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MV-algebras

MV-algebras were introduced by Chang in 1959 as the algebraic
counterpart of  Lukasiewicz logic.

Definition

An MV-algebra A = 〈A,⊕,¬, 0〉 is a commutative monoid
A = 〈A,⊕, 0〉 with an involution (¬¬x = x) such that for all
x , y ∈ A,

x ⊕ ¬0 = ¬0

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x
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Wajsberg algebras

They were rediscovered, in disguise, by Rodriguez and named
Wajsberg algebras

Definition

An Wajsberg algerba A = 〈A,→,¬, 1〉 is an algebra such that for
all x , y , z ∈ A,

i) 1→ x = x

ii) (x → y)→ ((y → z)→ (x → z))

iii) (x → y)→ y = (y → x)→ x

iv) (¬y → ¬x)→ (x → y)

x → y = ¬x ⊕ y and 1 = ¬0
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An Example: the standard MV-algebra

The structure [0, 1]MV = 〈[0, 1],⊕,¬, 0〉 where the operation are
defined as

x ⊕ y := min{1, x + y} and ¬x := 1− x ,

is an MV-algebra, called the standard MV-algebra.

Theorem (Chang 1958)

The algebra [0, 1]MV = 〈[0, 1],⊕,¬, 0〉 generates the variety of
MV-algebras.
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`-groups

Definition

A partially ordered group is called lattice ordered (`-group, for
short) if its order is a lattice.
An `-group G is called unital (`u-group, for short) if there exists an
element u ∈ G (called the strong unit) such that for any positive
x ∈ G there exists a natural number n such that u ⊕ . . .⊕ u︸ ︷︷ ︸

n times

≥ x

Given any `-group G = 〈G ,+,−,≤, 0〉 and a positive element
u ∈ G the definable algebra

〈[0, u],⊕,¬, 0〉 with x ⊕ y = min{x + y , u} and ¬x = u − x

is an MV-algebra. Furthermore, every MV-algebra can be obtained
in this way.
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Categorical equivalence

The relationship between MV-algebras and abelian `-groups
becomes an equivalence if one restricts to u`-groups

Theorem (Mundici 1986)

There exists a categorical equivalence between MV-algebras and
abelian `u-groups.

or to perfect1 MV-algebras

Theorem (Di Nola and Lettieri 1994)

There exists a categorical equivalence between perfect
MV-algebras and abelian `-groups.

1An MV-algebra is called perfect if it is generated by the intersection of all
its maximal ideals.
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Lattice structure

Any MV-algebra has an underlying lattice structure, defined by:

x ∨ y = ¬(¬x ⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

If A is any MV-algebra then:

i) The underlying lattice of A is distributive.

ii) The (definable) (∨,∧,¬)-reduct is a Kleene algebra (so also
a DeMorgan algebra).

iii) Define x � y = ¬(¬x ⊕ ¬y). The algebra 〈A,�,→, 0, 1〉 is a
bounded, commutative, residuated lattice (or even a
bounded commutative BCK-algebra).
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The geometry of MV-algebras

Definition

A function [0, 1]m to [0, 1] is called McNaughton function if it is:

1 continuous,

2 piece-wise linear

3 with integer coefficients.

Theorem (McNaughton 1951)

The free MV-algebra over m generators is isomorphic to the
algebra McNaughton functions, where the MV operations are
defined point-wise.
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Ideals

Given an MV-algebra A, a non-empty subset I of A is an ideal if it
is

1 downward closed, i.e. y ≤ x and x ∈ I imply y ∈ I for all
y ∈ A,

2 stable with respect to the MV-algebraic sum: x , y ∈ I implies
x ⊕ y ∈ I .

An ideal I is called proper if I 6= A. So MV-ideals are also ideals of
the lattice reduct (lattice ideals.)
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Prime ideals

Definition

An ideal P of an MV-algebra A is called prime if A/P is linearly
ordered.

Lemma

An ideal P of an MV-algebra A is prime iff it satisfies the following
equivalent conditions:

1 for all a, b ∈ A, a→ b ∈ P or b → a ∈ P;

2 for all a, b ∈ A, if a ∧ b ∈ P then a ∈ P or b ∈ P;

3 for all I , J ideals of A, if I ∩ J ⊆ P then I ⊆ P or J ⊆ P.
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Chang representation theorem

An important insight in the the class of MV-algebras is given by
Chang subdirect representation theorem.

