Continuous approximations of MV-algebras with product and product residuation

F. Montagna, L. Spada
Dipartimento di Matematica
Via del Capitano 15
53100 Siena (Italy)
email: \{montagna, spada\}@unisi.it

Abstract

Recently, $M V$-algebras with product have been investigated from different points of view. In particular, in [EGM01], a variety resulting from the combination of $M V$-algebras and product algebras (see [H98]) has been introduced. The elements of this variety are called $Ł \Pi$-algebras. Even though the language of $£ \Pi$-algebras is strong enough to describe the main properties of product and of Lukasiewicz connectives on $[0,1]$, the discontinuity of product implication introduces some problems in the applications, because a small error in the data may cause a relevant error in the output. In this paper we try to overcome this difficulty, substituting the product implication by a continuous approximation of it. The resulting algebras, the $£ \Pi_{q}$-algebras, are investigated in the present paper. In this paper we give a complete axiomatization of the quasivariety obtained in this way, and we show that such quasivariety is generated by the class of all $\mathrm{L} \Pi_{q}$-algebras whose lattice reduct is the unit interval $[0,1]$ with the usual order.

MSC: 03B50, 06D35
Keywords: $M V$-algebras, $\lfloor\Pi$-algebras.

1 Introduction

$M V$-algebras with product have been widely investigated by many authors, [DND01], [Mo00], [EGM01], [M01] and [MP02] and with many motivations, arising from algebra, algebraic geometry and from the theory of many-valued control. While an axiomatization of the variety of MV-algebras with product generated by $[0,1]$ with the Lukasiewicz operators and with product seems to be very problematic, the presence of product residuation simplifies the situation. Consider the structure $[0,1]_{\mathrm{E}_{\Pi}}=\left\langle[0,1], \oplus, \neg, \cdot, \rightarrow_{\pi}, 0,1\right\rangle$, where \cdot denotes ordinary product, and the remaining operations are defined as follows:

$$
x \oplus y=\min \{x+y, 1\}, \quad \neg x=1-x, \quad x \rightarrow_{\pi} y= \begin{cases}\frac{y}{x} & \text { if } x>y \\ 1 & \text { otherwise }\end{cases}
$$

Then $[0,1]_{\text {Łп }}$ generates a variety which can be axiomatized by a finite number of equations. The members of such variety, called $\lfloor\Pi$-algebras have been deeply investigated, [Mo00], [EGM01], [M01] and [MP01].

A negative counterpart for the expressiveness of the language of $£ \Pi$-algebras is the loss of continuity of the truth functions of formulas, due to the fact that the truth function of \rightarrow_{π} is not continuous in $(0,0)$; this may cause problems when using $£ \Pi$ in the treatment of approximate data, because a small error in the data may cause relevant errors in the output.
These observations constitute the main motivation for an investigation of a class of algebras in which the discontinuous product implication is replaced by a continuous approximation of it. The idea is the following: we fix a positive number q (the intuition is that q is greater than 0 but very close to 0), and we replace product implication \rightarrow_{π} by the operation \rightarrow_{q} defined by $x \rightarrow_{q} y=$ $(x \vee q) \rightarrow_{\pi} y$. Note that \rightarrow_{q} defined in this way is continuous.

The present paper is devoted to an investigation of the general properties of $\mathrm{E} \Pi_{q}$-algebras. These algebras are introduced in Section 3. In this section we prove some general properties of these structures. For example, $£ \Pi_{q}$-algebras constitute a quasivariety, but not a variety. Moreover, every $£ \Pi_{q}$-algebra is isomorphic to a subdirect product of a family of linearly ordered $\mathrm{E} \Pi_{q}$-algebras, and is a subalgebra of a $£ \Pi_{q}$ algebra obtained from a $£ \Pi$-algebra letting $x \rightarrow_{q}$ $y=(x \vee q) \rightarrow_{\pi} y$, where q denotes a suitably chosen constant. Finally, in Section 4 we prove that the class of $\mathrm{L} \Pi_{q}$-algebras is generated as a quasivariety by the class of all $\mathrm{L} \Pi_{q}$-algebras whose lattice reduct is $[0,1]$ with the usual order.

2 Preliminaries

Definition 2.1 (see e.g. [BF00]). A hoop is an algebra $\langle H, \star, \rightarrow, 1\rangle$ such that $\langle H, \star, 1\rangle$ is a commutative monoid, and \rightarrow is a binary operation such that the following identities hold:

$$
x \rightarrow x=1, \quad x \rightarrow(y \rightarrow z)=(x \star y) \rightarrow z \quad \text { and } \quad x \star(x \rightarrow y)=y \star(y \rightarrow x) .
$$

