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There are no whole truths; all truths are half- truths.
It is trying to treat them as whole truths that plays the
devil.

- Alfred North Whitehead
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What Fuzzy logic is?

Fuzzy logic studies reasoning systems in which the notions of
truth and falsehood are considered in a graded fashion, in
contrast with classical mathematics where only absolutly true
statements are considered.

From the Stanford Encyclopedia of Philosophy :

The study of fuzzy logic can be considered in two
different points of view: in a narrow and in a broad
sense.
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Fuzzy logic in broad sense

Fuzzy logic in broad sense serves mainly as apparatus for fuzzy
control, analysis of vagueness in natural language and several
other application domains.
It is one of the techniques of soft-computing, i.e. computational
methods tolerant to suboptimality and impreciseness
(vagueness) and giving quick, simple and sufficiently good
solutions.

Klir, G.J. and Yuan, B. Fuzzy sets and fuzzy logic: theory and
applications. Prentice-Hall (1994)

Nguyen, H.T. and Walker, E. A first course in fuzzy logic. CRC Press
(2006)

Novak, V. and Novbak, V. Fuzzy sets and their applications. Hilger
(1989)

Zimmermann, H.J. Fuzzy set theory–and its applications. Kluwer
Academic Pub (2001)
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Fuzzy logic in the narrow sense

Fuzzy logic in the narrow sense is symbolic logic with a
comparative notion of truth developed fully in the spirit of
classical logic (syntax, semantics, axiomatization,
truth-preserving deduction, completeness, etc.; both
propositional and predicate logic).
It is a branch of many-valued logic based on the paradigm of
inference under vagueness.

Cignoli, R. and D’Ottaviano, I.M.L. and Mundici, D. Algebraic
foundations of many-valued reasoning. Kluwer Academic Pub (2000)

Gottwald, S. A treatise on many-valued logics. Research Studies Press
(2001)

Hajek, P. Metamathematics of fuzzy logic. Kluwer Academic Pub
(2001)

Turunen, E. Mathematics behind fuzzy logic. Physica-Verlag
Heidelberg (1999)
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Fuzzy sets and crisp sets

In classical mathematics one deals with collections of objects
called (crisp) sets.
Sometimes it is convenient to fix some universe U in which
every set is assumed to be included. It is also useful to think of
a set A as a function from U which takes value 1 on objects
which belong to A and 0 on all the rest.
Such functions is called the characteristic function of A, χA:

χA(x) =def

{
1 if x ∈ A
0 if x /∈ A

So there exists a bijective correspondence between
characteristic functions and sets.
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Crisp sets

Example
Let X be the set of all real numbers between 0 and 10 and let
A = [5, 9] be the subset of X of real numbers between 5 and 9.
This results in the following figure:
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Fuzzy sets

Fuzzy sets generalise this definition, allowing elements to belong
to a given set with a certain degree.
Instead of considering characteristic functions with value in
{0, 1} we consider now functions valued in [0, 1].

A fuzzy subset F of a set X is a function µF (x) assigning to
every element x of X the degree of membership of x to F :

x ∈ X 7→ µF (x) ∈ [0, 1].
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Fuzzy set

Example (Cont.d)

Let, as above, X be the set of real numbers between 1 and 10.
A description of the fuzzy set of real numbers close to 7 could
be given by the following figure:
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Operations between sets

In classical set theory there are some basic operations defined
over sets.
Let X be a set and P(X) be the set of all subsets of X or,
equivalently, the set of all functions between X and {0, 1}.
The operation of union, intersection and complement are
defined in the following ways:

A ∪B = {x | x ∈ A or x ∈ B} i.e. χA∪B(x) = max{χA(x), χB(x)}
A ∩B = {x | x ∈ A and x ∈ B} i.e. χA∩B(x) = min{χA(x), χB(x)}

A′ = {x | x /∈ A} i.e. χA′(x) = 1− χA(x)
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Operations between fuzzy sets: union

The law
χA∪B(x) = max{χA(x), χB(x)}.

gives us an obvious way to generalise union to fuzzy sets.
Let F and S be fuzzy subsets of X given by membership
functions µF and µS :
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Operations between fuzzy sets: union

We set
µF∪S(x) = max{µF (x), µS(x)}
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Operations between fuzzy sets: intersection

Analogously for intersection:

χA∩B(x) = min{χA(x), χB(x)}.

We set
µF∩S(x) = min{µF (x), µS(x)}
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Operations between fuzzy sets: complement

Finally the complement for characteristic functions is defined
by,

χA′(x) = 1− χA(x).

We set
µF ′(x) = 1− µF (x).



21/ 144

Introduction Fuzzy sets Operations with fuzzy sets t-norms A theorem about continuous t-norm

Operations between fuzzy sets 2

Let’s go back for a while to operations between sets and focus
on intersection.
We defined operations between sets inspired by the operations
on characteristic functions.
Since characteristic functions take values over {0, 1} we had to
choose an extension to the full set [0, 1].

It should be noted, though, that also the product would do the
job, since on {0, 1} they coincide:

χA∩B(x) = min{χA(x), χB(x)} = χA(x) · χB(x).
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Operations between fuzzy sets 2

So our choice for the interpretation of the intersection between
fuzzy sets was a little illegitimate.
Further we have

χA∩B(x) = min{χA(x), χB(x)} = max{0, χA(x) + χB(x)− 1}

It turns out that there is an infinity of functions which have
the same values as the minimum on the set {0, 1}.
This leads to isolate some basic property that the our functions
must enjoy in order to be good candidate to interpret the
intersection between fuzzy sets.
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t-norms

In order to single out these properties we look again back at the
crisp case: It is quite reasonable for instance to require the
fuzzy intersection to be commutative, i.e.

µF (x) ∩ µS(x) = µS(x) ∩ µF (x),

or associative:

µF (x) ∩ [µS(x) ∩ µT (x)] = [µF (x) ∩ µS(x)] ∩ µT (x).

Finally it is natural to ask that if we take a set µF bigger than
µS than the intersection µF ∩ µT should be bigger or equal than
µS ∩ µT :

If for all x ∈ XµF (x) ≥ µS(x) then µF (x)∩µT (x) ≥ µS(x)∩µT (x)

.
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t-norms

Summing up the few basic requirements that we make on a
function ∗ that candidates to interpret intersection are:

To extend the {0, 1} case, i.e. for all x ∈ [0, 1].

1 ∗ x = x and 0 ∗ x = 0

Commutativity, i.e., for all x, y, z ∈ [0, 1],

x ∗ y = y ∗ x

Associativity, i.e., for all x, y, z ∈ [0, 1],

(x ∗ y) ∗ z = x ∗ (y ∗ z),

To be non-decreasing, i.e., for all x1, x2, y ∈ [0, 1],

x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y.
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t-norms

Objects with such properties are already known in mathematics
and are called t-norms.
Example

(i)  Lukasiewicz t-norm: x� y = max(0, x+ y − 1).
(ii) Product t-norm: x · y usual product between real numbers.

