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 Lukasiewicz logic
 Lukasiewicz logic is one of the earliest generalisation of symbolic
logic introduced to cope with many truth values.

In modern settings,  Lukasiewicz logic can be framed in the body of
continuous t-norm based logics.

Yet  Lukasiewicz logic stands out among those logics because of
some of its properties. Indeed,

•  Lukasiewicz logic is the only one, among continuous t-norm
based logics, with a continuous implication and therefore
the only logic whose whole set of formulae has a standard
continuous interpretation.

• Furthermore the  Lukasiewicz negation is involutive, namely it
is such that ¬¬ϕ↔ ϕ.

Those two features, inherited from classical logic, makes
 Lukasiewicz logic a promising setting to test how far the methods
of model theory can reach, in the realm of many-valued logics.
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A model theory inside many-valued logic

A model theoretic study of many-valued logic is especially
important in the light of the negative results obtained in the first
order theory of these logics:

• the predicate version BL has a standard tautology problem
whose complexity is not arithmetical (Montagna, 2001),

• the same problem is Π2-complete for  Lukasiewicz logic
(Ragaz, 1981).

Thus the favourable duality between syntax and semantics
vanishes when switching to t-norm based logics and new tools
must be developed.
The results so far are encouraging: recently the Robinson finite
and infinite forcing were generalised to  Lukasiewicz logic; here
some results for a basic model theory of  Lukasiewicz logic are
presented and used to settle an open problem left therein.
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 Lukasiewicz logic

The syntax of the infinite-valued  Lukasiewicz propositional logic,
 L, is exactly as the classical one: a countable set of propositional
variables, Var = {p1, p2, . . . , pn, . . . }, and two connectives → and
¬.

The axioms of  L are the following:

ϕ→ (ψ → ϕ); (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ));

((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ); (¬ϕ→ ¬ψ)→ (ψ → ϕ),

Modus ponens is the only rule of inference. The notions of proof
and tautology are defined as usual.
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MV-algebras

The equivalent algebraic semantics for  L is given by the variety of
MV-algebras.

Definition

An MV-algebra is a structure A = 〈A,⊕, ∗, 0〉 such that:

• A = 〈A,⊕, 0〉 is a commutative monoid,

• ∗ is an involution

• the interaction between those two operations is described by
the following two axioms:

• x ⊕ 0∗ = 0∗

• (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x
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Predicate  Lukasiewicz logic

The syntax of predicate  Lukasiewicz logic ( L∀) is again the same
as classical first order logic (without functional symbols). The
primitive connectives are : →,¬, ∀.

So all syntactical concepts like term, (atomic) formula, free or
bounded variable, ... are defined just as usual.

The axioms of  L∀ are:

(i) All the axioms of the infinite-valued propositional  Lukasiewicz
calculus;

(ii) ∀xϕ→ ϕ(t), where the term t is substitutable for x in ϕ;

(iii) ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ), where x is not free in ϕ;

The inference rules are Modus ponens: from ϕ and ϕ→ ψ, derive
ψ; Generalisation: from ϕ, derive ∀xϕ.



7/ 28

Structures for predicate  Lukasiewicz logic

Let L = 〈P1, ...,Pn, c1, ..., cm〉 be a  L∀ language with n predicate
symbols and m constant symbols.
Let A be an MV-algebra. An A-structure has the form

M = 〈M,PM1 , ...,PMn , cM1 , ..., cMm 〉

where M is a non-empty set (called the universe of the
structure).

If P is a predicate symbol in L of arity k then PM is a k-ary
A-valued relation on M, namely a function

PM : Mk → A;

if c is a constant symbol in L then cM is an element of M.



8/ 28

Evaluations

Let M be an A-structure. An evaluation of L in M is a function
e : V → M. For any term t of L and any evaluation in M let

tM(e) =

{
e(x) if t is a variable x

cM if t is a constant c
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Truth values

Given any evaluation in M, e and any formula ϕ of L, the element
‖ϕ(e)‖M of A is defined by induction, and it is called the truth
value of ϕ:

if ϕ = P(t1, ..., tn) then
‖ϕ(e)‖ = PM(tM1 (e), ..., tMn (e));

if ϕ = ¬ψ then ‖ϕ(e)‖ = ‖ψ(e)‖∗;
if ϕ = ψ → χ then ‖ϕ(e)‖ = ‖ψ(e)‖ ⇒ ‖χ(e)‖;
if ϕ = ∀xψ then ‖ϕ(e)‖ =

∧
{‖ψ(e ′)‖ | e ′ ≡x e}.

An evaluation e : V → M is called safe if for any formula ψ of L,
the infimum

∧
{‖ψ(e ′)‖ | e ′ ≡x e} exists).

If ‖ϕ‖AM = 1 then ϕ is said to be true in M, this can be
alternatively written as M |=A ϕ. An A-structure M is a model
of a theory T if M |=A ϕ for all ϕ ∈ T .
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Logical consequence and satisfiability

Definition

A standard structure is a [0, 1]-structure, any valuation is safe on
a standard structure.
A standard model of a theory T is a [0, 1]-structure which is a
model of T .
A formula ϕ is called A-logical consequence of a theory T , in
symbols T |=A ϕ, if every A-model of T is also an A-model of ϕ.
In particular, when this is true for standard models then I write
T |=[0,1] ϕ or T |= ϕ.