A Wajsberg hoop is a hoop satisfying the identity $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$. A bounded hoop is a hoop equipped with a constant 0 such that $0 \rightarrow x=1$.
A Wajsberg algebra is a bounded Wajsberg hoop.
The monoid operation of a Wajsberg algebra is usually denoted by \odot. In the sequel, given a Wajsberg algebra, we write $\neg x$ for $x \rightarrow 0, x \oplus y$ for $\neg x \rightarrow y, x \wedge y$ for $x \odot(x \rightarrow y), x \vee y$ for $(x \rightarrow y) \rightarrow y$, and $x \leq y$ for $x \rightarrow y=1$. Note that \leq is a distributive lattice order, and \vee and \wedge are the corresponding operations of join and meet. We inductively define $(n) x$ and $x^{(n)}$ by:

$$
(0) x=0, \quad(n+1) x=(n) x \oplus x, \quad x^{(0)}=1, \quad x^{(n+1)}=x^{(n)} \odot x .
$$

Wajsberg algebras constitute a variety generated by $[0,1]_{W}=\langle[0,1], \odot, \rightarrow, 0,1\rangle$. If $\langle A, \odot, \rightarrow, 0,1\rangle$ is a Wajsberg algebra, then the structure $\langle A, \oplus, \neg, 0,1\rangle$ is called a $M V$-algebra. Every Wajsberg algebra is termwise equivalent to a $M V$-algebra ([H98]). Thus we will often identify a Wajsberg algebra and the corresponding $M V$-algebra.

In attempting to axiomatize the class of $£ \Pi$-algebras, in [Mo00] the concept of PMV-algebra has been introduced.

Definition 2.2 A PMV-algebra is an algebra $\mathcal{A}=\langle A, \oplus, \neg, \cdot, 0,1\rangle$ such that:
$\langle A, \oplus, \neg, 0,1\rangle$ is a MV-algebra.
$\langle A, \cdot, 1\rangle$ is a commutative monoid.
For all $x, y, z \in \mathcal{A}$ one has: $x \cdot(y \ominus z)=(x \cdot y) \ominus(x \cdot z)$, where $x \ominus y=$ $\neg(\neg x \oplus y)$.

A $£ \Pi$-algebra is an algebra $\mathcal{A}=\left\langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0,1\right\rangle$ such that $\langle A, \oplus, \neg, \cdot, 0,1\rangle$ is a PMV-algebra, $\left\langle A, \cdot, \rightarrow_{\pi}, 0,1\right\rangle$ is a bounded hoop, and letting $\neg_{\pi} x=x \rightarrow_{\pi} 0$ and $\Delta(x)=\neg \pi \neg x$, the following equations hold:

$$
\begin{aligned}
& x \rightarrow_{\pi} y \leq x \rightarrow y . \\
& x \wedge \neg_{\pi} x=0 \\
& \Delta(x) \odot \Delta(x \rightarrow y) \leq \Delta(y) \\
& \Delta(x) \leq x \\
& \Delta(\Delta(x))=\Delta(x) \\
& \Delta(x \vee y)=\Delta(x) \vee \Delta(y) \\
& \Delta(x) \vee \neg \Delta(x)=1 \\
& \Delta(x \rightarrow y) \leq x \rightarrow_{\pi} y .
\end{aligned}
$$

A $£ \Pi \frac{1}{2}$-algebra is a $£ \Pi$-algebra with an additional constant $\frac{1}{2}$ satisfying $\frac{1}{2}=\neg \frac{1}{2}$.
Notation. In the sequel we will omit the symbol • when there is no danger of confusion. Moreover we inductively define x^{n} by $x^{0}=1, x^{n+1}=x^{n} x$.

In [Mo00], Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 2.3

(i) Every PMV-algebra is isomorphic to a subdirect product of a family of linearly ordered PMV-algebras.
(ii) A PMV-algebra and its underlying Wajsberg algebra have the same congruences.

Definition 2.4 (Cf [BKW77]). A lattice-ordered ring is a structure

$$
\mathcal{R}=\langle R,+,-, \times, \vee, \wedge, 0\rangle
$$

such that:
(i) $\mathcal{R}=\langle R,+,-, \times, 0\rangle$ is a ring.
(ii) $\mathcal{R}=\langle R, \vee, \wedge\rangle$ is a lattice.
(iii) Let \leq denote the partial order induced by \vee and \wedge. Then $x \leq y$ implies $x+z \leq y+z$, and $x, y \geq 0$ implies $x \times y \geq 0$.

An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product of linearly ordered lattice-ordered rings.
A strong unit of a lattice-ordered ring \mathcal{R} is an element $u \in \mathcal{R}$ such that $u \times u \leq u$, and for all $a \in \mathcal{R}$ there is $n \in \mathbf{N}$ such that $a \leq n u$, where $n u=\underbrace{u+\ldots+u}_{n \text { times }}$.

A commutative unitary f-ring with strong unit (for short: a $c-s-u-f$-ring) is a commutative f-ring with a unit for product which is also a strong unit.