Theorem

Let A be an MV-algebra and Spec A the set of its prime ideals.
Then A is a subdirect product of the family {A/P}P with P
ranging among prime ideals of A.
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Spectrum of MV-algebras

The set Spec A of all the prime ideals of A is called the spectrum
of A. As in the case of lattices, for any MV-algebra A, the
spectral topology of A is defined by means of its family of open
sets {τ(I ) | I ideal of A} where τ(I ) = {P ∈ Spec A | I * P}.

Definition

A topological space is an MV-space if it is, up to
homeomorphisms, the spectral space of an MV-algebra.
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Spectrum of MV-algebras

It is easy to see that there are examples of different MV-algebras
with the same Spec.

{0, 1} [0, 1] {0, 1} [0, 1]
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Spectral spaces

Definition

A topological space X is called spectral if

1 X is a compact, T0 space,

2 every non-empty irreducible closed subset of X is the closure
of a unique point (X is sober),

3 and the set Ω of compact open subsets of X is a basis for the
topology of X and is closed under finite unions and
intersections.

Since a spectral space is T0, it is partially ordered by the so-called
specialisation order: x ≤ y iff x ∈ cl(y) where cl(y) is the closure
of y .
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Pro-finite MV-spaces

Since MV-space are spectral, one may be tempted to try to
characterise them through inverse limit of finite spaces. However in
2004 Di Nola and Grigolia characterised the pro-finite MV-spaces
and proved that they do not coincide with the full category of
MV-space.

Theorem

An MV-space is pro-finite if and only if it is a completely normal
dual Heyting space.

Theorem

There are MV-spaces, as well as completely normal spectral
spaces, which are not pro-finite.
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Priestley space

Definition

Recall that the triple 〈X ,≤, τ〉, where

1 〈X ,≤〉 is a poset and

2 〈X , τ〉 is a topological space,

is called a Priestley space if

a) τ is a Stone space and

b) for any x , y ∈ X such that x 6≤ y there is a clopen decreasing
set U such that y ∈ U and x 6∈ U.

Priestley spaces, together with Priestley maps, i.e. continuous and
order preserving maps, form the category Pries.

Note that each closed subset of a Priestley space is in turn a
Priestley space with respect to the inherited topology.
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Priestley duality

Consider the controvariant functor ∆ : BDLat −→ Pries which
assigns to Priestley space the lattice of clopen downward sets and
∆(f )(U) = f −1(U).
Consider also the functor Ξ, assigning to each bounded distributive
lattice L its set of prime ideals, ordered by set inclusion and
topologised by the basis given by the sets
τ(a) = {P ∈ Spec(L) | a 6∈ P} and their complements for a ∈ L.
Furthermore put Ξ(h)(P) = h−1(P).

Theorem

The pair ∆,Ξ is a categorical duality between BDLat and Pries.
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Priestley duality for Wajsberg algebras

In the nineties Martinez developed a duality for Wajsberg
algebras.

The idea is to think of a Wajsberg algebra as a distributive
lattice, enriched with supplementary operations.

This allows to exploit Priestly duality and to build on it.

More precisely Martinez works on a particular case of
Priestley duality, developed by Cornish and Fowler,
characterising Kleene algebras (which in turn are particular De
Morgan algebras.)
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Martinez duality

Definition

A tuple 〈X , τ,≤, g , {φp}p∈X 〉 is called a Wajsberg space if:

1 〈X , τ,≤, g〉 is a De Morgan space,

2 {φp}p∈X is a family of functions φp : Dp −→ X where
Dp = {q ∈ X | p ≤ g(q)} such that ∀p, q ∈ X :

a. φp is order-preserving and continuous in the upper topology,
b. p ≤ g(q) implies p, q ≤ φp(q),
c. p ≤ g(q) implies φp(q) = φq(p),
d. p ≤ g(q) implies φp(g(φp(q))) ≤ g(q),
e. p, p′ ≤ g(q) implies φp(φp′(q)) = φp′(φp(q)),
f. If U ∈ Up(X ) and q 6∈ U, there exists qU , the greatest p ∈ X

such that p ≤ g(q) and φp(q) 6∈ U; given U,V ∈ Up(X ) if
q 6∈ U ∪ V then (qV )V 6∈ U.

3 For every U,V ∈ Up(X ),
⋂

p∈U
(
Dc
p ∪ φ−1(V )

)
∈ Up(X ).

Where Up(X ) is the lattice of clopen increasing subsets of X .
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Gehrke-Priestley duality

In 2007 Gehrke&Priestley generalise Martinez’ approach to
any distributive lattice expansion with operations which satisfy
some mild order theoretical conditions.

The turning point is to take a “modal” perspective and to
study duality through canonical extensions.

