Free MV algebras as direct limit a joint work with A. di Nola and R. Grigolia

Luca Spada lspada@unisa.it http://www.mat.unisi.it/~lspada/

Department of Mathematics and Computer Science. Università degli Studi di Salerno

Bratislava, 25 September 2008

Overview

- Motivations
- Preliminaries
- 2 The 1-generated case
 - The geometrical intuition
 - Direct limits
 - Snakes
- **3** Generalization to the *n*-generated case
 - The problems encountered

Motivations

- MV-algebra are the equivalent algebraic semantic of Łukasiewicz logic.
- MV-algebras are categorical equivalent to unital ℓ -groups.
- The free MV-algebra is the algebra of all piece-wise linear functions with integer coefficients.
- Finding new characterizations of the free MV-algebras gives new insight in such a class.

Motivations Preliminaries

MV-algebras

Recall that an algebra $A = (A; \oplus, \odot, \neg, 0, 1)$, is said to be a MV-algebra iff it satisfies the following equations:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z); \qquad x \oplus y = y \oplus x; x \oplus 0 = x; \qquad x \oplus 1 = 1; \neg 0 = 1; \qquad \neg 1 = 0; x \odot y = \neg(\neg x \oplus \neg y); \qquad \neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$$

The following abbreviations are very often used:

$$a^n = \underbrace{a \odot \cdots \odot a}_{n \text{ times}}$$
 and $(n)a = \underbrace{a \oplus \cdots \oplus a}_{n \text{ times}}$.

Motivations Preliminaries

An example of MV-algebra

The unit interval of real numbers [0,1] endowed with the following operations:

$$egin{aligned} x\oplus y &= \min(1,x+y) \quad x\odot y &= \max(0,x+y-1) \
eggin{aligned} &\neg x &= 1-x, \end{aligned}$$

is an MV-algebra.

Theorem

The MV-algebra $S = ([0, 1], \oplus, \odot, \neg, 0, 1)$ generates the variety \mathbb{MV} , in symbols $\mathcal{V}(S) = \mathbb{MV}$.

Łukasiewicz logic with n+1 truth values

The subvarieties $\mathbb{MV}_n \subset \mathbb{MV}$ are axiomatized by the extra axiom: $x^{n+1} = x^n$ (or (n+1)x = nx).

The subvarieties \mathbb{MV}_n corresponds to Łukasiewicz logic with n+1 truth values.

Let $\omega_0 := \omega \setminus \{0\}$. For $n \in \omega_0$ we set $S_n = (S_n; \oplus, \odot, \neg, 0, 1)$, where

$$S_n = \left\{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\right\}$$

and the operations \oplus, \odot, \neg are defined as in S. Then we have that $\mathbb{MV}_n = \mathcal{V}(\{S_1, ..., S_n\}).$

Motivations Preliminaries

Free MV_n algebras

Let $F_{\mathbb{MV}_n}(m)$ be free *m*-generated MV-algebra in the variety \mathbb{MV}_n . Let $F_{\mathbb{MV}}(m)$ be free *m*-generated MV-algebra in the variety \mathbb{MV} . Define the function $v_m(x)$ as follows:

$$v_m(1) = 2^m,$$

 $v_m(2) = 3^m - 2^m,$
 \vdots
 $v_m(n) = (n+1)^m - (v_m(n_1) + ... + v_m(n_{k-1})),$

where $n_1 = 1, n_k = n$ and $n_2, ..., n_{k-1}$ are the strict divisors of n.

Proposition $(^1)$

$$F_{\mathbb{MV}_n}(m) \cong S_1^{\nu_m(1)} \times \ldots \times S_n^{\nu_m(n)}.$$

¹A. Di Nola , R. Grigolia, G. Panti, Finitely generated free MV-algebras and their automorphism groups, *Studia Logica*, **61**(1):65-78. 1998.