In [DND01] the authors define a functor $\Gamma_{\mathbf{R}}$ from the category of lattice-ordered rings with strong unit into a category of algebras, called product $M V$-algebras. Here we describe the restriction of $\Gamma_{\mathbf{R}}$ to c-s-u-f-rings, which turns-out to be a functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 2.5 The functor $\Gamma_{\mathbf{R}}$ is defined as follows:
(i) Let $\mathcal{R}=\langle R,+,-, \times, \vee, \wedge, 0\rangle$ be a c-s-u-f-ring, and let u be the unit of \mathcal{R} (which by definition is also a strong unit). Then $\Gamma_{\mathbf{R}}(\mathcal{R})$ denotes the structure $\langle[0, u], \oplus, \neg, \cdot, 0, u\rangle$, where $[0, u]=\{x \in \mathcal{R}: 0 \leq x \leq u\}, x \oplus y=$ $(x+y) \wedge 1, \neg x=u-x$, and \cdot is the restriction of \times to $[0, u]$.
(ii) Let $\mathcal{R}, \mathcal{R}^{\prime}$ be lattice-ordered rings, and let h be a morphism (i.e., a homomorphism) from \mathcal{R} into \mathcal{R}^{\prime}. Then $\Gamma_{\mathbf{R}}(h)$ is defined as the restriction of h to $\Gamma_{\mathbf{R}}(\mathcal{R})$. (Note that $\Gamma_{\mathbf{R}}(h)$ is a homomorphism from $\Gamma_{\mathbf{R}}(\mathcal{R})$ into $\left.\Gamma_{\mathbf{R}}\left(\mathcal{R}^{\prime}\right)\right)$.

In [Mo02], as a special case of a result contained in [DND01], Theorem 4.2, the following is shown:

Proposition 2.6 $\Gamma_{\mathbf{R}}$ is an equivalence between the category of c-s-u-f-rings and the category of PMV-algebras.

$3 \quad \mathrm{E}_{q}$ algebras

Definition 3.1 $\mathrm{A}_{\mathrm{£}} \Pi_{q}$-algebra is a structure $\mathcal{A}=\left\langle A, \oplus, \neg, \cdot, \rightarrow{ }_{q}, q, 0,1\right\rangle$ where $\langle A, \oplus, \neg, \cdot, 0,1\rangle$ is a PMV-algebra, q is a constant, and \rightarrow_{q} is a binary operation such that the following conditions hold:
(A1) $q \leq \neg q$
(A2) $x \rightarrow_{q} y=(x \vee q) \rightarrow_{q} y$
(A3) $(x \vee q)\left(x \rightarrow_{q} y\right)=(x \vee q) \wedge y$
$(\mathrm{A} 4) ~ q \rightarrow_{q}(x q)=x$
(A5) If $x^{2}=0$ then $x=0$
Examples. Let $\mathcal{A}=\left\langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0,1\right\rangle$ be a linearly ordered ŁП-algebra with more than two elements, and let $q \in \mathcal{A} \backslash\{0\}$ with $q \leq \neg q$. Define $x \rightarrow_{q} y=$ $(x \vee q) \rightarrow_{\Pi} y$. Then $\mathcal{A}_{q}=\left\langle A, \oplus, \neg, \cdot, \rightarrow_{q}, 0,1\right\rangle$ is a $£ \Pi_{q}$-algebra. We call \mathcal{A}_{q} the q-reduct of \mathcal{A}.
The next example shows that not all $£ \Pi_{q}$-algebras are q-reducts of $£ \Pi$-algebras. Let $[0,1]^{*}$ be the unit interval of a non-trivial ultraproduct of \mathbf{R}, and let ε be a positive infinitesimal. Let A be the set of all elements of the form $\frac{p+\varepsilon^{2} P(\varepsilon)}{r+\varepsilon^{2} R(\varepsilon)}$ where $p, r \in[0,1], r>0, P$ and Q are polynomials with integer coefficients, and $0 \leq \frac{p+\varepsilon^{2} P(\varepsilon)}{r+\varepsilon^{2} R(\varepsilon)} \leq 1$. Let $q=1 / 2$. Then it is easily seen that A contains 0 and 1 , and is closed under \oplus, \neg, and \rightarrow_{q} defined by $x \rightarrow_{q} y=\left(x \vee \frac{1}{2}\right) \rightarrow_{\pi} y$. We verify e.g. closure under • and under \rightarrow_{π}.
Let $\alpha, \beta \in A$, where $\alpha=\frac{p+\varepsilon^{2} P(\varepsilon)}{q+\varepsilon^{2} Q(\varepsilon)}$, and $\beta=\frac{r+\varepsilon^{2} R(\varepsilon)}{s+\varepsilon^{2} S(\varepsilon)}$. Then $\alpha \beta=\frac{p r+\varepsilon^{2} H(\varepsilon)}{s q+\varepsilon^{2} K(\varepsilon)}$, where $H(x)=r P(x)+p R(x)+x^{2} P(x) R(x), K(x)=q S(x)+s Q(x)+x^{2} Q(x) S(x)$. Hence A is closed under .
Now if $\alpha \vee \frac{1}{2} \leq \beta$, then $\alpha \rightarrow_{q} \beta=1 \in A$. If $\beta<\alpha \leq \frac{1}{2}$, then $\alpha \rightarrow_{q} \beta=(2) \beta \in A$. Thus we may assume without loss of generality $\beta<\alpha$ and $\frac{1}{2}<\alpha$. In this case, $\alpha \rightarrow_{q} \beta=\frac{\beta}{\alpha}=\frac{r q+\varepsilon^{2} T(\varepsilon)}{s p+\varepsilon^{2} U(\varepsilon)}$, where $T(x)=q R(x)+r Q(x)+x^{2} Q(x) R(x)$, and $U(x)=s P(x)+p S(x)+x^{2} P(x) S(x)$.
Thus A is the domain of a $\mathrm{E} \Pi_{q}$-algebra \mathcal{A}.
However, \mathcal{A} is not a q-reduct of a $£ \Pi$-algebra, because A is not closed under \rightarrow_{π}. To see this, note that both ε^{2} and ε^{3} have the form $\frac{p+\varepsilon^{2} P(\varepsilon)}{q+\varepsilon^{2} Q(\varepsilon)}$: take $p=0$, $q=1$, and $Q(x)=0$; then ε^{2} is obtained letting $P(x)=1$, and ε^{2} is obtained letting $P(x)=x$. Hence ε^{2} and ε^{3} are elements of A. However, $\varepsilon^{2} \rightarrow_{\pi} \varepsilon^{3}=$ $\varepsilon \notin A$. Indeed, $\varepsilon=\frac{p+\varepsilon^{2} P(\varepsilon)}{q+\varepsilon^{2} Q(\varepsilon)}$ would imply $p+\varepsilon^{2} P(\varepsilon)=q \varepsilon+\varepsilon^{3} Q(\varepsilon)$, and finally $p=q=0$. But $q=0$ is excluded by the definition of A.

