The unification type of Łukasiewicz logic is nullary

Based on a joint work with V. Marra

Luca Spada

Department of Mathematics
University of Salerno
http://logica.dmi.unisa.it/lucaspada

Topology, Algebra, and Categories in Logic
Marseilles, 28th July 2011.
Łukasiewicz (infinite-valued propositional) logic is a non-classical system going back to the 1920’s which may be axiomatised using the primitive connectives → (implication) and ¬ (negation)
Łukasiewicz (infinite-valued propositional) logic is a non-classical system going back to the 1920’s which may be axiomatised using the primitive connectives \(\to \) (implication) and \(\neg \) (negation) by the four axiom schemata:

1. \(\alpha \to (\beta \to \alpha) \),
2. \((\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma)) \),
3. \(((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha) \),
4. \((\neg \alpha \to \neg \beta) \to (\beta \to \alpha) \),

with *modus ponens* as the only deduction rule.
Łukasiewicz logic is a subsystem of classical logic and has a many-valued semantics: assignments μ to atomic formulæ range in the unit interval $[0, 1] \subseteq \mathbb{R}$.
Łukasiewicz logic is a subsystem of classical logic and has a many-valued semantics: assignments μ to atomic formulæ range in the unit interval $[0, 1] \subseteq \mathbb{R}$. They are extended compositionally to compound formulæ via

\[
\begin{align*}
\mu(\neg \alpha) &= 1 - \mu(\alpha), \\
\mu(\alpha \rightarrow \beta) &= \min \{1, 1 - \mu(\alpha) + \mu(\beta)\}
\end{align*}
\]
Łukasiewicz logic is a subsystem of classical logic and has a many-valued semantics: assignments μ to atomic formulæ range in the unit interval $[0, 1] \subseteq \mathbb{R}$. They are extended compositionally to compound formulæ via

\[
\begin{align*}
\mu(\neg \alpha) &= 1 - \mu(\alpha), \\
\mu(\alpha \rightarrow \beta) &= \min \{1, 1 - \mu(\alpha) + \mu(\beta)\}
\end{align*}
\]

Tautologies are defined as those formulæ that evaluate to 1 under every such assignment.
Chang first considered the Tarski-Lindenbaum algebras of Łukasiewicz logic, and called them MV-algebras.

Definition

An MV-algebra is a structure $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ such that:
Chang first considered the Tarski-Lindenbaum algebras of Łukasiewicz logic, and called them **MV-algebras**.

Definition

An MV-algebra is a structure $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ such that:

- $\mathcal{A} = \langle A, \oplus, 0 \rangle$ is a commutative monoid,
Chang first considered the Tarski-Lindenbaum algebras of Łukasiewicz logic, and called them MV-algebras.

Definition

An MV-algebra is a structure $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ such that:

- $\mathcal{A} = \langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $*$ is an involution
Chang first considered the Tarski-Lindenbaum algebras of Łukasiewicz logic, and called them MV-algebras.

Definition

An MV-algebra is a structure $\mathcal{A} = \langle A, \oplus, *, 0 \rangle$ such that:

- $\mathcal{A} = \langle A, \oplus, 0 \rangle$ is a commutative monoid,
- $*$ is an involution
- the interaction between those two operations is described by the following two axioms:
Chang first considered the Tarski-Lindenbaum algebras of Łukasiewicz logic, and called them MV-algebras.

Definition

An MV-algebra is a structure \(A = \langle A, \oplus, *, 0 \rangle \) such that:

- \(A = \langle A, \oplus, 0 \rangle \) is a commutative monoid,
- \(* \) is an involution
- the interaction between those two operations is described by the following two axioms:
 - \(x \oplus 0^* = 0^* \)
 - \((x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x \)
Example 1: The standard MV-algebra

In modern terms one says that MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.
Example 1: The standard MV-algebra

In modern terms one says that MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.

Example

Consider the set of real number $[0, 1]$ endowed with the following operation:

- $\neg x = 1 - x$ and $x \oplus y = \min\{1, x + y\}$ (truncated sum).

