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Preliminary Definitions

Definition 1. A PMV-algebra is an algebra A =
(A, ®,—,0,1) is a MV-algebra.

(A, ®,—,+,0,1) such that:

(A,-, 1) is a commutative monoid.

- z), where x &y = =(—z @ y).

For all z,y,2 € Aone has: z- (y©z2)=(x-y) S (x

Definition 2. A LIl-algebra is an algebra
A= <A7 D, = 07 1>

such that (A, @, -, +,0,1) is a PMV-algebra, (A, -, —,,0,1) is a bounded hoop, and letting —,x = z —,
0 and A(z) = —,—x, the following equations hold:

o r =, yYy<zT =Y.

ez AN x=0

* A@) O Az = y) < Ay)
Az) <
A(A(z)) =
Az
A(

(z)) = Az)
Vy) =

Alz) V Aly)
-Ar) =1

e Alx —wy) <z —ry.

)V
Definition 3. A LH%—algebm is a LII-algebra with an additional constant % satisfying % = —%.
Definitions
Definition 1. [MSO03]. A LII,-algebra is a structure

A= <A7 D, —7q: 9, 07 1>

where (A, @, ,-,0,1) is a PMV-algebra, ¢ is a constant, and —, is a binary operation such that the
following conditions hold:

Al) ¢ < —q
A2) x »,y=(xVq) =,y
A3) (zV @)z =qy)=(z Vg Ny

Ad) q =4 (zq) =

A5) If 22 =0 then z = 0

Notation. We use u(a) to denote (a Vv 0) A 1.

Definition 2. A f-quasifield is a structure
(K, +,—, %, /¢, V,N,0,1,q)

where (K,+,—, X,V,A,0,1,q) is a c-s-u-f-ring with strong unit 1, ¢ is a constant and /, is a binary
operation such that the following conditions are satisfied:

K1) 0<¢<1—¢q

K2) z/4y = u(z)/quy) = u(z)/q(uly) V q).

K3) (u(z) Vq) x (u(y)/qu(x)) = (u(z) V q) Auly)
(u(z) % q)/qq = u(z)

If x x2z=0then z =0.

)
)
)
)

(iii) (K,+,—,

Definition 3. Let LP, and FQ denote the category of LIl -algebras and the category of f-quasifields
respectively, with morphisms the homomorphisms in the sense of Universal Algebra.

We define a functor II,; from FQ into LP as follows:

(a) For every f-quasifield F we define a structure II,(F) whose domain II (F) is [0,1] = {z € F:0 <
x < 1}, whose constants 0, 1 and ¢ are those of F, and whose operations &, -, - and —, of I1,(F)
are defined as follows:

(al) zdy=(r+y)Al,z=1—x,and v —, y = y/,.
(a2) The operation - is the restriction of x to [0, 1].

(b) For every morphism ® from a f-quasifield F into a f-quasifield I, we define II,(®) to be the
restriction of ® to II,(F).

Now we define a functor Hq_1 LP into FQ as follows:

(a) For every LIl -algebra A, the c-s-u-f-ring subreduct of II_* (A) is I'g' (F(A)). Moreover the constant
q is interpreted as qo = ip( A)(q““), where ¢ is the interpretation of ¢ in A.
Note that the domain of T'r(I'g' (F(A))) is contained into the domain of 'y
ir)(¢*) € I, (A).

Moreover we define:

'(F(A)), therefore

/gy = ira) ((ir) "~ (u(y)) = (iF@) "~ (u(@)).

(b) If ¢ is a morphism of LII-algebras from A into B, then II;*(¢) = "' (F(¢)).

Main Results

Theorem 1. Let K = (K
equivalent:

(i) There are no infinitesimal in K (i.e. (Ve >0) (In € N)(ne >1—¢))
(i1) K is Archimedean (i.e. Yb¥a > 03n € N(na > b)).
x,0,1) is a field.