Definition

A formula ϕ is generally satisfiable if there exists an A-model M
such that ‖ϕ‖AM = 1. If the model can be taken standard then ϕ is
called just satisfiable. This naturally generalises to theories. A
theory T is consistent if T 6` ⊥.
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Compactness

All the main results in this talk hinge on the following theorems.

Theorem (Hay 1963)

Any consistent theory T of  L∀ has a standard model.

Theorem (Compactness)

Let T be a theory in  L∀:

(i) If T is finitely generally satisfiable then T is generally
satisfiable.

(ii) If T is finitely satisfiable then T is satisfiable.

(iii) If for any MV-algebra A, T |=A ϕ then there exists a finite
T0 ⊆ T such that for any MV-algebra A T0 |=A ϕ

(iv) If T |=[0,1] ϕ then in general it is false that there exists a
finite T0 ⊆ T such that T0 |=[0,1] ϕ.
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A hierarchy on formulae

Henceforth L is assumed to be a fixed language of  L∀ and all
structures are standard.

Definition

A formula of L belongs to the set Σn (Πn, respectively) if it is
equivalent to a formula with n blocks of quantifier, where each
block is either empty or constituted of an uninterrupted sequence
of the same quantifier, ∃ or ∀, and the first block is made of ∃’s
(∀’s respectively).

As in the classical case one has Σn ∪Πn ⊆ Σn+1 ∩Πn+1.
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Relations among models

Let M be a structure, L(M) is the expansion of the language L
with a new constant symbol for each element of M.

The diagram of M, i.e. the set of atomic formulae ϕ in L(M)
such that ‖ϕ‖M = 1, is indicated by D(M); Th(M) is the set of
formulae ϕ such that ‖ϕ‖M = 1.

Definition

If M1 ⊆M2 are two structures and for any ϕ ∈ D(M1), M1 |= ϕ
iff M2 |= ϕ then M1 is a substructure of M2, in symbols
M1 ≤M2. If the same is true for any sentence of L(M1) than
M1 is an elementary substructure of M2, written M1 �M2



14/ 28

 Loś-Tarski Theorem for  Lukasiewicz logic

Theorem

A theory is preserved under substructure if, and only if, it is
equivalent to a universal (i.e. Π1) theory.

Proof.

We prove something stronger:
claim: T∀, the set of logical consequences of T which are in Π1,
axiomatises the class of all substructures of models of T .

If M≤M′ |= T then M |= T∀ is straightforward.
Let M |= T∀, then D∀(M) ∪ T is finitely satisfiable (if it were not
then

∧
Ψ |= ¬

∧
Φ, but ¬

∧
Φ ∈ Π1 fl.)

So there exists N |= D∀(M) ∪ T whence M≤ N |= T
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(Elementary) chains

Definition

Let α be an ordinal and (Mλ)λ∈α a family of L-structure. The
structures (Mλ)λ∈α are a chain if for any λ1 ≤ λ2 < α,
Mλ1 ≤Mλ2 .
If for any λ1 ≤ λ2 < α, Mλ1 �Mλ2 then (Mλ)λ∈α is called
elementary chain.

Lemma

Let (Mλ)λ∈α be an elementary chain. Then for every λ ∈ α,
Mλ �

⋃
λ∈αMλ

T is an inductive theory if it is closed under unions of chains.
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Chang- Loś-Suszko Theorem for  Lukasiewicz logic

Theorem

A theory is inductive if, and only if, it is equivalent to a Π2 theory.

Proof.

Let T be inductive. If M |= T∀2 then T ∪ Th∃(M) is finitely
satisfiable (if not

∧
Φ |= ¬

∧
Ψ, but then ¬

∧
Ψ ∈ T∀ fl.)

So there exists N |= T ∪ Th∃(M) s.t. M≤ N .
Every existential sentence of L(M) which is true in N holds in M,
hence D(N ) ∪ Th(M) is satisfiable, so it has a model M1 which
is an extension of N and an elementary extension of M.

M≤ N ≤M1 ≤ N1 ≤ . . .

If O is the limit of this chain, then O |= T , for T is inductive and
M� O, (the chain {Mi}i∈ω is elementary). Hence M |= T .
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Model companions

The above characterisation is extremely useful, when dealing with
model complete theories.

Corollary

When the model companion of a theory is axiomatisable, it is
equivalent to a ∀∃ theory.

Proof.

In a model companion every chain is elementary.

From this it is also easy to see that

Corollary

There exists at most one model companion of a theory.
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Generic models
The study of model theoretic forcing for  Lukasiewicz logic, led to
the study of the class of generic models, GK, contained in a given
class K.

The class GK was proved to contain the subclass of existentially
closed models of K. The Chang- Loś-Suszko theorem for
 Lukasiewicz logic enables to complete this result.