(iii) Gödel t-norm: x ∧ y = min(x, y).

(iv) Drastic t-norm: x ∗D y =
{

0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise.
(v) The family of Frank t-norms is given by:

x ∗λF y =


x� y if λ = 0
x · y if λ = 1
min(x, y) if λ =∞
logλ(1 + (λx−1)(λy−1)

λ−1 ) otherwise.
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Mostert and Shields’ Theorem

An element x ∈ [0, 1] is idempotent with respect to a t-norm ∗,
if x ∗ x = x.
For each continuous t-norm ∗, the set E of all idempotents is a
closed subset of [0, 1] and hence its complement is a union of a
set Iopen(E) of countably many non-overlapping open intervals.
Let [a, b] ∈ I(E) if and only if (a, b) ∈ Iopen(E). For I ∈ I(E)
let ∗|I the restriction of ∗ to I2.

Theorem (Mostert and Shields, ’57)

If ∗, E, I(E) are as above, then
(i) for each I ∈ I(E), ∗|I is isomorphic either to the Product

t-norm or to  Lukasiewicz t-norm.
(ii) If x, y ∈ [0, 1] are such that there is no I ∈ I(E) with

x, y ∈ I, then x ∗ y = min(x, y).
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Examples
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Summing up

We have seen that it is possible to generalise the classic
crisp sets to objects which naturally admits a notion of
graded membership.
Also the fundamental operations between sets can be
generalised to act on those new objects.
...but there is not just one of such generalisations.
A few natural requirements drove us to isolate the concept
of t-norm as a good candidate for intersection.
There is a plenty of t-norms to choose from, but all of them
can be reduced to a combination of three basic t-norms.

next aim: we have fuzzy properties and we can combine them,
let us try to reason about them.
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Part II

Mathematical logic
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What is a logic?

In mathematics a logic is a formal system which describes some
set of rules for building new objects form existing ones.

Example
Given the two words ab and bc is it possible to build new
ones by substituting any b with ac or by substituting any c
with a. So the words aac, aaa, acc, aca, .. are deducible
from the two given ones.
The rules of chess allow to build new configurations of the
pieces on the board starting from the initial one.
The positions that we occupy in the space are governed by
the law of physics.
...
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Propositional logic

Propositional logic studies the way new sentences are derived
from a set of given sentences (usually called axioms).

Example
If there is no fuel the car does not start.
There is no fuel in this car.

This car will not start.

If you own a boat you can travel in the see.
If you can travel in the see you can reach Elba island.

If you own a boat you can reach Elba island.
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Propositional logic

Definition
The objects in propositional logic are sentences, built from an
alphabet.
The language of propositional logic is given by:

A set V of propositional variables (the alphabet):
{X1, . . . , Xn, . . .}
Connectives: ∨, ∧, ¬, → (conjunction, disjunction,
negation and implication).
Parenthesis ( and ).
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Sentences of propositional calculus

Definition
Sentences (or formulas) of propositional logic are defined in the
following way.

i) Every variable is a formula.
ii) If P and Q are formulas then (P ∨Q), (P ∧Q), (¬P ),

(P → Q) are formulas.
iii) All formulas are constructed only using i) and ii).

Parenthesis are used in order to avoid confusion. They can be
omitted whenever there is no risk of misunderstandings.
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The axioms of propositional logic

The axioms of propositional logic are :
1 (A→ (B → A))
2 ((A→ (B → C))→ ((A→ B)→ (A→ C)))
3 ((¬A→ ¬B)→ (B → A))

plus modus ponens: if A→ B is true and A is true, then B is
true.
A deduction is a sequence of instances of the above axioms and
use of the rule modus ponens. The other connectives are
defined as

A ∨B =def ¬A→ B

A ∧B =def ¬(¬A ∨ ¬B) = ¬(¬¬A→ ¬B)
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A deduction in propositional logic

Example
An instance of 1 gives

¬X1 → (X2 → ¬X1)

and an instance of 2 gives

¬X1 → (X2 → ¬X1)→ ((¬X1 → X2)→ (¬X1 → ¬X1)),

the use of modus ponens leads

(¬X1 → X2)→ (¬X1 → ¬X1)

which, by definition, can be written as

(¬X1 → X2)→ (X1 ∨ ¬X1).
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The semantics of a calculus

Just as happens in mathematics, where one makes calculations
with numbers and those numbers represent, e.g. physical
quantities, or amount of money, or points in a space, one can
associate to a logic one (or several) interpretation, called the
semantics of the logic.
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Evaluations

Definition
An evaluation of propositional variables is a function

v : V → {0, 1}

mapping every variable in either the value 0 (False) or 1 (True).

In order to extend evaluations to formulas we need to interpret
connectives as operations over {0, 1}.
In this way we establish a homomorphism between the algebra
of formulas (with the operation given by connectives) and the
Boolean algebra on {0, 1}:

v : Form→ {0, 1}
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The semantics of connectives

The evaluation v can be extended to a function v total on
Form by using induction:

Variables: v(X1) = v(X1), . . . ,v(Xn) = v(Xn).
v(P ∧Q) = 1 if both v(P ) = 1 and v(Q) = 1.
v(P ∧Q) = 0 otherwise.
v(P ∨Q) = 1 if either v(P ) = 1 or v(Q) = 1.
v(P ∨Q) = 0 otherwise.
v(P → Q) = 0 if v(P ) = 1 and v(Q) = 0.
v(P → Q) = 1 otherwise.
v(¬P ) = 1 if v(P ) = 0, and vice-versa.

A formula is a tautology if it only takes values 1. Tautologies
are always true, for every valuation of variables.
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Truth tables

The above rules can be summarized by the following tables:

A B A ∧B
1 1 1
1 0 0
0 1 0
0 0 0

A B A ∨B
1 1 1
1 0 1
0 1 1
0 0 0

A B A→ B

1 1 1
1 0 0
0 1 1
0 0 1

A ¬A
1 0
0 1

Conjunction Disjunction Implication Negation
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Truth tables

Using the tables for basic connectives we can write tables for
any formula:

Example

Let us consider the formula X → (Y ∨ ¬X):

X Y ¬X Y ∨ ¬X X → (Y ∨ ¬X)
1 1 0 1 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1
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Adding a third truth values

It is easy now to figure out how to extend the previous logical
apparatus with a third truth value, say 1/2.
We keep the same syntactical structure of formulas: we just
change the semantics.
Evaluations are now functions from the set of variables into
{0, 1/2, 1}.
Accordingly to the definitions of truth tables for connectives we
have different three-valued logics.
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Kleene’s logic