From Definition 3.1 it follows that the $\mathrm{L} \Pi_{q}$-algebras form a quasivariety. However:

Theorem 3.2 The class of $E \Pi_{q}$-algebras does not constitute a variety.
Proof. Let $[0,1]^{*}, q, \varepsilon$ and \rightarrow_{q} be as in the example above, and let us consider the structure $\mathcal{A}=\left\langle[0,1]^{*}, \oplus, \neg, \cdot, \rightarrow_{q}, 0,1, q\right\rangle$ (with \oplus, \neg, \cdot defined in the obvious way). It is readily seen that \mathcal{A} is a $£ \Pi_{q}$-algebra.
Define for $x, y \in \mathcal{A}, x \theta y$ iff there is $k \in \mathbf{N}$ such that $|x-y| \leq(k) \varepsilon^{2}$, where $|x-y|=(x \ominus y) \vee(y \ominus x)$. It is easy to see that θ is a congruence of PMValgebras. We show that θ is compatible with \rightarrow_{q}. It is sufficient to prove that if $|x-y| \leq(k) \varepsilon^{2}$ then:
(a) $\left|\left(x \rightarrow_{q} z\right)-\left(y \rightarrow_{q} z\right)\right| \leq(4 k) \varepsilon^{2}$ and (b) $\left|\left(z \rightarrow_{q} x\right)-\left(z \rightarrow_{q} y\right)\right| \leq(4 k) \varepsilon^{2}$.

The proof of (a) splits into the following cases:

If $x \vee q \leq z$ and $y \vee q \leq z$, the claim is trivial.

$$
\begin{aligned}
& \text { If } x \vee q \leq z \text { and } y \vee q>z \text {, then }\left|\left(x \rightarrow_{q} z\right)-\left(y \rightarrow_{q} z\right)\right|=\left|1-\frac{z}{y \vee q}\right|= \\
& \frac{(y \vee q)-z}{y \vee q} \leq \frac{(y \vee q)-(x \vee q)}{y \vee q} \leq \frac{y-x}{y \vee q} \leq \frac{y-x}{q}=2|x-y| \leq(2 k) \varepsilon^{2} \leq(4 k) \varepsilon^{2} .
\end{aligned}
$$

If $x \vee q>z$ and $y \vee q \leq z$, we reason as in the previous case.
If $x \vee q>z$ and $y \vee q>z$, then $\left|\left(x \rightarrow_{q} z\right)-\left(y \rightarrow_{q} z\right)\right|=\left|\frac{z}{x \vee q}-\frac{z}{y \vee q}\right|=$ $\frac{z|(x \vee q)-(y \vee q)|}{(x \vee q)(y \vee q)} \leq \frac{z|x-y|}{(x \vee q)(y \vee q)} \leq \frac{|x-y|}{q^{2}} \leq(4 k) \varepsilon^{2}$.
The proof of (b) splits into the following cases:
If $z \vee q \leq x$ and $z \vee q \leq y$, the claim is trivial.
If $z \vee q \leq x$ and $z \vee q>y$, then $\left|\left(z \rightarrow_{q} x\right)-\left(z \rightarrow_{q} y\right)\right|=\left|1-\frac{y}{z \vee q}\right| \leq$ $\frac{(z \vee q)-y}{z \vee q} \leq \frac{|x-y|}{q} \leq(2 k) \varepsilon^{2} \leq(4 k) \varepsilon^{2}$.
If $z \vee q>x$ and $z \vee q \leq y$ we reason as in the previous case.
If $z \vee q>x$ and $z \vee q>y$, then $\left|\left(z \rightarrow_{q} x\right)-\left(z \rightarrow_{q} y\right)\right|=\left|\frac{x}{z \vee q}-\frac{y}{z \vee q}\right| \leq$