=%, [, VoA, 0,1, q) be a linearly ordered quasifield. The following are

Corollary 2. If F is a f-quasifield, then the ring of rationals Q can be embedded into the ring-reduct
of F.
Theorem 3. The categories of L11,-algebras and of f-quasifields are equivalent via the functors Il
and 111,

q

Corollary 4. FEvery f-quasifield is isomorphic to a subdirect product of a family of linearly ordered
f-quasifields.

Corollary 5. f-quasifields constitute a quasivariety, but not a variety.

Examples

Example. Let R* be any non-trivial ultrapower of the ordered field R of real numbers, and let € be
any strictly positive infinitesimal. Then for all n € N, n < % So 1 is not a strong unit and for any
choice of ¢ € (0,%], (R*,+, —, X, /4, V, A,,0,1,¢) (where x denotes product and z/,y = ul(‘y(;'eq
a f-quasifield although <R*, —,x%,0,1,) is a field.

Example. Let R* be as before, let ¢ = % and let

) is not

;m:{xER*:EInGNﬂx 1< n)}.

It is easy to see that R, is a c-s-u-f-ring. Now let z,y € [%,
Then ; < z < 1, therefore z € R%,,
It follows that, letting a/,b = W

Nevertheless R7};, is not a field, because if ¢ € R},

1] be such that = < y, and let z = %

R%,, is closed under /,, and /, makes R}, a f- quasﬁield

is a strictly positive infinitesimal, then 1 - ¢ R},
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(1)=(ii) Let h = ¢q/4(¢ + ¢). Then h(q + ¢) = ¢, which immediately implies that 2h = 1. It follows that 2hz = z for [BKW77] A. Bigard, K. Keimel and S. Wolfenstein, Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608,
every z € K. Now let z € K\ {0}, and let us prove that there is a y € K such that yz = 1. Without loss Springer Verlag, Berlin 1977.
of generality we may assume that z > 0. Let k¥ be minimal such that < 2% (such a k exists because K is
Archimedean). Then h*x < 1. Moreover by the minimality of & we have h*~!'x > 1 (where we put h¥~1 = 2 if

_ k : ; k _ _ pk—-1
k=0). Hence ¢ < h < h"z <1, and by axiom (K3) there is a z € K such that h*z2 = h. Now let y = h*"z. Then [DNDO1] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001). Theorem 4.2.
yr = hF¥ 122 = 2hF 22 = 2h = 1. Hence y is the desired element.

[C02] P. Cintula, The LII and LH% propositional and predicate logics, Technical Report 2001.

l . . . . . . . .
(ii)=(i) Let by contradiction K be a linearly ordered f-quasifield such that for some a,b € K one has a > 0 and na < b for [EGMOAl] F Hsteva, L. G0d~0 » - Montagna, LIL and LIl5: two fuzzy logics joining Lukasiewicz and Product logics,
J rchive for Mathematical Logic 40 (2001), pp. 39-67.

every n € N. Then for every n € N we have n < ba~!, against the fact that 1 is a strong unit of K.

) ) ) ) ) ) [EGH96] F. Esteva, L. Godo, P. Hajek, A complete may-valued logic with product conjunction, Archive for Mathematical
Proof of theorem 77 (i). That ig(4) is an isomorphism of PMV-algebras follows from Lemma ??. That ip(a) Logic 35 (1996), 191-208.

preserves the constant ¢ follows from the definition of II, and of Hq‘l.
We prove that ip(4) preserves —4. Let =, denote the interpretation of —4 in I, (II; 1 (A)). Thus a =4 b = b/4a, and [HI8] P. HAJEK, Metamathematics of Fuzzy Logic, Kluwer, 1988.

q
since u(a) = a and u(b) = b, from (%) we obtain: ' o _ ) )
[Mo00] F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9

a=qb=ripc)((irca) " (a) =q (ipa) " (b)) (1) (2000), 91-124.