Kleene strong three valued logic is defined as

A and B 0 1/2 1
0 0 0 0

1/2 0 1/2 1/2
1 0 1/2 1

A or B 0 1/2 1
0 0 1/2 1

1/2 1/2 1/2 1
1 1 1 1

Conjunction Disjunction

A implies B 0 1/2 1
0 1 1 1

1/2 1/2 1/2 1
1 0 1/2 1

A not A
1 0

1/2 1/2
0 1

Implication Negation
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 Lukasiewicz three valued logic

 Lukasiewicz three valued logic is given by the following
stipulation:

A�B 0 1/2 1
0 0 0 0

1/2 0 0 1/2
1 0 1/2 1

A⊕B 0 1/2 1
0 0 1/2 1

1/2 1/2 1 1
1 1 1 1

Conjunction Disjunction

A→ B 0 1/2 1
0 1 1 1

1/2 1/2 1 1
1 0 1/2 1

A ¬A
1 0

1/2 1/2
0 1

Implication Negation
We can also consider more than three values, and also infinitely
many values, for example interpreting formulas in the real
interval [0, 1].
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t-norms in logic

Here come back the t-norm functions defined earlier. Indeed
one can think t-norms as possible semantics for the connective
“conjunction”.

To rescue an implication from the t-norm, one can ask for
desirable properties which relate the two connectives; a very
important one is

(A ∧B)→ C ∼= A→ (B → C).
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Residuum

Proposition

Let ∗ be a continuous t-norm. Then, for every x, y, z ∈ [0, 1],
there is a unique operation satisfying the property:

(x ∗ z) ≤ y if and ony if z ≤ (x⇒ y)

and it is defined by

x⇒ y = max{z | x ∗ z ≤ y}

The operation ⇒ is called the residuum of the t-norm ∗.
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Example

The following are residua of the three main continuous t-norms:

T-norm Residuum
 L x ∗L y = max(x+ y − 1, 0) x→L y = min(1, 1− x+ y)

P x ∗P y = x · y x→P y =
{

1 if x ≤ y
y/x otherwise

G x ∗G y = min(x, y) x→G y =
{

1 if x ≤ y
y otherwise.
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Negation

Once we have implication we can also define negation.
Indeed in classical logic a formula that implies a false formula is
false itself. Hence

¬A = A→ 0.

In case of  Lukasiewicz t-norm, we have

¬x = x→ 0 = min(1, 1− x+ 0) = 1− x

For Gödel and Product logic

¬x =
{

1 if x = 0
0 otherwise



50/ 144

What is a logic? Propositional logic Syntax Semantics Multiple truth values Again t-norms

The complete picture

Completing the table

T-norm x ∗ y Residuum x⇒ y Negation ¬x
 L max(x+ y − 1, 0) min(1, 1− x+ y) 1− x

P x · y
{

1 if x ≤ y
y/x otherwise

{
1 if x = 0
0 ow

G min(x, y)
{

1 if x ≤ y
y otherwise.

{
1 if x = 0
0 ow

So each of these logics is specified only by the t-norm.
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Implication

We have seen that logical systems can be approached in two
different ways:

Specifying the syntax, that means fixing axioms and
deduction rules
Specifying the semantics, that means fixing the
interpretation of formulas.

In the first approach the connective of implication plays a very
important role, since it is the main ingredient of the basic
deduction rule of Modus ponens:

If A and A→ B are theorems, then B is a theorem.
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Implication

On the other hand, the implication can be defined as an
operation between sets by

A→ B = ¬A ∪B.

This means that if A and B are subsets of X, then A→ B = X
if and only if A ⊆ B that is equivalent to say that
χA(x) ≤ χB(x).

Going to the fuzzy level, implication takes care of order between
membership values.

Later, we shall come back to implication in fuzzy logic.
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Summing up

We have seen that it is possible to formalise inside
mathematics what a logical system is.
Logical systems can be presented syntactically by
specifying axioms and rules or semantically by giving
devising the truth tables of the connectives.
Just as happens in classical logic, where the concept of
intersection corresponds to the connective hand, we have
seen that t-norms can be used as generalised truth tables
for conjunction.
Clearly one can build any logical system whatsoever, but in
order to obtain good deductive properties it is important to
relate in some way the connectives

next aim: we wish now to push these methods to infinite values
and show that syntax and semantic can be reunified back.
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Part III

Many-valued logics
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Many-valued logic

Definition
The language L for a propositional many-valued logic is given
by a countable set V = {X1, X2, . . .} of propositional variables,
a set C of connectives and a function ν : C → N. A connective
♦ ∈ C is n-ary if ν(♦) = n.

Definition
The set Form of propositional formulas of a language
L = 〈V,C, ν〉, is inductively defined as follows:

Each X ∈ V is a formula.
If ♦ ∈ C, ν(♦) = k and A1, . . . , Ak are formulas, then
♦(A1 · · ·Ak) is a formula.
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Semantical interpretation

Definition
A many-valued propositional logic is a triple P = (S, D, F ),
where

S is a non-empty set of truth-values,
D ⊂ S is the set of designated truth values,
F is a (finite) non-empty set of functions such that for any
♦ ∈ C there exists f♦ ∈ F with f♦ : Sν(♦) → S.

The functions in F are intended to give the interpretation of
the connectives of the logic.
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Finite and infinite valued logics

Definition
A triple (S,D, F ) is an infinite-valued logic if it is a many
valued logic and S is an infinite set. The triple (S,D, F ) is a
finite-valued logic if S is a finite set.

If SN = {s1, . . . , sN} is a set such that D ⊆ SN ⊆ S and it is
closed with respect to the functions in F , then the logic
(S,D, F ) naturally induces an N -valued logic (SN , D, F ′) where
each function in F ′ is the restriction to SN of a function in F .
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Propositional logic

The definition of a many-valued logic is in fact a generalisation
of the classical case, so it should be not surprising that we can
recover Propositional logic just by considering two truth values.

Propositional logic B can be written down as

B = ({0, 1}, {1}, {f∧, f¬}),

where

f∧(x, y) = min(x, y) and f¬(x) = 1− x.
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 Lukasiewicz (infinite-valued) logic

Just as noticed above we can choose a t-norm as interpretation
of the conjunction. If we choose the  Lukasiewicz t-norm and
[0,1] as set of truth values, we get  Lukasiewicz (infinite-valued)
logic

 L∞ = ([0, 1], {1}, {f�, f→}).

where

f�(x, y) = max(0, x+y−1) and f→(x, y) = min(1, 1−x+y).
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 Lukasiewicz finite valued logic

For each integer n > 0, let Sn be the set {0, 1
n , . . . ,

n−1
n , 1}.