$$
\frac{|x-y|}{z \vee q} \leq \frac{|x-y|}{q} \leq(4 k) \varepsilon^{2}
$$

Let ε_{θ}^{2} denote the equivalence class of ε modulo θ. Then $\mathcal{A} / \theta \models \varepsilon_{\theta}^{2}=0$ but $\mathcal{A} / \theta \not \models \varepsilon_{\theta}=0$. Therefore \mathcal{A} / θ does not satisfy the axiom (A5) in Definition 3.1 It follows that the class of $\mathrm{L} \Pi_{q}$-algebras is not closed under quotients, hence it is not a variety.

Lemma 3.3 Let \mathcal{A} be any $E \Pi_{q}$-algebra. Then for any $x \in \mathcal{A}$ and for any $n, k \in \mathbf{N} \backslash\{0\}$, if $q^{k} x^{n}=0$ then $x=0$.

Proof. Induction on k. For $k=0$ the claim follows from (A5). Suppose that the claim holds for $k=m$, and let us prove it for $k=m+1$. First note that letting $x=0$ in axiom (A4) we get $q \rightarrow_{q} 0=0$. Hence if $q x=0$ then, by axiom (A4) one has $x=q \rightarrow_{q} q x=q \rightarrow_{q} 0=0$. So we have:

$$
\begin{equation*}
q x=0 \Rightarrow x=0 \tag{1}
\end{equation*}
$$

Now if $q^{m+1} x^{n}=0$ then $0=q^{m+1} x^{n}=q\left(q^{m} x^{n}\right)$. Thus replacing x by $q^{m} x^{n}$ in (1), we obtain $q^{m} x^{n}=0$ and by the induction hypothesis, $x=0$.

Lemma 3.4

(i) In any non-trivial $E \Pi_{q}$-algebra one has $q>0$.
(ii) Any linearly ordered $E \Pi_{q}$-algebra has no zero divisors, i.e. if $x y=0$, then either $x=0$ or $y=0$.

Proof. Claim (i) follows from Lemma 3.3, and claim (ii) follows from axiom (A5) of $\mathrm{E} \Pi_{q}$-algebras.

Theorem 3.5 Every subdirectly irreducible $E \Pi_{q}$-algebra is linearly ordered. Hence every $E \Pi_{q}$-algebra \mathcal{A} can be decomposed as a subdirect product of a family of linearly ordered $E \Pi_{q}$-algebras.

Proof. For any $a \in \mathcal{A} \backslash\{0\}$, consider the family \mathcal{I}_{a} of all MV-ideals J such that for every $n, k>0, q^{k} a^{n} \notin J . \mathcal{I}_{a}$ is non-empty, since by Lemma $3.3\{0\} \in \mathcal{I}_{a}$. Moreover \mathcal{I}_{a} is closed under unions of chains, therefore $\left\langle\mathcal{I}_{a}, \subseteq\right\rangle$ is an inductive partially ordered set, and, by Zorn's lemma, it has a maximal element, call it J_{a}. Let \mathcal{A}^{-}be the PMV-reduct of \mathcal{A}. Since a PMV-algebra and its MV-reduct have the same congruences, the congruence θ_{a} associated with J_{a} is a congruence of PMV-algebras, too. Therefore $\mathcal{A}^{-} / \theta_{a}$ is a PMV-algebra. To continue the proof we show the following lemmas.

Lemma 3.6 For every $b, c \in \mathcal{A}$, either $b \ominus c \in J_{a}$ or $c \ominus b \in J_{a}$.
Proof. Let by contradiction $b, c \in \mathcal{A}$ be such that $b \ominus c \notin J_{a}$ and $c \ominus b \notin$ J_{a}. Let for any subset X of \mathcal{A}^{-}, \bar{X} denote the ideal generated by X. By the maximality of J_{a} there exist $k, n, h, m>0$ with $q^{k} a^{n} \in \overline{J_{a} \cup\{b \ominus c\}}$ and $q^{h} a^{m} \in \overline{J_{a} \cup\{c \ominus b\}}$. Thus there are $f, g \in J_{a}$ and $r, s \in \mathbf{N}$ such that

$$
q^{k} a^{n} \leq f \oplus(r)(b \ominus c) \text { and } q^{h} a^{m} \leq g \oplus(s)(c \ominus b)
$$

Let $u=f \vee g$ and $t=\max \{k, n, h, m, r, s\}$. Then

$$
q^{t} a^{t} \leq u \oplus(t)(b \ominus c) \text { and } q^{t} a^{t} \leq u \oplus(t)(c \ominus b)
$$

therefore $q^{t} a^{t} \leq u \oplus((t)(b \ominus c) \wedge(t)(c \ominus b))=u$ and $q^{t} a^{t} \in J_{a}$, which is a contradiction.