Then $\langle [0, 1], \oplus, \neg, 0 \rangle$ is an MV-algebra.
Example 1: The standard MV-algebra

In modern terms one says that MV-algebras are the equivalent algebraic semantics of Łukasiewicz logic.

Example

Consider the set of real number $[0, 1]$ endowed with the following operation:

$$\neg x = 1 - x \text{ and } x \oplus y = \min\{1, x + y\} \text{ (truncated sum)}.$$

Then $\langle [0, 1], \oplus, \neg, 0 \rangle$ is an MV-algebra.

Actually the above algebra generates the variety of all MV-algebras. So the equations that hold for any MV-algebra are exactly the ones that hold in $[0, 1]$.

Example 2: McNaughton functions

A McNaughton function is a function

\[f: [0, 1]^n \rightarrow [0, 1] \]

which is
Example 2: McNaughton functions

A McNaughton function is a function

\[f: [0, 1]^n \to [0, 1] \]

which is continuous, piece-wise linear, and with integer coefficients.
Example 2: McNaughton functions

A McNaughton function is a function

\[f: [0, 1]^n \rightarrow [0, 1] \]

which is continuous, piece-wise linear, and with integer coefficients.

Example:
Example 2: McNaughton functions

A McNaughton function is a function

\[f: [0, 1]^n \rightarrow [0, 1] \]

which is

- continuous,
- piece-wise linear,
- and with integer coefficients.

Example:
The free MV-algebra

Example

One can endow the set of McNaughton functions in n variables with the structure of an MV-algebra by taking point-wise operation:

$$f \oplus g = (f \oplus g)(x) = f(x) \oplus g(x) \text{ (recall that } [0,1] \text{ is an MV-algebra)}$$
The free MV-algebra

Example

One can endow the set of McNaughton functions in \(n \) variables with the structure of an MV-algebra by taking point-wise operation:

\[
 f \oplus g = (f \oplus g)(x) = f(x) \oplus g(x) \quad \text{(recall that \([0,1]\) is an MV-algebra)}
\]

These functions are named after McNaughton, who first found the following characterisation of free MV-algebras:
The free MV-algebra

Example

One can endow the set of McNaughton functions in \(n \) variables with the structure of an MV-algebra by taking point-wise operation:

\[
f \oplus g = (f \oplus g)(x) = f(x) \oplus g(x) \quad \text{(recall that } [0,1] \text{ is an MV-algebra)}\
\]

These functions are named after McNaughton, who first found the following characterisation of free MV-algebras:

Theorem (McNaughton 1951)

The free MV-algebra over \(\kappa \) generators is isomorphic to the MV-algebra of McNaughton functions over \([0,1]^\kappa \).
Example 3: lattice ordered groups

A \textit{ul-group} is a lattice-ordered group G with an element g such that

for any $g' \in G$ there exists $n \in \mathbb{N}$ such that $g + \ldots + g \geq g'$.

\textit{ul-groups}

\textit{MV-algebras}

\textit{Łukasiewicz logic}

\textit{MV-algebras}

\textit{McNaughton functions}

\textit{u\ell\textit{-groups}}

\textit{Related unification problems}

\textit{Rational polyhedra}

\textit{Main result}
Example 3: lattice ordered groups

A \textit{ul-group} is a lattice-ordered group G with an element g such that

for any $g' \in G$ there exists $n \in \mathbb{N}$ such that $\underbrace{g + \ldots + g}_{\text{n-times}} \geq g'$.

If one truncates the operations of an \textit{ul}-group to the interval $[0, g]$, the result is an MV-algebra.

\[\text{Theorem (Mundici 1986)}\]

The category of MV-algebras is equivalent to the category of Abelian \textit{ul}-groups (with \textit{ul}-morphisms preserving the strong unit).
Example 3: lattice ordered groups

A *ul*-group is a lattice-ordered group G with an element g such that

for any $g' \in G$ there exists $n \in \mathbb{N}$ such that $g + \ldots + g \geq g'$.

If one truncates the operations of an *ul*-group to the interval $[0, g]$, the result is an MV-algebra.

Theorem (Mundici 1986)

The category of MV-algebras is equivalent to the category of Abelian *ul*-groups (with *l*-morphisms preserving the strong unit).
Unitarity of finite-valued Łukasiewicz logic

Ghilardi himself noticed that finite-valued Łukasiewicz logic has unitary type.