 Lukasiewicz (n+1)-valued logic is defined as

 Ln = (Sn, {1}, {f�, f→}),

where again

f�(x, y) = max(0, x+y−1) and f→(x, y) = min(1, 1−x+y).
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Gödel logic

If we choose the t-norm minimum as interpretation for the
conjunction, then we get what is known as Gödel
(infinite-valued) logic

G∞ = ([0, 1], {1}, {f∧, f¬G , f→G}),

where

f→G(x, y) =
{

1 if x ≤ y
y if x > y

and f¬G(x) = f→G(x, 0).
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Product logic

Product logic is

Π∞ = ([0, 1], {1}, {f·, f¬G , f→Π}),

where

f·(x, y) = xy and f→Π(x, y) =
{

1 if x ≤ y
y/x otherwise.
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Kleene’s logic

Kleene strong three valued logic is defined as

K = ({0, 1/2, 1}, {1}, {f¬, f∨, f→k
})

where
f¬(x) = 1− x, f∨(x, y) = max(x, y)

and

f→k
0 1/2 1

0 1 1 1
1/2 1/2 1/2 1
1 0 1/2 1
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Truth functionality

An important property of the logics described above is that the
truth value of the compound formula ♦(A,B) is determined
only by the truth values of A and B. This is called
truth-functionality and makes the study of the system much
easier, for the interpretations are built in an inductive way.
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Assignments

Definition
An assignment for L is a function v : V → S. Any assignment
can be uniquely extended to the whole set of formulas as follows:

v[♦(A1 · · ·Ak)] = f♦(v[A1], . . . , v[Ak]).

A formula A is satisfied in L by an assignment v if v[A] ∈ D.
A formula A is valid in L (or a tautology), in symbols

|=L A,

if A is satisfied by all assignments, i.e. for every v, v[A] ∈ D.
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Truth tables

So given a formula A(X1, . . . , Xn), whose variables are among
X1, . . . , Xn, the truth table of A is the function

fA : [0, 1]n → [0, 1] such that v(X1), . . . , v(Xn)
fA7−→ v[A].

In the following, if ♦ is a binary connective we will write A1♦A2

to denote ♦(A1, A2) (or f♦(A1, A2)). Similarly if ♦ is unary.
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Deducing tautologies

Truth tables provide a simple method to check whether a
formula is a tautology or not. Unfortunately such a method is
highly inefficient: one has to check that the truth table of a
formula outputs a designated value for any possible assignment
of its variables.

This is why one searches for an axiomatisation of a certain
logical system. Axioms provide the first step towards an
efficient automated deduction system.
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Deductive systems

Definition
A deductive system Γ is given by:

a set of formulas Φ,
a set of rules Λ.

A deduction in Γ is a sequence of formulas which either belong
to Φ or are obtained as application of rules in Λ to preceding
formulas of the sequence.
A formula is derivable if it is the last formula of some deduction.
The derivable formulas are called theorems.
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Syntax vs. Semantics

A deductive system may be used to find particular formulas in
a language, in particular it may be used to find the tautologies
of a logic.

There are two important issues here:
1 Only formulas which are tautologies must be derivable in

the deductive system.
2 All the tautologies should be derivable from the deductive

system.
The issue number 1 is often called soundness and the issue
number 2 is called completeness.
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Completeness

Definition
Let P be a many-valued logic and Γ a deductive system. We
say that Γ is complete with regard to P if the set of theorems of
Γ coincides with the set of tautologies of P.

Definition
A deductive system Γ is standard complete when there exists a
many-valued logic P = 〈[0, 1], {1}, F 〉 such that Γ is complete
with respect to P. In this case the set of functions in F are
called the standard interpretations of the connectives.
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An example

The deductive system associated to  Lukasiewicz logic has four
axioms and one rule:

A→ (B → A);
(A→ B)→ ((B → C)→ (A→ C));
((A→ B)→ B)→ ((B → A)→ A);
(¬A→ ¬B)→ (B → A).

The only rule is modus ponens.

Theorem (Chang 1957)

The deductive system for  Lukasiewicz logic is standard complete.
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Duality between syntax and semantics

Syntax Semantics
Propositional variables Truth values

Connectives Functions
Theorems Tautologies

Deductions Truth tables
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Axioms systems for many-valued logics

All the logics seen above have been characterised by means of a
finite set of axioms and rules. What can be more surprising is
that even the logic of all continuous t-norms can be presented in
a particularly neat way. Such a system is called BL (for Basic
Logic) and was introduced by P. Hájek.
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Basic Logic

Definition
The system BL is given by the following set of axioms:

1 (A→ B)→ ((B → C)→ (A→ C)),
2 (A ∗B)→ A,
3 (A ∗B)→ (B ∗A),
4 (A ∗ (A→ B))→ (B ∗ (B → A)),
5 (A→ (B → C))→ ((A ∗B)→ C),
6 ((A→ B)→ C)→ (((B → A)→ C)→ C),
7 ⊥ → A.

The only rule is modus ponens

A A→ B

B
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Standard completeness for BL

The completeness of BL is more subtle than the other logic seen
above, indeed BL is the logic of all continuous t-norms and
their residua.

Theorem
A formula is a theorem of the system BL if, and only if, it is a
tautology for any logic 〈[0, 1], 1, {∗,⇒}〉 where ∗ is a continuous
t-norm and ⇒ is its residum.
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Other forms of completeness

So the standard completeness guarantees that a certain
deductive system can provide exactly all the tautologies of a
given many-valued logic based on some (continuous) t-norm.

This is similar to the result in classical logic which states that
the formulas derivable in its deductive system are exactly the
formulas whose truth tables show only one’s in their last
column (i.e. tautologies of classical logic).

We will see later that other kinds of completeness are available
and they provide deeper comprehension and powerful tools to
study logics and deductive systems.
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Basic logic

Basic logic can be defined as the logic of all continuous t-norms.
On the other hand we have seen that every continuous t-norm
is an locally isomorphic to either  Lukasiewicz, Gödel or product
t-norm.
In fact BL has other important features: the deductive systems
of  Lukasiewicz, Gödel or product logic can be obtained from the
BL system by adding just one simple axiom.
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More precisely we have that:

BL + ¬¬A = A (involution) =  Lukasiewicz logic
BL + A ∗A = A (idempotency) = Gödel logic
BL + ¬A ∨ ((A→ (A ∗B))→ B) = Product logic.

(weak cancellation)
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SBL

Negation as defined for Gödel and Product logic can be
axiomatized by the axiom

A ∨ ¬A. (S)

The extension of BL obtained by adding (S) as an axiom is
called SBL (Strict Basic Logic).

This axioms doesn’t hold, in general, with the involutive
negation ¬x = 1− x.
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MTL

The continuity of a t-norm is required in order to guarantee the
existence of the corresponding residuum.
In fact, what is equivalent to the existence of a residual
operation is just left-continuity. So, just as BL is the logic of all

continuous t-norms, the monoidal t-norm based logic (MTL) is
the logic of all left-continuous t-norms.
MTL is obtained from BL by just dropping a single axiom.
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Other logics

Partially matching the hierarchy of schematic extensions of BL,
there is a similar pattern for MTL and stronger logics given by
schematic extensions.