Lemma 3.7 If $b c \in J_{a}$ then either $b \in J_{a}$ or $c \in J_{a}$.
Proof. Let by contradiction, $b, c \in \mathcal{A}$ be such that $b \notin J_{a}, c \notin J_{a}$ and $b c \in J_{a}$. By the maximality of J_{a} there exist $h, k, m, n>0$ such that

$$
q^{k} a^{n} \in \overline{J_{a} \cup\{b\}} \text { and } q^{h} a^{m} \in \overline{J_{a} \cup\{c\}}
$$

Thus there are $f, g \in J_{a}$ and $r, s \in \mathbf{N}$ such that $q^{k} a^{n} \leq f \oplus(r) b$ and $q^{h} a^{m} \leq$ $g \oplus(s) c$.
Let $u=f \vee g$ and $t=\max \{h, k, m, n, r, s\}$. Then $q^{t} a^{t} \leq u \oplus(t) b$ and $q^{t} a^{t} \leq$ $u \oplus(t) c$, therefore $q^{2 t} a^{2 t} \leq(u \oplus(t) b)(u \oplus(t) c) \leq u^{2} \oplus((t) u c) \oplus((t) u b) \oplus\left(\left(t^{2}\right) b c\right)$. Now $u^{2} \oplus((t) u c) \oplus((t) u b) \in J_{a}$, and $\left(t^{2}\right) b c \in J_{a}$, therefore $q^{2 t} a^{2 t} \in J_{a}$, and a contradiction has been reached.

We continue the proof of theorem 3.5. Since $a \notin J_{a}, \bigcap_{a \in \mathcal{A} \backslash\{0\}} J_{a}=\{0\}$, hence $\bigcap_{a \in \mathcal{A} \backslash\{0\}} \theta_{a}$ is the minimal congruence. It follows that the map

$$
\Phi: \mathcal{A}^{-} \xrightarrow{\Phi} \prod_{a \in \mathcal{A} \backslash\{0\}} \mathcal{A}^{-} / \theta_{a} \text { defined by } \Phi(b)=\left\langle b / \theta_{a}: a \in \mathcal{A} \backslash\{0\}\right\rangle
$$

is a monomorphism from \mathcal{A}^{-}to $\prod_{a \in \mathcal{A} \backslash\{0\}} \mathcal{A} / \theta_{a}$.
In other words \mathcal{A}^{-}can be decomposed as a subdirect product of linearly ordered PMV-algebras. Moreover by Lemma 3.7, each component \mathcal{A} / θ_{a} has no zero divisors. Finally, $q / \theta_{a} \neq 0$, because $q \notin J_{a}$. Thus we have shown:

Lemma 3.8 The PMV-reduct of any $E \Pi_{q}$-algebra can be decomposed as a subdirect product of a family of linearly ordered PMV-algebras $\left\langle\mathcal{A}_{i}: i \in I\right\rangle$ without zero divisors. Moreover, for every $i \in I, q_{i}>0$.

Lemma 3.9 For any $a, b \in \mathcal{A}$ and for every $i \in I$, the following conditions hold:

$$
\text { If } a_{i} \vee q_{i} \leq b_{i}, \text { then }\left(a \rightarrow_{q} b\right)_{i}=1 .
$$

Otherwise, $\left(a \rightarrow_{q} b\right)_{i}$ is the unique $z_{i} \in \mathcal{A}_{i}$ such that $\left(a_{i} \vee q_{i}\right) z_{i}=b_{i}$.
In particular $\left(a \rightarrow_{q} b\right)_{i}$ depends on a_{i} and b_{i} but not on a and b.
Proof. First of all recall that $(a \vee q)\left(a \rightarrow_{q} b\right)=(a \vee q)\left((a \vee q) \rightarrow_{q} b\right)=b \wedge(a \vee q)$. Hence for every $i \in I$ we have $\left(a_{i} \vee q_{i}\right)\left(a \rightarrow_{q} b\right)_{i}=b_{i} \wedge\left(a_{i} \vee q_{i}\right)$. Let $z_{i}=\left(a \rightarrow_{q}\right.$ $b)_{i}$. Then:

If $(a \vee q)_{i} \leq b_{i}$ then $(a \vee q)_{i} z_{i}=((a \vee q) \wedge b)_{i}=(a \vee q)_{i}$. So $(a \vee q)_{i} \ominus(a \vee q)_{i} z_{i}=$ $(a \vee q)_{i}\left(1 \ominus z_{i}\right)=0$. Since $(a \vee q)_{i}>0$ and \mathcal{A}_{i} has no zero divisors (Lemma 3.8) we get $z_{i}=1$.