Proposition

Given a theory T , if GMod(T ) is axiomatisable then it is the class
of existentially closed models of T .

Proof.

Let M be a existentially closed model of T , then it embeds in a
model N ∈ GMod(T ). The class GMod(T ) is inductive, so if it is
axiomatisable then it is equivalent to a Π2 theory. Since M is
existentially closed, it is easy to see that it satisfies the same Π2

formulae of N , whence M∈ GMod(T ).



19/ 28

n-forcing

Let T a theory of L, for any n we will indicate with Mod(T , n) the
class of models of T∀n+1 .
If M⊆M′ are structures, we will say that M is an
n-substructure of M′, in symbols M�n+1 M′ if for any Πn

sentence ϕ, we have M |= ϕ iff M′ |= ϕ.

Remark

With the above notation we have M∈ Mod(T , n) iff there exists
M′ such that M′ |= T and M�n+1 M′
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n-substructures

Definition

Let M∈ Mod(T , n) and ϕ any sentence in L(M), we define the
n-forcing value of ϕ at M, [ϕ]nM as follows:

1 if ϕ is atomic then [ϕ]nM = ‖ϕ‖M
2 if ϕ = ¬ψ then [ϕ]nM =

∧
M�nN ([ψ]nN )∗

3 if ϕ = ψ1 → ψ2 then [ϕ]nM =
∧
M�nN ([ψ1]nN ⇒ [ψ2]nM)

4 if ϕ = ∃ψ(x) then [ϕ]nM =
∨

c∈M[ψ(c)]nM

Setting n = 0 gives back the infinite forcing in  Lukasiewicz logic
recently studied.
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n-generic models

Definition

Let M∈ Mod(T , n) we will say that M is Mod(T , n)-generic if
for any sentence ϕ of L(M) we have [ϕ]nM ⊕ [¬ϕ]nM=1.

Theorem

Let M∈ Mod(T , n) then it exists M∗ ∈ Mod(T , n) such that
M�nM∗ and M∗ is Mod(T , n)-generic.

The proof follows precisely the steps used in order to prove the
existence of 0-generic models.
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Some properties of n-generic models

Theorem

Let M,M′ ∈ Mod(T , n), then

1 M is Mod(T , n)-generic iff for any sentence ϕ one has
[ϕ]nM = ‖ϕ‖M.

2 If M,M′ are Mod(T ,m)-generic, and M�nM′ then
M�M′

3 If M is Mod(T , n)-generic, M�nM′ and ϕ is a
Πn+2-sentence of L(M) then ‖ϕ‖M′ ≤ ‖ϕ‖M

4 T∀n+2 ⊆ T (F ,n) where T (F ,n) is the set of all sentences of L
valid in all the Mod(T , n)-generic models.
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n-existential types

Henceforth the language L and the theory T over L are fixed .

Definition

A set Γ of formulae of L is called a type if it satisfies the following
conditions:

1 All the formulae in Γ are consistent with T ,

2 If γ1, γ2 ∈ Γ then γ1 ∧ γ2 ∈ Γ.

A type Γ is called a Σn-type if all the formulae in Γ are equivalent
to a Σn-formula.
If ∆, Γ are types, we write ∆ ≤ Γ if for any T ∪∆ |= Γ.
A Σn+1-type Γ is called (n + 1)-existential type if there exist no
Σn-type ∆ such that ∆ ≤ Γ.



24/ 28

Main Lemma

Lemma

Let M be Mod(T , n) generic and Φ be a type of Σn+2-sentences
of L(M), suppose that M |= Φ then there exists a type of
Σn+1-sentences Ψ of L(M) such that:

1 M |= Ψ,

2 T ∪Ψ |= Φ,

3 all the constants of M which occur in Ψ already occur in Φ.
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Chang’s Omitting Types Theorem

Theorem

If M is a Mod(T , n)-generic model and M |= T , then M omits
all the (n + 2)-existential types.

Chang’s Omitting Types Theorem

Let T be a theory of L, such that T ⊆ Πn+2. For any model M of
T , there exists an extension M∗ of M such that:

1 M∗ is a model of T ,

2 M∗ realises every Σn+1-type,

3 M∗ omits every type (n + 2)-existential.
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∞-universal types

Definition

Let Γ a set of formulae of L. We will say that Γ is a ∞-universal
type if it satisfies the following conditions:

1 Γis a type,

2 there exists an enumeration (γk)k∈ω of Γ such that
T |= γk+1 → γk for any k ∈ ω,

3 There exists a strictly increasing function f such that
γk ∈ Πf (k) − Σf (k) for any k ∈ ω

4 There exists no type ∆ and integer k0 such that: for any
k ≥ k0 there exists a subset ∆k ⊆ ∆ such that ∆k is
T -equivalent to a set of formulae in Σf (k) and T ∪∆k |= γk .
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Second Chang’s Omitting Types Theorem

Theorem

Let T be a theory of L. For any model M of T , there exists an
extension M∗ of M such that:

• M∗ is a model of T ,

• M∗ omits every ∞-universal type.
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