Now for &,y € A, substituting ip()(z) for a and ip4)(y) for b in equation (1), we obtain: [Mo02] F. Montagna, Subreducts of MV-algebras with product and product residuation, Preprint 2002.

[MS03] F. Montagna, L. Spada, Continuous approzimations of MV-algebras with product and product residuation,

ir) (@) =q ir)(Y) = irca) (@ —q Y), Preprint 2003,
and the claim is proved. [Mu86] D. Mundici, Interpretations of AF C* algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986),
(ii). Let us denote II,(F) by B. That jgr) is an isomorphism of c-s-u-f-rings follows from Lemma ??. In order to 15-63.

prove that jg(r) preserves ¢, note that the interpretation of ¢ is the same in F and in II,(F) = B. Moreover in H;l([)’),
q is interpreted as ip( B)(qB ), where ¢ is the interpretation of ¢ in both B and F. Therefore we only need to prove that
ir5)(4%) = js(r)(¢®). Now by Lemma ??, ip5)(¢®) = Tr(jx(¢®)) = jr(¢®), and the claim follows.

Finally we prove that js(r) preserves /. Let //, denote the interpretation of /4 in II;*(IIy(F)) (and let us identify
/q with its realization in F). Let x,y € F, and let us prove that js r(2/qy) = jsr)(x)//qisF)(y). Since x/qy =
u(z)/qu(y) and jg(r) preserves the operation u, we may assume without loss of generality that u(z) = = and u(y) = y.
Thus letting D = II4(F), we have x,y € D, and jgr)(v) = Hy(jsr)(z)) = irp)(z). Similarly, jsr)(y) = irm)(y)-
Thus recalling the last claim of Lemma 7?7 and the definition of H;l, we obtain:

Js) @)/ /adsr)(y) = iw)(®)/ ] 4iw D) (Y) = tp(D) (Y =4 7) =

= Js(F) (y =) = Js(f)(ﬂf/qy%
and (ii) is proved.

(iii). Set F =1, (A), K =1I,;'(B), ¥ = ["'(F(¢)). That ¢ is a homomorphism of c-s-u-f-rings follows from Lemma
??. We prove that 1) preserves q. The interpretation of ¢ in F is ¢© = iR A)(qA), and the interpretation of ¢ in K is
= iF(B) (¢B). Now by Lemma ??, Tr(1)) o iF(4) = IF(B) © ¢, therefore

b(qF) =TW)(q") = T W) o ina))(¢?) =

Finally we prove that ¢ preserves /,. Let //, denote the interpretation of /, in K, and let us identify the symbol /,
and its realization in F. Let =,y € F. Since z/,y = u(x)/qu(y), and since ¢ preserves u, we can assume without loss
of generality that # = u(z) and y = u(y). Then by clause (%) in the definition of IT;! we have:

w/qy = ir) (ir) T (1Y) =4 (ip) (1) (2)
¥(@)/ /¥ (y) = e (irw) ™ (1) =4 (F@) " (@()). (3)
Note that by Lemma ??, Tr(I'g"(¢))) = ir(s) © ¢ 0 i - Therefore, for all » € Pr(F), we have:
¥(z) = Cr(®))(2) = (Pr(TR' (9)))(2) = irs) (Hiniy (2))- (4)
In particular, ¥(2) = ir(s)($(ip 4y (%)) and ¥ (y) = ips)(¢(ig 4 (y))), therefore
(ir) " (V) = lip(ay(y) and (ips) ™" (V(2)) = ¢lipa)(2))- (5)

Substituting in eq. (3), recalling that ¢ and 21;(1 4 are homomorphisms of LII,-algebras and using eq. (4) and eq. (2),
we obtain:

b(@)/[a0(y) = v (Dlinia) (1) =g lig(y (@) =
= ip(B) (‘15(11;(1,4)(?4) —q Z;(1,4) (z)))
= iF(B)((b(iE(lA)(y —q r))) (6)
=Yy —¢ )
= P(x/qy)-

This concludes the proof of the lemma.
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