If $(a \vee q)_{i}>b_{i}$, then $(a \vee q)_{i} z_{i}=b_{i}$. Moreover, z_{i} is the unique element with this property. Indeed if $(a \vee q)_{i} u=b_{i}$ then $(a \vee q)_{i}\left|u-z_{i}\right|=0$, and since \mathcal{A}_{i} has no zero divisors and $q_{i}>0$ we conclude that $u=z_{i}$.

We conclude the proof of Theorem 3.5. Define for $a, b \in \mathcal{A}$ and for $i \in I$, $a_{i} \rightarrow_{i} b_{i}=\left(a \rightarrow_{q} b\right)_{i}$. By Lemma 3.9 this definition is admissible. By Lemma 3.8 and $3.9, \mathcal{A}_{i}$ equipped by the additional operator \rightarrow_{i} satisfies axioms (A1) \ldots (A3) and (A5) of $\mathrm{E} \Pi_{q}$-algebras. Let us check axiom (A4). If $x=1$ then $q_{i} \rightarrow_{i} q_{i} x=1=x$. Otherwise, $q_{i} x<q_{i}$ and by Lemma 3.9, $q_{i} \rightarrow_{i} q_{i} x$ is the unique z such that $q_{i} z=q_{i} x$. But $q_{i} z=q_{i} x$ implies $z=x$, therefore $q_{i} \rightarrow_{i} q_{i} x=x$. This concludes the proof.

Corollary 3.10 Every $E \Pi_{q}$-algebra is a subalgebra of a q-reduct of a $£ \Pi$-algebra.
Proof. Let \mathcal{A} be any $\mathrm{L} \Pi_{q}$-algebra, and let $\mathcal{A}_{i}: i \in I$ be the linearly ordered factors in the subdirect representation of \mathcal{A} according to Theorem 3.5, let \mathcal{A}_{i}^{-} denote the PMV-reduct of \mathcal{A}_{i}, and let $\Gamma_{\mathbf{R}}$ be the functor defined in Section 2. Then by Proposition 2.6 for every $i \in I$ there is a c-s-u-f-ring \mathcal{R}_{i} such that $\mathcal{A}_{i}^{-}=\Gamma_{\mathbf{R}}\left(\mathcal{R}_{i}\right)$. It is readily seen that \mathcal{R}_{i} is linearly ordered (because $\Gamma_{\mathbf{R}}\left(\mathcal{R}_{i}\right)$ is linearly ordered). Moreover \mathcal{R}_{i} has no zero divisors: if $x \times y=0$, then letting $|x|=x \vee-x$, and $z=\min \{1,|x|,|y|\}$ we have $z \in \Gamma_{\mathbf{R}}\left(\mathcal{R}_{i}\right)=\mathcal{A}_{i}$, and $z^{2}=0$.

By axiom (A5) this implies $z=0$. This is only possible if either $x=0$ or $y=0$. It follows that the ring reduct of \mathcal{R}_{i} is an integral domain. Now let \mathcal{F}_{i} be the fraction field of \mathcal{R}_{i}. Then \mathcal{A}_{i}^{-}is a subalgebra of $\Gamma_{\mathbf{R}}\left(\mathcal{F}_{i}\right)$. For $x, y \in \Gamma_{\mathbf{R}}\left(\mathcal{F}_{i}\right)$, define

$$
\left(x \rightarrow_{\pi} y\right)_{i}= \begin{cases}1 & \text { if } x \leq y \\ y x^{-1} & \text { otherwise }\end{cases}
$$

Then \rightarrow_{π} makes $\Gamma_{\mathbf{R}}\left(\mathcal{F}_{i}\right)$ a ŁП-algebra (see $[\mathrm{Mo} 00]$), call it $\mathcal{L} \mathcal{P}_{i}$. Moreover by Lemma 3.9 for all $x, y \in \mathcal{A}_{i}$ we have: $x \rightarrow_{q} y=(x \vee q) \rightarrow_{\pi} y$. Therefore \mathcal{A}_{i} is a subalgebra of a q-reduct of $\mathcal{L} \mathcal{P}_{i}$, and \mathcal{A} is a subalgebra of a q-reduct of $\prod_{i \in} \mathcal{L} \mathcal{P}_{i}$.

Definition 3.11 Let \mathcal{A} be any $\mathrm{L} \Pi_{q}$-algebra. We say that $\varepsilon \in \mathcal{A} \backslash\{0\}$ is an infinitesimal if for any natural number n one has: $(n) \varepsilon \leq \neg \varepsilon$.

The next corollary shows that any linearly ordered $\mathrm{L} \Pi_{q}$-algebra which is not a q-reduct of a $£ \Pi$-algebra must have infinitesimals:

Corollary 3.12 Let \mathcal{A} be a linearly ordered $E \Pi_{q}$-algebra without infinitesimals. Then \mathcal{A} is a q-reduct of an LП-algebra.