Finite-valued logics are obtained by restricting the possible values of evaluations to some subchain \(\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\} \) of the \([0,1]\) algebra.
Ghilardi himself noticed that finite-valued Łukasiewicz logic has unitary type. This was re-proved explicitly and generalised to any finite-valued extension of Basic Logic by Dzik.

Finite-valued logics are obtained by restricting the possible values of evaluations to some subchain \(\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\}\) of the [0,1] algebra.
The unification type of Łukasiewicz logic is nullary.

Luca Spada

MV-algebras
Łukasiewicz logic
MV-algebras
McNaughton functions
ℓl-groups
Related unification problems
Rational polyhedra
Main result

Commutative lattice-ordered groups (ℓ-groups)

Theorem (Beynon 1977)

Finitely generated projective ℓ-groups are exactly the finitely presented ℓ-groups.
Commutative lattice-ordered groups (ℓ-groups)

Theorem (Beynon 1977)

Finitely generated projective ℓ-groups are exactly the finitely presented ℓ-groups.

In the theory of ℓ-groups all system of equations are solvable. In the light of the Beynon’s and Ghilardi’s results, one easily gets:

Corollary

The unification type of the theory of ℓ-groups is unitary.
Commutative lattice-ordered groups (\(\ell\)-groups)

Theorem (Beynon 1977)

Finitely generated projective \(\ell\)-groups are exactly the finitely presented \(\ell\)-groups.

In the theory of \(\ell\)-groups all system of equations are solvable. In the light of the Beynon’s and Ghilardi’s results, one easily gets:

Corollary

The unification type of the theory of \(\ell\)-groups is unitary.

In a forthcoming paper with V. Marra, we exploit a geometrical duality for \(\ell\)-groups to give an algorithm that, taken any (system of) term in the language of \(\ell\)-groups, outputs its most general unifier.
Łukasiewicz logic has a weak disjunction property. Namely:

\[\varphi \lor \neg \varphi \text{ is derivable then either } \varphi \text{ or } \neg \varphi \text{ must be derivable.} \]

(In other words the rule \(\frac{\varphi \lor \neg \varphi}{\varphi, \neg \varphi} \) is admissible.)
Non unitarity of the unification

Łukasiewicz logic has a weak disjunction property. Namely:

If \(\varphi \lor \neg \varphi \) is derivable then either \(\varphi \) or \(\neg \varphi \) must be derivable.

(In other words the rule \(\frac{\varphi \lor \neg \varphi}{\varphi, \neg \varphi} \) is admissible.)

(Exercise: prove this by using McNaughton representation)

This entails the unification type of Łukasiewicz logic to be at least not unitary.
Non unitarity of the unification

Łukasiewicz logic has a weak disjunction property. Namely:

if $\varphi \lor \neg \varphi$ is derivable then either φ or $\neg \varphi$ must be derivable.

(In other words the rule $\frac{\varphi \lor \neg \varphi}{\varphi, \neg \varphi}$ is admissible.)

(Exercise: prove this by using McNaughton representation)

This entails the unification type of Łukasiewicz logic to be at least not unitary.

Indeed if σ is a unifier for $x \lor \neg x$, then it must unify either x (hence it is the substitution $x \mapsto 1$) or $\neg x$ (hence it must be the substitution $x \mapsto 0$).
Rational polyhedral geometry

McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.
McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.

Definition

A *rational polytope* is the convex hull of a finite set of *rational* points.
McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.

Definition

A rational polytope is the convex hull of a finite set of rational points.

\[\frac{n}{m} \]
McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.

Definition

A **rational polytope** is the convex hull of a finite set of **rational** points.
McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.

Definition

A rational polytope is the convex hull of a finite set of rational points.
McNaughton functions are only a first scratch on the surface of a stronger link between Łukasiewicz logic and Geometry.