In particular in the literature we find:
Involutive MTL: IMTL = MTL +¬¬A→ A,
Strict MTL: SMTL = MTL + (A ∨ ¬A),
Product MTL: ΠMTL = MTL ¬A ∨ ((A→ (A ·B))→ B)
...but MTL +A→ (A ∗A) is just Gödel logic.
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Additional logics in the MTL hierarchy are

the Weak nilpotent minimum:
WNM = MTL +¬(A ∗B) ∨ ((A ∧B)→ (A ∗B))
and the Nilpotent minimum:
NM = WNM +¬¬A→ A.
Standard completeness has been proved for all logics introduced.
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 LΠ logic

Weakening the axioms system yelds logics that are more
general. But in practical cases one needs sufficiently expressive
logic, in order to describe the state of facts.

Another logic which has been studied extensively in the
literature is  LΠ logic.
 LΠ is obtained obtained by combining connectives from both
 Lukasiewicz and Product logics.
The expressive power of  LΠ is quite remarkable:

Theorem
 Lukasiewicz, Product and Gödel logics are interpretable in  LΠ

Theorem
Any many-valued logic based on a continuos t-norm with a finite
number of idempotents is interpretable in  LΠ logic.
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The forest of many-valued logics
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Tautology problem

The tautology problem of a given logic L∗ consists of deciding
whether a given formula A is a tautology or not, in symbols

A ∈ Taut(L∗)?

The problem is dual to find a countermodel for a formula.
Finding a countermodel for a formula ϕ in L∗ amounts to find
an assignment of propositional variables giving A a value less
than 1.

In the case of  Lukasiewicz logic one can exploit some
geometrical property of the points where formulas can take
value 1. This allows to prove that the complexity of the
tautology problem is co-NP-complete by showing that for any
formula which is not a tautology a suitably small countermodel
always exists.
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Tautologies in Gödel

By looking at the general form of functions associated with
Gödel formulas: we can establish that in order to check if they
are equal to one it is enough to check in points with coordinates
in {0, 1/3, 2/3, 1}.

x

y

z

x
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Countermodels of many-valued logics

A  Lukasiewicz formula A is not a tautology then A fails to be a
tautology of a finite-valued  Lukasiewicz logic with a number of
truth-values that is polynomially bounded by the length of ϕ.
Then

Theorem
The satisfiability problem for  Lukasiewicz logic is NP-complete.

Similar results hold for Gödel and Product logic.

Theorem
The tautology problem for BL is coNP-complete.
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Truth tables for  Lukasiewicz logic

Which kind of truth tables are associated with formulas of
 Lukasiewicz infinite-valued logic?
We have to consider all the possible combinations of
conjunction, implication and negation.
It is easy to check that the interpretation of any formula gives
rise to a function that is continuous (all connectives are
continuous and combining one with the other we still have a
continuous function.)
Further they are composed by linear pieces, with integer
coefficients.



90/ 144

Many-valued logic Standard completeness Prominent many-valued logics Functional interpretation

Functional representation

Definition

A McNaughton function f : [0, 1]n → [0, 1] is a continuous,
piecewise linear function such that each piece has integer
coefficients. In other words, there exist finitely many
polynomials p1, . . . , pmf

each pi being of the form

pi(x1, . . . , xn) = ai1x1+. . .+ainxn+bi with ai1 . . . , ain, bi integers,

such that, for any x ∈ [0, 1]n, there exists j ∈ {1, . . . ,mf} for
which f(x) = pj(x).

McNaughton theorem

A function f : [0, 1]n → [0, 1] is a truth table of a  Lukasiewicz
formula if and only if it is a McNaughton function.
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McNaughton Theorem

If f is a continuous piecewise linear function, such that every
linear piece has integer coefficients, then there exists a
 Lukasiewicz formula A such that f is the truth table of A.
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Gödel logic

In Gödel logic we can express the characteristic function of 0
(¬x), but not the characteristic function of 1.

x ∧ y = min(x, y) x→∧ y =
{

1 if x ≤ y
y otherwise.

¬x =
{

1 if x = 0
0 ow

x

y

z

x
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Product Logic

Truth tables of Product formulas have a discontinuity in 0.

x · y x→· y =
{

1 if x ≤ y
y/x otherwise

¬x =
{

1 if x = 0
0 ow

x

y

z

x

It is a piecewise monomial function, with possible
discontinuities in 0.
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Summing up

We have presented a mathematical formalism which allows
to describe reasoning with more than two truth values.
We have seen that such formalisms can be proved to catch
exactly the semantics that we have in mind.
This framework is quite general and provide a neat
characterisations of many tools used in fuzzy logic.
At the same time the simple axiomatisations given allow to
build automated deductive system for those logics.
Finally, we have seen that, when dealing with many valued
logics, the truth functions acquire a geometrical interest.

next aim: we only scratched the surface of the abundance of
results discovered in many-valued logic, we will see now other
interpretations and some applications.
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Part IV

Advances in many-valued logic
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The Ulam game

In his book “Adventures of a Mathematician”, Ulam describes
the following game between two players A and B:

Player B thinks of a number between one one million
(which is jus t less than 220). Player A is allowed to
ask up to twenty questions, to each of which Player B
is supposed to answer only yes or no. Obviously the
number can be guessed by asking first: Is the number
in the first half million? then again reduce the
reservoir of numbers in the next question by one-half,
and so on. Finally the number is obtained in less than
log2(1′000′000).
Now suppose Player B were allowed to lie once or
twice, then how many questions would one need to get
the right answer?
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Optimal strategies

Here we model questions Q as subsets of X.

The problem is to find strategies for A that minimize the
number of questions in the worst cases, i.e. whatever is the
initial choice of the secret number and whatever is the behavior
of B.

In case all questions are asked independently of the answers,
optimal searching strategies in this game are the same as
optimal k-error-correcting coding strategies.
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Limits of classical logic

Now, in the particular case when k = 0 (corresponding to the
familiar game of Twenty Questions) the state of knowledge of
Player A is represented by the classical conjunction of all the
pieces of information obtained from the answers of Player B.

In case k > 0 classical logic no longer yields a natural
formalization of the answers.

Indeed
(a) The conjunction of two equal answers to the same

repeated question need not be equivalent to a
single answer. Thus, the classical idempotence
principle fails. mypause

(b) The conjunction of two opposite answers to the
same repeated question need not lead to
contradiction.
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 Lukasiewicz logic in action

When inconsistent information are added to the knowledge,
(k + 2)-valued  Lukasiewicz logic comes in play.
Player A can record the current knowledge of the secret number
by taking the  Lukasiewicz conjunction of the pieces of
information contained in the answers of B.
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Answers as fuzzy sets

More precisely, let L = Sk+1. For every question Q ⊆ X, the
positive L-answer to Q is the L-set Qyes : X → L given by

Qyes(y) =
{

1, if y ∈ Q;
k
k+1 , if y 6∈ Q.