This allows to realise that the failure of canonicity for
MV-algebras lays on an “alternation” of operations in the
terms defining the variety.

The problem is overcome by considering class of algebras with
a signature doubled respect to the initial one and to consider
equations as inequalities.
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Gehrke-Priestley duality

Topology arises as a tool for telling when two operations in
the doubled signature are two facets of the same starting
operation.

Thanks to this approach the supplementary conditions on the
Priestly space become first order.
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The Belluce functor

Definition

Let A be an MV-algebra and consider the equivalence relation ≡
defined by

x ≡ y if and only if, for all P ∈ Spec A, x ∈ P ⇔ y ∈ P.

It is easy to see that ≡ is a congruence on the lattice reduct of A
and it also preserves the MV-algebraic sum (indeed it equalises ∨
and ⊕: [x ∨ y ]≡ = [x ⊕ y ]≡ for all x , y ∈ A).
Let us call [A] the quotient set A/ ≡ and [x ] the equivalence class
[x ]≡.



28/ 50

The Belluce functor

Lemma

The structure [A] = 〈[A],∨,∧, [0], [1]〉 is a bounded distributive
lattice, with [x ] ∨ [y ] := [x ∨ y ] = [x ⊕ y ] and [x ] ∧ [y ] := [x ∧ y ],
for all x , y ∈ A.

Lemma

The map [·] is a functor from the category of MV-algebras to the
category of bounded distributive lattice

Knowing on which category such a functor is invertible would
constitute a key step in the characterisation of MV-spaces.
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The Belluce functor

Theorem

The map γ : Spec A→ Spec[A], defined by γ(P) = [P], is a
(Priestley) homeomorphism between the MV-space Spec A and the
spectral space Spec[A].

Theorem

Every bounded distributive lattice in the range of [·] is dual
completely normal (i.e. the set of prime ideals containing a prime
ideal is totally ordered.)

Corollary

Every MV-space is completely normal.a

aX is normal if any two disjoint closed subsets of X are separated by
neighbourhoods
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MV-subspaces

Definition

X ⊆ Spec A is an MV-subspace if X with the induced topology is
homeomorphic to Spec A′ for some MV-algebra A′, i.e. if it is an
MV-space itself.

Proposition

All closed subspaces of an MV-space are MV-subspaces.
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MV-subspaces

Proposition

Let τ(a) be compact open in Spec A. Then τ(a) is an MV-space.

Lemma

Every MV-algebra has the prime extension property (PEP), namely
every ideal extending a prime ideal is itself prime.

Proposition

An MV-algebra A is called hyper-archimedean if for each x ∈ A
nx ∈ (A) for some integer n. Hyper-archimedean MV-algebras are
exactly the ones for which Spec A = Max A.
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The order in MV-spaces

Proposition

If X is a linearly ordered spectral space, then X is an MV-space.

Proposition

MV-spaces are root systems with respect to the specialisation order
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Spectral root systems

Definition

A poset 〈X ,≤〉 is called a spectral root if:

1 〈X ,≤〉 has a maximum.

2 No pair of incompatible elements of X has a common lower
bound.

3 Every linearly ordered subset of X has inf and sup in X .

4 If x , y ∈ X are such that x < y , then there exist s, t ∈ X such
that x ≤ s < t ≤ y and there is no z ∈ X such that
s < z < t.

Definition

A poset 〈X ,≤〉 is called a spectral root system if it the disjoint
union of spectral roots.
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A characterisation of the order

Theorem

A poset is a spectral root system if, and only if, it is order
isomorphic to some MV-space.

Definition

Recalling that an MV-algebra is called local if it has a unique
maximal ideal, an MV-space is called local if it has a greatest
element or, equivalently, if its corresponding MV-algebra is local.

Corollary

Every MV-space is a disjoint union of local MV-spaces.
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Reduced MV-algebras

Let A be a linearly ordered MV-algebra, and let Pr A be the set of
principal ideals of A.
For each P ∈ Pr A let us choose a generator uP of P, and set
A0 = 〈uP | P ∈ Pr A〉, the subalgebra generated by the uP ’s.

A0 is called the reduced subalgebra of A.

A linearly ordered algebra A is reduced if
A = 〈uP | (uP ] = P ∈ Pr A〉. In this case, the set {uP | P ∈ Pr A}
will be called a set of principal generators of A. Note that a set
of principal generators is not unique in general.
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Reduced algebra are sufficient

Lemma

Let A be a reduced MV-algebra with principal generators
{uP | P ∈ Pr A}. Then for every a 6= 1 in A there is some principal
generator uP , τ(a) = τ(uP).