Definition

A rational polytope is the convex hull of a finite set of rational points.
Rational polyhedral geometry [Cont.d]

Definition

A *rational polyhedron* is the union of a finite number of rational polytopes.
Rational polyhedral geometry [Cont.d]

Definition

A **rational polyhedron** is the union of a finite number of rational polytopes.
Rational polyhedral geometry [Cont.d]

Definition

A **rational polyhedron** is the union of a finite number of rational polytopes.
Rational polyhedral geometry [Cont.d]

Definition

A rational polyhedron is the union of a finite number of rational polytopes.
A **rational polyhedron** is the union of a finite number of rational polytopes.
Another way of looking at the McNaughton theorem is as a characterisation of definable functions in the language of MV-algebras.
Another way of looking at the McNaughton theorem is as a characterisation of definable functions in the language of MV-algebras. The only difference here being the fact that we can operate from the m-dimensional \mathbb{R}^m spaces to the n-dimensional \mathbb{R}^n spaces.

Z-maps
Another way of looking at the McNaughton theorem is as a characterisation of definable functions in the language of MV-algebras. The only difference here being the fact that we can operate from the \(m \)-dimensional \(\mathbb{R}^m \) spaces to the \(n \)-dimensional \(\mathbb{R}^n \) spaces.

Definition

A Z-map is a continuous piecewise linear function with integer coefficients.
Rational polyhedra and MV-algebras

Let \mathcal{MV}_{fp} be the category of f.p. MV-algebras with their homomorphisms.
Rational polyhedra and MV-algebras

Let \mathcal{MV}_{fp} be the category of f.p. MV-algebras with their homomorphisms.

Let $\mathcal{P}_\mathbb{Z}$ be the category of rational polyhedra and \mathbb{Z}-maps between them.
Rational polyhedra and MV-algebras

Let \mathcal{MV}_{fp} be the category of f.p. MV-algebras with their homomorphisms.

Let $\mathcal{P}_\mathbb{Z}$ be the category of rational polyhedra and \mathbb{Z}-maps between them.

I will define a pair of (contravariant) functors:

$$\mathcal{V} : \mathcal{MV}_{fp} \to \mathcal{P}_\mathbb{Z} \quad \text{and} \quad \mathcal{I} : \mathcal{P}_\mathbb{Z} \to \mathcal{MV}_{fp}.$$
Rational polyhedra and MV-algebras

Let \mathcal{MV}_{fp} be the category of f.p. MV-algebras with their homomorphisms.

Let $\mathcal{P}_\mathbb{Z}$ be the category of rational polyhedra and \mathbb{Z}-maps between them.

I will define a pair of (contravariant) functors:

$$\mathcal{V}: \mathcal{MV}_{fp} \to \mathcal{P}_\mathbb{Z} \quad \text{and} \quad \mathcal{I}: \mathcal{P}_\mathbb{Z} \to \mathcal{MV}_{fp}.$$

These functors operate very similarly to the classical ones in algebraic geometry that associate ideals with varieties.
F.p. MV-algebras and rational polyhedra: objects

Let $A = \frac{\text{Free}_n}{\theta} \in \mathcal{M}V_{fp}$.
Let \(A = \frac{\text{Free}_n}{\theta} \in \mathcal{MV}_{fp} \).

Let \(\mathcal{V}(\theta) \) be the collection of all real points \(p \) in \([0, 1]^n\) such that

\[s(p) = t(p) \text{ for all } (s, t) \in \theta \]
F.p. MV-algebras and rational polyhedra: objects

Let $A = \frac{\text{Free}_n}{\theta} \in \mathcal{MV}_{fp}$.

Let $\mathcal{V}(\theta)$ be the collection of all real points p in $[0, 1]^n$ such that $s(p) = t(p)$ for all $(s, t) \in \theta$.

The set $\mathcal{V}(\theta)$ is a rational polyhedron, so we set

$$\mathcal{V}(A) = \mathcal{V}(\theta).$$
F.p. MV-algebras and rational polyhedra: objects

Let $P \in \mathcal{P}_\mathbb{Z}$.
Let $P \in \mathcal{P}_\mathbb{Z}$.

Let $I(P)$ be the collection of all pair MV-terms (s, t) such that

$$s(x) = t(x) \text{ for all } x \in P$$
Let $P \in \mathcal{P}_{\mathbb{Z}}$.