Elements y ∈ X such that Qyes(y) = 1 are said to satisfy
L-answer Qyes; the remaining elements falsify the answer.
The dependence of Qyes and Qno on the actual value of k is
tacitly understood.
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Describing the state of knowledge

We define the L-subset µn : X → L of possible numbers
resulting after a sequence of questions Q1, . . . , Qn with their
respective answers b1, . . . , bn (bi ∈ {yes, no}), is the  Lukasiewicz
conjunction

µn = Qb11 � · · · �Q
bn
n .

At the stage 0, in which now question has been asked yet, the
L-subset is the function constantly equal to 1 over X.

Initially all numbers are possible and have “truth value” 1 (we
have no information), at the final step only one number is
possible (we have maximum information).
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Describing the state of knowledge

Proposition

Let x ∈ X and let µn be the L-subset of possible numbers
resulting after the questions Q1, ..., Qn and the answers
b1, . . . , bn (bi ∈ {yes, no}). Then:

µn(x) =


1− i

k+1 , if x falsifies precisely
i ≤ k + 1 of the Qb11 , ..., Q

bn
n

0 otherwise.

Player A will know the correct answer when the L-subset µn of
possible numbers becomes an L-singleton. More precisely, when
there is a ∈ X such that µn(x) = 0 for all x ∈ X such that
x 6= a.
Then a is the secret number.
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Pavelka-style Fuzzy logic

Fuzzy logic in the style of Pavelka enables to build deductions
which prove partially true sentences from partially true
assumptions.

The necessary device to build such a calculus is to endow the
syntax with a new truth constant r̄ for each rational number r.
Moreover the following set of bookkeeping axioms must be
added to the system:

(r → s)↔ (r̄ → s̄)

The logic introduced by Pavelka was proved to be a
conservative extension of  Lukasiewicz first order logic. It can be
obtained form  Lukasiewicz first order logic by just adding the
axioms and constants above.
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Pavelka-style Completeness

For Rational  Lukasiewicz logic a strong kind of completeness
holds:
Let us say that a valuation v is a model of a set of sentences Γ
if v(γ) = 1 for all γ ∈ Γ

The Truth degree of A w.r.t. a theory Γ is given by

||A||Γ = inf{v(A) | v is a model of Γ}

The Provability degree of A w.r.t. a theory Γ is given by

|A|Γ = sup{r | from Γ is derivable r → A}

The Completeness theorem, in Pavelka style, states:

|A|Γ = ||A||Γ
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Fuzzy Controls

Let us consider a simplification of a control system.
Suppose that the input and output sets of a control function are
intervals [a, b], [c, d] of R.
We can normalize these intervals and we can assume that the
control function is a map f : [0, 1]n → [0, 1].

Let n = 1. Knowing the behavior of the control function in
points (xi, f(xi)) ∈ Q2 we want to describe a set of rules as a
two variables  Lukasiewicz formula A. The truth table fA of A
will be a ”two-dimensional” approximation of f .
fA represents for every pair (x, y) how much the value y is
appropriate to the input value x in order to achieve the control
of the system.
Then the process of defuzzification associates fA with the final
control function from [0, 1] into [0, 1].
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Fuzzy presentations

Let f : [0, 1]→ [0, 1] be a function and let T ⊆ [0, 1]2 be a finite
set of couples (xi, f(xi)) ∈ Q2 of rational numbers, with
i = 1, . . . , n.
Then we can construct by means of  Lukasiewicz formulas, the
two fuzzy presentations {Ai}ni=1 and {Bi}ni=1 of sets
{x1, . . . , xn} and {f(x1), . . . , f(xn)}.



108/ 144

Ulam game Pavelka style fuzzy logic (De)Fuzzyfication Algebraic semantics Algebraic Completeness

Fuzzy presentations

Example

Fuzzy presentations for sets  L8 = {0, 1/8, . . . , 7/8, 1} and
 L2

8 = {0, 1/64, 4/64, . . . , 49/64, 1} (f(x) = x2):
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Fuzzy presentations

Hence we use two sets of  Lukasiewicz formulas to fuzzify the
information given by the couples (xi, f(xi)).
The fuzzy presentations are the simplest way to make this
fuzzification.
We can also take care of external information about the
function, say the opinion of an expert or the results obtained in
a previous computation: for example, if we do not want to give
much importance to the information carried by (xi, f(xi)) we
can consider formulas δAi and τBi (for suitable operator δ and
τ) instead of formulas Ai and Bi.
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Fuzzy rules

Fuzzy rules have of the form:
IF X is A1 THEN Y is B1

. . .
IF X is An THEN Y is Bn.

(1)

Formulas interpreting these rules can have different forms:

n∧
i=1

(Ai → Bi) or
⊙n

i=1(Ai → Bi).
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In the following picture, the graphics of the truth tables of such
formulas are depicted for the case f(x) = x2 and n = 8, with
respect to fuzzy presentations as before.
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On the other hand, we can transform (1) into
Either X is A1 and Y is B1

or . . .
or X is An and Y is Bn,

(2)

and then we can interpret this system with four different
formulas:

n∨
i=1

(Ai ∧Bi)
n∨
i=1

(Ai �Bi)

n⊕
i=1

(Ai ∧Bi)
n⊕
i=1

(Ai �Bi).
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Since for every x, y ∈ [0, 1], we have x� y ≤ x ∧ y and
x ∨ y ≤ x⊕ y, then we can partially compare the above
formulas.

n⊕
i=1

(Ai ∧Bi) ≥
n∨
i=1

(Ai ∧Bi) ≥
n∨
i=1

(Ai �Bi)

n∨
i=1

(Ai �Bi) ≤
n⊕
i=1

(Ai �Bi) ≤
n⊕
i=1

(Ai ∧Bi).



114/ 144

Ulam game Pavelka style fuzzy logic (De)Fuzzyfication Algebraic semantics Algebraic Completeness

0

0.25

0.5

0.75

1
0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

0

0.25

0.5

0.75

1
0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

n∨
i=1

(Ai ∧Bi)
n∨
i=1

(Ai �Bi)

0

0.25

0.5

0.75

1
0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

0

0.25

0.5

0.75

1
0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

n⊕
i=1

(Ai ∧Bi)
n⊕
i=1

(Ai �Bi)



115/ 144

Ulam game Pavelka style fuzzy logic (De)Fuzzyfication Algebraic semantics Algebraic Completeness

Defuzzyfication

In all fuzzy control systems that we have considered, an
approximation of the function f can be obtained by the
defuzzification of fA.

