim, 1992, Blok and Ferreirim, 2000, Aglianò et al., 2007])

A hoop is Wajsberg iff it satisfies the equation (x → y)→ y = (y → x)→ x .

A hoop is cancellative iff it satisfies the equation x = y → (x ∗ y).

Totally ordered cancellative hoops coincide with unbounded totally ordered Wajsberg
hoops, whereas bounded Wajsberg hoops coincide with (the 0-free reducts of)
MV-algebras.
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Ordinal Sums

Let 〈I ,≤〉 be a totally ordered set with minimum 0. For all i ∈ I , let Ai be a totally
ordered Wajsberg hoop such that for i 6= j , Ai ∩ Aj = {1}, and assume that A0 is
bounded.

Then
⊕

i∈I Ai (the ordinal sum of the family (Ai )i∈I ) is the structure whose base
set is

⋃
i∈I Ai , whose bottom is the minimum of A0, whose top is 1, and whose

operations are

Aj

Ai

x → y =


x →Ai y if x , y ∈ Ai

y if ∃i > j(x ∈ Ai and y ∈ Aj)

1 if ∃i < j(x ∈ Ai \ {1} and y ∈ Aj)

x ∗ y =


x ∗Ai y if x , y ∈ Ai

x if ∃i < j(x ∈ Ai \ {1}, y ∈ Aj)

y if ∃i < j(y ∈ Ai \ {1}, x ∈ Aj)

As a consequence, if x ∈ Ai \ {1}, y ∈ Aj and i < j then x < y .

Note that, since every bounded Wajsberg hoop is the 0-free reduct of an
MV-algebra, then the previous definition also works with these structures.
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Bipartite MTL-algebras

Definition

Given an MTL-chain A, with Rad(A) we denote the largest proper filter of A.

An MTL-chain A is said to be bipartite if A = Rad(A) ∪ Rad(A), where
Rad(A) = {a ∈ A : ∼a ∈ Rad(A)}.

Theorem ([Noguera et al., 2005, Theorem 3.20])

Let A be an MTL-chain. Then the following conditions are equivalent:

A is bipartite.

Rad(A) = A+ and A does not have a negation fixpoint.

A/Rad(A) ' 2.

A satisfies the following equation:

(BP0) (∼((∼x)2))2 = ∼((∼(x2))2).
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Linear varieties, examples
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