Let $\mathcal{I}(P)$ be the collection of all pair MV-terms (s, t) such that

$$s(x) = t(x) \text{ for all } x \in P$$

$\mathcal{I}(P)$ is a congruence of the free MV-algebras on n generators, so it makes sense to set

$$\mathcal{I}(P) = \frac{\text{Free}_n}{\mathcal{I}(P)}.$$
F.p. MV-algebras and rational polyhedra: arrows

Let $h: A \to B$ be a diagram in \mathcal{MV}_{fp}.

Suppose that h sends the generators of A into the elements $\{t_i\}_{i \in I}$ of B, then define

$$\mathcal{V}(h): \mathcal{V}(B) \to \mathcal{V}(A)$$
Let \(h: A \to B \) be a diagram in \(\mathcal{MV}_{fp} \).

Suppose that \(h \) sends the generators of \(A \) into the elements \(\{ t_i \}_{i \in I} \) of \(B \), then define

\[
\mathcal{V}(h): \mathcal{V}(B) \to \mathcal{V}(A)
\]

as

\[
p \in \mathcal{V}(A) \xrightarrow{\mathcal{V}(h)} \langle t_i(p) \rangle_{i \in I} \in \mathcal{V}(A).
\]
Let $h: A \rightarrow B$ be a diagram in \mathcal{MV}_{fp}.

Suppose that h sends the generators of A into the elements \{t_i\}_{i \in I}$ of B, then define

$$\mathcal{V}(h): \mathcal{V}(B) \rightarrow \mathcal{V}(A)$$

as

$$p \in \mathcal{V}(A) \mapsto \langle t_i(p) \rangle_{i \in I} \in \mathcal{V}(A).$$

Then, the function $\mathcal{V}(h): \mathcal{V}(B) \rightarrow \mathcal{V}(A)$ is a \mathbb{Z}-map.
Let $\zeta : P \to Q$ be a diagram in $\mathcal{P}_\mathbb{Z}$.

Define

$$\mathcal{I}(\zeta) : \mathcal{I}(Q) \to \mathcal{I}(P)$$
Let $\zeta: P \rightarrow Q$ be a diagram in $\mathcal{P}_\mathbb{Z}$.

Define

$$\mathcal{I}(\zeta): \mathcal{I}(Q) \rightarrow \mathcal{I}(P)$$

as

$$f \in \mathcal{I}(Q) \xrightarrow{\mathcal{I}(\zeta)} f \circ \zeta \in \mathcal{I}(P).$$
Let $\zeta: P \to Q$ be a diagram in $\mathcal{P}_\mathbb{Z}$.

Define

$$I(\zeta): I(Q) \to I(P)$$

as

$$f \in I(Q) \xrightarrow{I(\zeta)} f \circ \zeta \in I(P).$$

Then, the function $I(\zeta)$ is a homomorphism of MV-algebras.
Duality for finitely presented MV-algebras

Theorem (Folklore)

The pair of functors

\[I : \mathcal{M}V_{fp} \to \mathcal{P}_\mathbb{Z} \quad \text{and} \quad \mathcal{V} : \mathcal{P}_\mathbb{Z} \to \mathcal{M}V_{fp}. \]

constitutes a contravariant equivalence between the two categories.
Corollaries

As a corollaries of the above duality one immediately gets

Corollary

The rational polyhedron associated to the free algebra over \(n \) generators is the \(n \)-dimensional cube \([0, 1]^n\).
Corollaries

As a corollaries of the above duality one immediately gets

Corollary

The rational polyhedron associated to the free algebra over \(n \) generators is the *n*-dimensional cube \([0, 1]^n\).

Corollary

The rational polyhedron associated to any \(n \)-generated projective MV-algebra is a retraction of the \(n \)-dimensional cube \([0, 1]^n\).
As a corollary of the above duality one immediately gets

Corollary

The rational polyhedron associated to the free algebra over n generators is the n-dimensional cube $[0, 1]^n$.