Accordingly to the kind of defuzzification used, one can make a
further choice on the connectives involved. The capacity of the
control system to approximate f depends strongly on regularity
of the function f , such as continuity and Lipschitz-like
hypothesis.
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Relations and order

A binary relation R on a set S is a subset of S × S. If
(x, y) ∈ R we write xRy.
A binary relation R is called order relation if:

For every x ∈ S, xRx (reflexivity)
If xRy and yRx then x = y (antisymmetry)
If xRy and yRz then xRz. (transitivity)

Order relations are denoted by ≤. An order relation over a set
S is total (or linear) if for every x, y ∈ S either x ≤ y or y ≤ x.
Binary relations that are reflexive, transitive and symmetric
(i.e., xRy if and only if yRx) are called equivalence relations.
A partially order set (poset) is a set equipped with an order
relation.
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Examples

Orders can be described by diagrams. For example orders
between three elements are the following ((a) is a chain):
a) ◦

◦

◦

b) ◦

@@@@@@@

~~~~~~~

◦ ◦

c) ◦ ◦

◦

~~~~~~~

@@@@@@@

d) ◦

◦

◦

e) ◦ ◦ ◦
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More examples

Example
1 The sets N, Z, Q, R with usual order are examples of

totally ordered posets (chains).
2 If S is a set, say S = {a, b, c}, then the set P(S) of all

subsets of S with the order given by inclusion is a poset
that is not a chain. S

IIIIIIIII

{a, b}

vvvvvvvvvv

HHHHHHHHH
{b, c}

wwwwwwwww

HHHHHHHHH
{a, c}

{b}

HHHHHHHHHH {a}

vvvvvvvvv
{c}

vvvvvvvvvv

∅
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Some examples

In Z we can consider the order relation / defined by
x/y if, and only if, x divides y.

A graphical representation
. . . . . . . . . . . . . . . product of n prime no.’s

8 12 . . . . . . . . . product of three prime no.’s.

4

�������
6 9 10 . . . product of two prime no.’s

2

<<<<<<<

<<<<<<<

qqqqqqqqqqqqq
3

<<<<<<<

5 . . . prime numbers

1

<<<<<<<

�������
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Lattices

Given a set X let supX be the least element that is greater
than any other element of X. Similarly let inf X be the greatest
element that is smaller than any other element of X.

Definition
A lattice is a poset R such that for every pair x, y ∈ R there
exist inf{x, y} ∈ R and sup{x, y} ∈ R. In lattice theory sup
and inf of finite sets are often denoted by x ∨ y and x ∧ y,
repsectively. A lattice R is complete if for every subset X of R
there exists supX and inf X.

It is easy to check that every finite lattice is complete.
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Examples of lattices

Example
Every chain is a lattice, where ∨ and ∧ coincide with
maximum and minimum.
R with usual order is a lattice that is not complete.
The poset P(S) is a lattice.
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More on lattices

A lattice L containing 0 = inf L e 1 = supL is called bounded.
If L is bounded, the complement of a ∈ L is an element b ∈ L
such that

a ∨ b = 1 and ∧ b = 0.

A lattice L is distributive if the following holds for every
a, b, c ∈ L:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

In a distributive lattice, if the complement of a exists it is
unique and it is denoted by a′.
A Boolean lattice is a distributive lattice with 0 and 1 such that
every element has a complement.



123/ 144

Ulam game Pavelka style fuzzy logic (De)Fuzzyfication Algebraic semantics Algebraic Completeness

Boolean algebras

Usually Boolean lattices are seen with the algebraic structure: a
Boolean algebra is a structure (B,∧,∨, 0, 1,′ ) such that
(i) (B,∧,∨) is a distributive lattice.
(ii) a ∨ 0 = a and a ∧ 1 = a for every a ∈ B.

(iii) a ∨ a′ = 1 and a ∧ a′ = 0 for every a ∈ B.

Example

The set {0, 1} equipped with operations ∧,∨ and ¬ is a Boolean
algebra.
The lattice P(S) is a Boolean algebra.

Theorem
An equation ϕ holds in all Boolean algebras if, and only if, it
holds in the Boolean algebra {0, 1}.
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Propositional logic and Boolean algebras

The basic relationship between propositional classical logic and
Boolean algebras is that the set {0, 1} in which we evaluate the
formulas is a Boolean algebra.
Further, the evaluation map sends every formula in a value 0 or
1 in such a way that the connectives are mapped in the boolean
operations. So

evaluations are morphisms of the boolean algebra of
formula where operations are the connectives, and the
boolean algebra {0, 1}.

Such an algebraic representation extends also fuzzy logic.
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Residuated lattices

One very straightforward solution could be to consider
residuated lattices:
A bounded lattice is said to be residuated if it is equipped with
a couple of operations (∗,→) (called the adjoint couple) such
that ∗ is associative, commutative, x ∗ 1 = x and

x→ y ∗ z iff x ≤ y → z

Note that Boolean algebras are residuated lattice when we take
(∧,→) as adjoint couple, where x→ y = ¬x ∨ y.
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BL and MTL algebras

But residuated lattices are structures still too general.
The algebraic counterpart of Basic Logic and MTL are
BL-algebras and MTL-algebras respectively.

MTL- algebras = Residuated lattice + ((x→ y) ∨ (y → x) = 1)
pre-linearity

BL-algebras = MTL + (x ∧ y = x ∗ (x→ y))
divisibility
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BL and MTL algebras

Example
Any Boolean algebra is both a BL algebra and a MTL
algebra.
The real interval [0,1] endowed with a continuous t-norm
and its residum is a BL algebra.
The real interval [0,1] endowed with a left continuous
t-norm and its residum is a MTL algebra.
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Interpretations

So the notion of evaluation given before is just a particular
instance of what we call interpretation

Definition
Let P = (S,D, F ) be a many-valued logic and K a class of
residuated lattices with additional operation such that for any
connective in � ∈ F there is an operation �∗ in the algebras of
K with the same ariety. Then a function i form the formulas of
P into an algebra K ∈ K is called an interpretation if:

For any propositional variable X, i(X) ∈ K;
if A �B is a formula then i(A �B) = i(A) �∗ i(B)
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Algebraic Completeness

So the formulas of a logic can be interpreted as element of an
algebra. Hence we can associate to any logic P a class of
algebras KP .
When dealing with the above presented logics one has a number
of properties:

Examples of algebras in KP are the unit interval [0, 1] with
truth functions of connectives of P as operations and the
algebra of classes of provably equivalent formulas.
If A ∈ Form(P) is provable then i(A) = 1 is valid in all
algebras of KP .
Each algebra in KP is a subalgebra of the direct product of
some linearly ordered algebra.
If i(ϕ) = 1 is valid in the algebra [0, 1] then it is valid in all
linearly ordered algebras, in particular in the algebra of
classes of formulas, which means that A is a provable
formula.
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An example:  Lukasiewicz logic

Originally,  Lukasiewicz infinite-valued logic was axiomatized
(using implication and negation as the basic connectives) by the
following schemata:

A→ (B → A)
(A→ B)→ ((B → C)→ (A→ C))
((A→ B)→ B)→ ((B → A)→ A)
(¬A→ ¬B)→ (B → A)
((A→ B)→ (B → A))→ (B → A).