The geometrical intuition Direct limits Snakes

Some examples

 The geometrical intuition Direct limits Snakes

A characterization of the elements of F_{MV_n}

Proposition $(^2)$

Given a tuple $(a_1, ..., a_n)$ in F_{MV_k} there is a McNaughton function f(x) such that the set $\{a_1, ..., a_n\}$ is exactly the range of f(x) restricted to $\bigcup_{i=1}^k S_k$.

²A. Di Nola , R. Grigolia, G. Panti, Finitely generated free MV-algebras and their automorphism groups, *Studia Logica*, **61**(1):65-78. 1998.

The geometrical intuition Direct limits Snakes

An element of F_{MV_5}

The geometrical intuition Direct limits Snakes

Two different visualizations

Figure: The black lines in the figures depict the same element of $F_{\mathbb{MV}_5}(1)(=S_1^2 \times S_2 \times S_3^2 \times S_4^2)$

The geometrical intuition Direct limits Snakes

Formalizing such visualizations

Definition

 \mathcal{Q} is the set of irreducible fractions between 0 and 1, endowed with the natural order, which we will indicate as usual with <. \mathcal{Q}^{\prec} has the same domain of \mathcal{Q} but its linear order \prec is given by

$$rac{m}{n} \prec rac{p}{q}$$
 if, and only if, $n < q$ or, if $n = q$ then $m < p$

So the \prec -sorted listing of \mathcal{Q} is $\{\frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, ...\}$.

The geometrical intuition Direct limits Snakes

The direct limit is a categorical construction:

Definition

Let (I, \leq) be a directed set. Let $\{A_i \mid i \in I\}$ be a family of objects indexed by I and suppose we have a family of embeddings $\varepsilon_{ij} : A_i \to A_j$ for all $i \leq j$ with the following properties:

- ε_{ii} is the identity in A_i ,
- $\varepsilon_{ik} = \varepsilon_{jk} \circ \varepsilon_{ij}$ for all $i \leq j \leq k$.

Then the pair (A_i, ε_{ij}) is called a direct system over *I*.

The geometrical intuition Direct limits Snakes

The direct limit of a system

Definition

The underlying set of the direct limit, A, of the direct system (A_i, ε_{ij}) is defined as the disjoint union of the A_i 's modulo a certain equivalence relation \sim :

$$A=\varinjlim A_i=\coprod_i A_i/\sim.$$

Where, if $x_i \in A_i$ and $x_j \in A_j$, then $x_i \sim x_j$ if there is some $k \in I$ such that $\varepsilon_{ik}(x_i) = \varepsilon_{jk}(x_j)$.

One naturally obtains from this definition canonical morphisms $\varphi_i : A_i \to A$ sending each element to its equivalence class. The algebraic operations on A are defined via these maps in the obvious manner.

The geometrical intuition Direct limits Snakes

The embeddings between F_{MV_n}

We now define a family of embeddings $\varepsilon_k : F_k \to F_{k+1}$.

- Given a tuple (a₁,..., a_n) in F_k we know that there is a McNaughton function f(x) such that the set {a₁,..., a_n} is exactly the range of f(x) restricted to ∪^k_{i=1} S_k.
- Define $\varepsilon(a_1, ..., a_n)$ as the tuple given by the domain of f(x) when restricted to $\bigcup_{i=1}^{k+1} S_{k+1}$.

But, how to chose *f*?

• In the 1-generated let's just chose the *simplest*.

The geometrical intuition Direct limits Snakes

Formalizing the idea

Definition

Let us define for any $\frac{n}{m} \in \mathcal{Q}$

$$(\frac{n}{m})^+ = \max\{\frac{a}{b} \in \mathcal{Q} \mid \frac{a}{b} < \frac{n}{m} \text{ and } b < m\}$$

and

$$(\frac{n}{m})^- = \min\{\frac{a}{b} \in \mathcal{Q} \mid \frac{a}{b} > \frac{n}{m} \text{ and } b < m\}.$$

The geometrical intuition Direct limits Snakes

Formalizing the idea (cont'd)