Corollary

The rational polyhedron associated to any n-generated projective MV-algebra is a retraction of the n-dimensional cube $[0, 1]^n$.
Corollaries [Con.d]

Corollary

The fundamental group of any injective rational polyhedra is trivial.
Corollaries [Con.d]

Corollary

The fundamental group of any injective rational polyhedra is trivial.

Proof.

Let \(P \) an injective rational polyhedron corresponding to a \(n \)-generated MV-algebra, then

\[
\pi_1(P) \rightarrow \{ \pi_1([0, 1]^n) \} \rightarrow \pi_1(P)
\]
Corollaries [Con.d]

Corollary

The fundamental group of any injective rational polyhedra is trivial.

Proof.

Let P an injective rational polyhedron corresponding to a n-generated MV-algebra, then

\[\pi_1(P) \xrightarrow{} \{\pi_1([0, 1]^n)\} \xrightarrow{} \pi_1(P) \]

\[\text{id} \]
Corollary

The fundamental group of any injective rational polyhedra is trivial.

Proof.

Let \(P \) an injective rational polyhedron corresponding to a \(n \)-generated MV-algebra, then

\[
\begin{align*}
\pi_1(P) & \xrightarrow{\ast} \{\pi_1([0, 1]^n)\} \xrightarrow{\{\id\}} \pi_1(P) \\
\end{align*}
\]
Co-unification

Since Ghilardi’s approach is purely categorical one can speak of co-unification to refer to the dual problem in the dual category.
Since Ghilardi’s approach is purely categorical one can speak of \textbf{co-unification} to refer to the dual problem in the dual category. As we have seen that rational polyhedra are equivalent to the dual category of finitely presented MV-algebras, it makes sense to define:
Since Ghilardi’s approach is purely categorical one can speak of co-unification to refer to the dual problem in the dual category. As we have seen that rational polyhedra are equivalent to the dual category of finitely presented MV-algebras, it makes sense to define:

- A co-unification problem as a rational polyedron Q.

Co-unification

Since Ghilardi’s approach is purely categorical one can speak of co-unification to refer to the dual problem in the dual category.

As we have seen that rational polyhedra are equivalent to the dual category of finitely presented MV-algebras, it makes sense to define:

- A co-unification problem as a rational polyedron Q.
- An co-unifier for the problem Q as a pair (P, u) where
 1. P is an injective rational polyhedron,
 2. u is a \mathbb{Z}-map from P to Q, $u : P \rightarrow Q$.

Finitarity result

Proposition

The unification type of the 1-variable fragment of Łukasiewicz logic is *finitary*.
The unification type of Łukasiewicz logic is nullary.

Luca Spada

MV-algebras

Rational polyhedra

Main result

Prologue

Statement

A sequence of unifiers

A crucial lemma

Finitarity result

Proposition

The unification type of the 1-variable fragment of Łukasiewicz logic is **finitary**.

In particular the proof shows that there are at most **two** most general unifiers, for any given formula.
The unification type of Łukasiewicz logic is nullary.

Proposition

The unification type of the 1-variable fragment of Łukasiewicz logic is **finitary**.

In particular the proof shows that there are at most two most general unifiers, for any given formula. Indeed the most general form of a co-unification problem is

\[0 \rightarrow A \rightarrow B \rightarrow 1 \]

With \(A \) or \(B \) possibly empty or restricted to a point.
From 1-variable to the full calculus

The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:
From 1-variable to the full calculus

The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:

\[A \quad \quad B \]
\[0 \quad 1 \]
From 1-variable to the full calculus

The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:

\[x \lor x^* \]

\[
\begin{array}{cc}
0 & 1 \\
\end{array}
\]
From 1-variable to the full calculus

The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:

\[x \vee x^* \]

0 1

\[x \vee x^* \vee y \vee y^* \]
The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:
The reason of the absence of a good unification theory for Łukasiewicz logic has to be found in the following geometrical phenomenon:
The full Łukasiewicz logic has \textit{nullary} unification type.
The unification type of Łukasiewicz logic is nullary.

Main result

Statement

A sequence of unifiers

A crucial lemma

Proof. It is sufficient to exhibit one problem with nullary type.
Nullarity of Łukasiewicz logic

Theorem

The full Łukasiewicz logic has nullary unification type.