Chang and Meredith proved independently that the last axiom
is derivable from the others.
In order to prove the completeness of this schemata of axioms
with respect to semantics of the interval [0, 1], Chang
introduced MV-algebras.
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MV-algebras

An MV-algebra is a structure A = (A,⊕,¬, 0, 1) satisfying the
following equations:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊕ y = y ⊕ x
x⊕ 0 = x; x⊕ 1 = 1
¬0 = 1 ; ¬1 = 0
¬¬x = x

¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.
Each MV-algebra contains as a subalgebra the two-element
boolean algebra {0, 1}.
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MV-algebras

As proved by Chang, boolean algebras coincide with
MV-algebras satisfying the additional equation x⊕ x = x
(idempotency). The set B(A) of all idempotent elements of an
MV-algebra A is the largest boolean algebra contained in A and
is called the boolean skeleton of A.
The algebra (A,⊕, 0) and (A,�, 1) are isomorphic via the map

¬ : x 7→ ¬x.

Further any MV-algebra A is equipped with the order relation

x ≤ y if and only if ¬x⊕ y = 1 (x→ y = 1).

MV-algebras turn out to coincide with those BL-algebras
satisfying the equation ¬¬x = x.
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Examples

Example

(i) The set [0, 1] equipped with operations

x⊕y = min{1, x+y}, x�y = max{0, x+y−1}, ¬x = 1−x

is an MV-algebra.
(ii) For each k = 1, 2, . . . , the set

 Lk+1 = {0, 1
k
, . . . ,

k − 1
k

, 1},

equipped with operations as before, is an MV-algebra.
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The algebra of fuzzy sets

Example

(iii) If X is any set and A is an MV-algebra, the set of functions
f : X → A obtained by pointwise application of operations in A
is an MV-algebra:

(¬f)(x) = ¬f(x)
(f � g)(x) = f(x)� g(x)

In particular, considering a set X and the MV-algebra [0, 1] we
obtain the MV-algebra of fuzzy sets where operations are no
more minimum and maximum but  Lukasiewicz operations:
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Example

µF∪S(x) = µF (x)⊕ µS(x) µF∩S(x) = µF (x)� µS(x)

3 4 8 9
x

1

2

1

y

x

1

2

1

y
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Another example

The set of all McNaughton functions (i.e., functions from [0, 1]n

into [0, 1] that are continuous and piece-wise linear, and such
that each linear piece has integer coefficients), with operations
obtained as pointwise application of operations as above, is an
MV-algebra.
This is the free MV-algebra over n free generators.
McNaughton functions can be considered as very special case of
fuzzy subsets of [0, 1].
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Di Nola representation Theorem

Can we have for MV-algebras a result similar to Stone
representation theorem for Boolean algebras?
The answer for the general case is rather complicated, but a
simple results has been established for a class of MV-algebras:

Theorem
Any semi-simple MV-algebra is isomorphic to an algebra of
fuzzy sets.

Theorem
Any MV-algebra is isomorphic to an algebra of fuzzy sets where
the characteristic functions may have non-standard values.
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Algebraic completeness for MV-algebras

Chang’s Completeness Theorem states:

Theorem
The following are equivalent:

The formula A holds in the  Lukasiewicz calculus,
The equation i(A) = 1 holds in every MV-algebra
The equation i(A) = 1 holds in the MV-algebra [0, 1]
equipped with operations x⊕ y = min{1, x+ y},
x� y = max{0, x+ y − 1} and ¬x = 1− x.

This theorem was proved by Chang using quantifier elimination
for totally ordered divisible abelian groups. There are several
alternative proofs in literature: the syntactic proof by Rose and
Rosser, the algebraic proof by Cignoli and Mundici and the
geometric proof by Panti.
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Relation with groups

Definition
A lattice-ordered group (`-group) G = (G, 0,−,+,∧,∨) is an
abelian group (G, 0,−,+) equipped with a lattice structure
(G,∧,∨) such that:

for every a, b, c ∈ G, c+ (a ∧ b) = (c+ a) ∧ (c+ b).

An element u ∈ G is a strong unit of G if for every x ∈ G there
exists n ∈ N such that nu ≥ x.

Theorem
There exists an equivalence functor Γ from the category of
`-groups with strong unit to the category of MV-algebras:
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If G is an `-group and u is a strong unit for G, the MV-algebra
Γ(G, u) has the form {x ∈ G | 0 ≤ x ≤ u} and operations are
defined by x⊕ y = u ∧ x+ y and ¬x = u− x. If A is an
MV-algebra we shall denote by GA the `-group corresponding
to A via Γ.
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Gödel Logic and Gödel algebras

Gödel infinite-valued propositional logic G∞ is the triple
([0, 1], {1}, {∧,→G}), where

x ∧ y = min(x, y)

x→G y =
{

1 if x ≤ y
y otherwise.

Finite-valued Gödel propositional logics Gn were introduced to
prove that intuitionistic propositional logic cannot be viewed as
a system of finite-valued logic.
Dummett proved completeness of such system.
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Gödel propositional logic can be defined as the fragment of
intuitionistic logic satisfying the axiom (α→ β) ∨ (β → α).
Theorems of Gödel logic are exactly those formulas which are
valid in every linearly ordered Heyting algebra, where Heyting
algebras are the structure naturally associated with
intuitionistic logic.
In Hájek framework, Gödel logic is obtained adding to axioms
of Basic Logic the axiom

(G1) ϕ→ (ϕ ∗ ϕ)

stating the idempotency of ∗.
Gödel algebras are BL-algebras satisfying the identity x ∗ x = x.
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Product Logic and PL algebras

Product Logic Π is the triple ([0, 1], {1}, {·,→Π}) where:

x · y is the usual product of reals

x→ y =
{

1 if x ≤ y
y/x otherwise.

Axioms for Product Logic can be obtained by adding

¬¬ϕ→ ((ϕ→ ϕ · ψ)→ ψ · ¬¬ψ) (P1)

to Axioms of Basic Logic.
Product logic algebras, or PL-algebras for short, were
introduced to prove the completeness theorem for Product logic.
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Summing up

What you should have learned from this course:
Fuzzy logic is not imprecise reasoning, it is formal
reasoning about imprecise statements.
In the sense above, fuzzy logic is a generalisation of
classical logic which admits phenomena of inconsitency,
vagueness, uncertainty, etc.
There is not just one fuzzy logic, one can choose a suitable
description for a particular application. Yet, there is a
general framework which subsumes all the possible choices.
There are well established logical foundations for fuzzy
logic which can be exploited from a number of
perspectives:

automated reasoning,
geometrical studies,
algebraic characterisations.
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