Proposition

Any reduced MV-algebra is perfect.

Lemma

Spec A0
∼= Spec A
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Three simple results and one remark

Corollary

Let X be a spectral space such that, for each x ∈ X , cl(x) is an
upward chain under the specialisation order (i.e., if y , z ∈ cl(x),
then x ≤ y ≤ z or x ≤ z ≤ y) then there is a reduced MV-algebra
Ax such that Spec Ax

∼= cl(x).

Lemma

In a reduced MV-algebra A there is a bijection between the set of
proper compact open sets of Spec A and Pr A.

Remark

Note that, in a reduced algebra, uP ≤ uQ iff τ(uP) ⊆ τ(uQ) iff
(uP ] ⊆ (uQ ].
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The theory of springs

Remark

In the following X is a spectral space such that, for each x ∈ X ,
cl(x) is an upward chain under the specialisation order.

Starting from X we seek for a construction that yields an
MV-algebra A such that X and Spec A are homeomorphic. The
theory of springs below gives a partial solution to this problem.
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The theory of springs

Given X as above, let Ω be the set of its compact open subsets.
For any x ∈ X we set Ωx = {ω ∈ Ω | x ∈ ω}.

Lemma

In a spectral space X , the intersection of a compact open set U
and a closed set V is a compact open subset of V .

Taking, in particular V = cl(x), this suggests an equivalence
relation on Ω of being indistinguishable over x , namely

ω ≡x ω
′ if, and only if, ω ∩ cl(x) = ω′ ∩ cl(x).

This is an equivalence relation and, so let [ω]x denote the class of
ω.
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The theory of springs

Then [ω]x corresponds to a unique principal ideal u[ω]x in Ax via
the homeomorphism between Spec Ax and cl(x).
The correspondence is (strictly) order preserving.
Observe that, if x /∈ ω, then ω ∩ cl(x) = ∅, so we may limit
ourselves to ω ∈ Ωx .
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Springs

Definition

A triple 〈X , {Ax}x∈X ,A〉 is an MV-spring provided X is a spectral
space, each Ax is a reduced MV-algebra and A is a subdirect
product of the family of Ax ’s

Example

Let Ai be a family of reduced MV-algebras and let A be a subdirect
product of the Ai . Then 〈Spec A, {Ai}i∈I ,A〉 is an MV-spring.
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Building an MV-spring

Let Ω as above and F be the free MV-algebra generated by Ω.

Let χω ∈ FX be defined by χω(x) =

{
ω if x ∈ ω
0 otherwise

Let A1 = 〈χω | ω ∈ Ω〉 be the subalgebra of FX generated by the
χω, and, for each x ∈ X , let Fx = 〈u[ω]x | ω ∈ Ωx〉.
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Building an MV-spring

Fix an x ∈ X , the algebra A1 can be projected into Fx by the
following function.

µx : A1
evx
� Fx

ηx
� Fx ,

where:

1 Fx = 〈ω | ω ∈ Ωx〉 ⊆ F, i.e. the free algebra generated by Ωx

2 evx : A1 ←→ Fx is the evaluation map, given by
evx(f ) = f (x). It is not hard to see that evx is onto.

3 ηx : Fx ←→ Fx is the unique epimorphic extension of the
partial function f (ω) = u[ω]x (note that f is surjective on the
generators).

Now consider J1 =
⋂

x ker µx and define Â = A1/J1.
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Affine MV-Springs

Proposition

The triple 〈X , {Fx}x∈X , Â〉 is a spring.

Given a spring 〈X , {Ax}x∈X ,A〉, we have a family of projections
πx : A −→ Ax and we can define a new map

ϕA : X ←→ Spec A by setting ϕA(x) = ker πx .

Since Ax is linearly ordered, ker πx ∈ Spec A and the mapping is
well-defined.

Definition

An MV-spring 〈X , {Ax}x∈X ,A〉 will be called an affine MV-spring
provided ϕA is continuous.
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Dense subset of SpecA

Given the MV-spring above, 〈X , {Fx}x∈X , Â〉, we will write ϕ for
ϕÂ; so we have the map ϕ : X ←→ Spec Â given by ϕ(x) = ker πx .

Theorem

In 〈X , {Fx}x∈X , Â〉 the following properties hold.

(i) ϕ is injective;

(ii) ϕ−1 : ϕ(X )←→ X is continuous;

(iii) ϕ−1 is order preserving;

(iv) ϕ(X ) is a dense subspace of Spec Â.
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