Proof. It is sufficient to exhibit one problem with nullary type. As seen above the co-unification problem associated to

\[(x \lor x^* \lor y \lor y^*, 1)\]

is the rational polyhedron

\[A\]
Step 1.

Consider the following sequence of pair of maps and rational polyhedra,

\[
\begin{align*}
&\gamma_1 & \gamma_2 & \gamma_3 & \cdots \\
&\zeta_1 & \zeta_2 & \zeta_3 & \\
\end{align*}
\]

It can be proved (cfr. Cabrer and Mundici) that each \(\gamma_i\) is a retract of \([0; 1]_n\) for some \(n\), so the pairs \((\gamma_i; \zeta_i)\) are co-unifiers for \(A\).
Proof Cont.'d

Step 1.

Consider the following sequence of pair of maps and rational polyhedra,

It can be proved (cfr. Cabrer and Mundici) that each t_i is a retract of $[0, 1]^n$ for some n.
Proof Cont.'d

Step 1.

Consider the following sequence of pair of maps and rational polyhedra,

\begin{align*}
&\zeta_1 \downarrow \\
&\zeta_2 \downarrow \\
&\zeta_3 \downarrow \\
&\zeta_4 \downarrow \\
&\zeta_5 \downarrow \\
&\zeta_6 \downarrow \\
&\zeta_7 \downarrow \\
&\zeta_8 \downarrow \\
\end{align*}

It can be proved (cfr. Cabrer and Mundici) that each \(t_i \) is a retract of \([0, 1]^n\) for some \(n \), so the pairs \((t_i, \zeta_i)\) are co-unifiers for \(A \).
Step 2.
The sequence is increasing,
Step 2.

The sequence is increasing, i.e. for any $i < j$, there exists ι_{ij} such that the following diagram commutes.

![Diagram](image-url)
Step 2.

The sequence is increasing, i.e. for any $i < j$, there exists ι_{ij} such that the following diagram commutes.

Indeed ι_{ij} is just the embedding of t_i in t_j
Step 3: The lifting of **definable** functions.

Proof Cont.'d
Step 3: The lifting of definable functions.

For any co-unifier \((u, P)\) of \(A\),

\[
\begin{array}{c}
A \xymatrix{ & \text{u} & P \ar[l]}
\end{array}
\]
Proof Cont.'d

Step 3: The lifting of defirable functions.

For any co-unifier \((u, P)\) of \(A\), there exists some \(t_i\):

\[
\begin{array}{c}
\chi_i \\
\downarrow \\
A \\
\end{array}
\xleftarrow{u} \begin{array}{c}
\chi \\
P
\end{array}
\xrightarrow{u} \begin{array}{c}
\chi_i \\
\downarrow \\
A \\
\end{array}
\xleftarrow{t_i}
\]
Step 3: The lifting of definable functions.

For any co-unifier \((u, P)\) of \(A\), there exists some \(t_i\) and an arrow \(\tilde{u}\) (called the lift of \(u\)) making the following diagram commute.

\[
\begin{array}{c}
A \\
\downarrow \zeta_i \\
\tilde{u} \\
\downarrow \approx u \\
P
\end{array}
\]
The above lemma is the piecewise linear version of the “Lifting of functions” Lemma, widely used in algebraic topology.
The above lemma is the piecewise linear version of the “Lifting of functions” Lemma, widely used in algebraic topology.

The crucial fact here is that we can always factorize through a finite portion of the piece-wise linear cover.
The above lemma is the piecewise linear version of the "Lifting of functions" Lemma, widely used in algebraic topology.

The crucial fact here is that we can always factorize through a finite portion of the piece-wise linear cover.

As a matter of fact, for general reasons when such a map exists is unique up to translations. So the fact that in our setting such a map is actually a \mathbb{Z}-map is a quite pleasant discovery.
Considerations

The above lemma is the piecewise linear version of the "Lifting of functions" Lemma, widely used in algebraic topology.

The crucial fact here is that we can always factorize through a finite portion of the piece-wise linear cover.

As a matter of fact, for general reasons when such a map exists is unique up to translations. So the fact that in our setting such a map is actually a \mathbb{Z}-map is a quite pleasant discovery.