Definition

Let $a = (a_{\frac{0}{1}}, a_{\frac{1}{1}}, ..., a_{\frac{i}{k}})$ be, for a suitable $\frac{i}{k} \in Q$, an element of $F_{\mathbb{V}_k}$, then we define:

$$\varepsilon_k(a) = (a_{rac{0}{1}}, a_{rac{1}{1}}, ..., a_{rac{i}{k}}, a_{rac{1}{k+1}}, ..., a_{rac{j}{k+1}})$$

where for all $\frac{j}{k+1} \in Q$, we let $a_{\frac{j}{k+1}}$ be the solution of the linear equation:

$$\frac{\frac{j}{k+1} - \left(\frac{j}{k+1}\right)^{-}}{\left(\frac{j}{k+1}\right)^{+} - \left(\frac{j}{k+1}\right)^{-}} = \frac{a_{\frac{j}{k+1}} - a_{\frac{j}{k+1}}}{a_{\frac{j}{k+1}} - a_{\frac{j}{k+1}}}$$

Lemma

 ε_k is an embedding from F_k to F_{k+1} .

 The geometrical intuition Direct limits Snakes

The snakes

Lemma (Characterization of the direct limit D)

For any element $a \in D$ there exists a unique $i \in \omega$ and a unique infinite sequences $(a^{(i)}, a^{(i+1)}, ...)$ such that

- If or any j ≥ i there is exactly one a^(j) in the sequence, such that a^(j) ∈ F_j;
- 2 $a^{(i)}$ has no inverse image with respect to ε_i ;

$$\mathfrak{s}_{kj}(\mathfrak{a}^{(k)}) = \mathfrak{a}^{(j)}$$
 for any $k, j \geq i$:

• for any $a^{(j)}$ in the sequence, the equivalence class of $a^{(j)}$ is a. Vice versa, given a sequence which satisfies the conditions (i)-(iii) above there exists a unique $a \in D$ for which the condition (iv) is

satisfied.

The geometrical intuition Direct limits Snakes

The snakes (cont'd)

Definition

Given any element $a \in D$ we will call the sequence given by the lemma above, the snake of a.

Lemma

For every snake $a = (a^{(i)}, a^{(i+1)}, ...)$, there exists a unique McNaughton function f(x) such that for any $k \ge i$ there exists $p \in q$ such that $a^{(k)} = (f(q))_{q \prec p}$

Lemma

Let $a, b \in D$ and let $(a^{(i)}, a^{(i+1)}, ...)$ and $(b^{(j)}, b^{(j+1)}, ...)$ their respective snakes. If $i \leq j$ then for some I the sub-sequence $(a^{(j+l)} \oplus b^{(j+l)}, a^{(j+l+1)} \oplus b^{(j+l+1)}, ...)$ of $(a_j \oplus b_j, a_{j+1} \oplus b_{j+1}, ...)$ is a snake.

The geometrical intuition Direct limits Snakes

Reconstructing the MV-algebra

Definition

We define the operation \oplus in D as follows: let $a, b \in D$ and let $(a^{(i)}, a^{(i+1)}, a^{(i+2)}, ...)$ and $(b^{(j)}, b^{(j+1)}, b^{(j+2)}...)$ their respective snakes then $a \oplus b$ is defined as the element of D whose snake is inside $(a^{(j)} \oplus b^{(j)}, a^{(j+1)} \oplus b^{(j+1)}, ...)$.

Theorem

The algebra $\langle D, \oplus, \odot, \neg, 0, 1 \rangle$ is isomorphic to the MV-algebra $\langle M, \oplus, \odot, \neg, 0, 1 \rangle$ of all McNaughton function in one variable.

Note that even if we used the symbol \oplus we have not proved that $\langle D, \oplus, \odot, \neg, 0, 1 \rangle$ is an MV-algebra. Indeed the proof of the above theorem directly shows that such a structures is isomorphic to the 1-generated free MV-algebra.

The problems encountered

The 2-generated case

The problems encountered

How to chose f?