The Definable Lifting Lemma has two important corollaries.
Proof Cont.'d

Step 4: Corollary 1.

Given any co-unifier \((P, u)\) for \(A\), there exists a co-unifier \((t_i, \zeta_i)\) in the above sequence such that \((P, u)\) is less general than \((t_i, \zeta_i)\).

(The sequence is cofinal in the poset of co-unifiers.)
Proof Cont.'d

Step 4: Corollary 1.

Given any co-unifier \((P, u)\) for \(A\), there exists a co-unifier \((t_i, \zeta_i)\) in the above sequence such that \((P, u)\) is less general than \((t_i, \zeta_i)\).

(The sequence is *cofinal* in the poset of co-unifiers.)

A **lattice point** is a vector with integer coordinates.

Step 5: Corollary 2.

If \((P, u)\) is a co-unifier for \(A\) with **strictly fewer lattice points** than \(t_i\),
Proof Cont'd

Step 4: Corollary 1.
Given any co-unifier \((P, u)\) for \(A\), there exists a co-unifier \((t_i, \zeta_i)\) in the above sequence such that \((P, u)\) is less general than \((t_i, \zeta_i)\).
(The sequence is \textit{cofinal} in the poset of co-unifiers.)

A lattice point is a vector with integer coordinates.

Step 5: Corollary 2.
If \((P, u)\) is a co-unifier for \(A\) with \textit{strictly fewer} lattice points than \(t_i\), then there is no arrow \(v: t_i \rightarrow P\) making the following diagram commute.

\[
\begin{array}{ccc}
A & \xrightarrow{u} & P \\
\downarrow{v} & & \downarrow{v} \\
\zeta_i & \xleftarrow{t_i} & \end{array}
\]
Step 6.

As a consequence of the last corollary we obtain:

1. The sequence of t_i is strict; i.e., t_i is not more general than t_j if $i < j$.
2. The sequence admits no bound with a finite number of lattice elements. Therefore, no rational polyhedra can bound the sequence of t_i.
Step 6.

As a consequence of the last corollary we obtain:

1. The sequence of \(t_i \) is strict; i.e. \(t_i \) is not more general than \(t_j \) if \(i < j \).
Proof Cont.'d

Step 6.

As a consequence of the last corollary we obtain:

1. The sequence of t_i is strict; i.e. t_i is not more general than t_j if $i < j$.
2. The sequence admits no bound with a finite number of lattice elements. Therefore, no rational polyhedra can bound the sequence of t_i.
End of the Proof

Conclusion

Summing up, we have found a strictly linearly ordered, cofinal sequence of unifiers for A. Furthermore, the sequence is unbounded, hence the co-unification type of rational polyhedra is nullary (in a stronger sense). This proves that the Łukasiewicz calculus (as well as the theory of MV-algebras and ℓ-groups with strong unit) has nullary unification type.
End of the Proof

Conclusion
Summing up, we have found a strictly linearly ordered, cofinal sequence of unifiers for A. Furthermore the sequence is unbounded, hence the co-unification type of rational polyhedra is nullary (in a stronger sense).
End of the Proof

Conclusion

Summing up, we have found a strictly linearly ordered, cofinal sequence of unifiers for A. Furthermore the sequence is unbounded, hence the co-unification type of rational polyhedra is nullary (in a stronger sense).

This proves that the Łukasiewicz calculus (as well as the theory of MV-algebras and ℓ-groups with strong unit) has nullary unification type.
References

WM Beynon.
Duality theorems for finitely generated vector lattices.

W.M. Beynon.
Applications of duality in the theory of finitely generated lattice-ordered abelian groups.

L. Cabrer and D. Mundici.
Rational polyhedra and projective lattice-ordered abelian groups with order unit.

W. Dzik.
Unification in some substructural logics of BL-algebras and hoops.

S. Ghilardi.
Unification through projectivity.

V. Marra, L. Spada.
Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras.
Submitted.

V. Marra, L. Spada.
The dual adjunction between MV-algebras and Tychonoff spaces.
Submitted.

V. Marra, L. Spada.
Solving equations in Abelian ℓ-groups.
In preparation.