Proof. We just need to check that product in \mathcal{A} has a residual \rightarrow_{π}. This amounts to prove that for any x, y there is a z such that $z x=x \wedge y$. If $x \leq y$ then we can take $z=1$. If $x=1$, then we can take $z=y$. Otherwise, since there are no infinitesimals, there is $n \in \mathbf{N}$ such that $(n) x \geq \neg x$. Take n minimal with this property. Now recall that \mathcal{A} embeds into a q-reduct of a linearly ordered $£ \Pi$ algebra \mathcal{B} (Corollary 3.10), and that every linearly ordered $£ \Pi$-algebra embeds into an ultrapower of the $\mathrm{E} \mathrm{\Pi}$-algebra $[0,1]_{\mathrm{£}}$ on $[0,1]$ ([Mo02]). Hence the universal formula

$$
\left.\forall x \forall y(((n) x \geq \neg x) \&((n-1) x<\neg x) \&(y<x)) \Rightarrow\left(x \rightarrow_{\pi} y=(n) x \rightarrow_{\pi}(n) y\right)\right)
$$

(where \& and \Rightarrow denote classical conjunction and classical implication respectively) being true in $[0,1]_{\text {ŁП }}$, is true in \mathcal{B}. Now $q \leq(n) x$ (because $q \leq \neg q$). Since \mathcal{A} embeds into a q-reduct of $\mathcal{B},(n) x \rightarrow_{q}(n) y=((n) x \vee q) \rightarrow_{\pi}(n) y=$ $(n) x \rightarrow_{\pi}(n) y=x \rightarrow_{\pi} y$.

4 Generation by standard $\mathbf{\mathrm { L }} \Pi_{q}$-algebras

This section is entirely devoted to the proof of the fact that the variety of $£ \Pi_{q^{-}}$ algebras is generated as a quasivariety by its standard members, i.e., by those $\mathrm{£} \Pi_{q}$-algebras whose lattice reduct is $\langle[0,1]$, max, $\min \rangle$.

Definition 4.1 In the sequel, for every $0<q \leq \frac{1}{2},[0,1]_{q}$ will denote the $\mathrm{E} \Pi_{q^{-}}$ algebra $\left\langle[0,1], \oplus, \neg, \cdot, \rightarrow_{q}, 0,1, q\right\rangle$, where \oplus, \neg and \cdot are defined as usual, and $x \rightarrow_{q} y=(x \vee q) \rightarrow_{\pi} y= \begin{cases}\frac{y}{x \vee q} & \text { if } x \vee q>y \\ 1 & \text { otherwise }\end{cases}$

Theorem 4.2 The class of $E \Pi_{q}$-algebras is generated as a quasivariety by the class $\mathbf{S}=\left\{[0,1]_{q}: 0<q \leq \frac{1}{2}\right\}$.

Proof. Let Φ be a quasi identity which is not valid in all $£ \Pi_{q}$-algebras. Then Φ fails to hold in some subdirectly irreducible, hence (Theorem 3.5) linearly ordered, $\mathrm{£} \Pi_{q}$-algebra \mathcal{A}. Now (Corollary 3.10) \mathcal{A} embeds into a q-reduct \mathcal{B} of a linearly ordered $£ \Pi$-algebra \mathcal{D}, and Φ fails in \mathcal{B}, too. Moreover, ([Mo01]) every linearly ordered $£ \Pi$-algebra embeds into an ultrapower \mathcal{E} of the $£ \Pi$-algebra $[0,1]_{\mathrm{E} п}$ on $[0,1]$. At this point, we can observe that the existence of an evaluation e in \mathcal{B} which invalidates Φ can be written as an existential formula (in the language of $\llcorner\Pi$-algebras) of the form

$$
\exists q \exists x_{1} \ldots \exists x_{n}\left(0<q \& q \leq \neg q \& \Psi\left(x_{1}, \ldots x_{n}, q\right)\right)
$$

where Ψ quantifier-free, and x_{1}, \ldots, x_{n} are the variables occurring in Φ. Such a formula is preserved under taking superstructures, hence it is true in \mathcal{E}, and finally it is true in $[0,1]_{\mathrm{E} \Pi}$. Let $q \in\left(0, \frac{1}{2}\right]$ and $a_{1}, \ldots, a_{n} \in[0,1]$ be such that $\Psi\left(a_{1}, \ldots, a_{n}, q\right)$ is true in $[0,1]_{\mathrm{E} \Pi}$, and let e be the evaluation defined by $e\left(x_{i}\right)=a_{i}$ for $i=1, \ldots, n$. Then Φ is invalidated by e in $[0,1]_{q}$.

Corollary 4.3 Let \mathcal{A} be a linearly ordered $E \Pi_{q}$-algebra with more than two elements. Then the PMV-reduct \mathcal{A}^{-}of \mathcal{A} has a subalgebra isomorphic to $\langle\mathbf{Q} \cap$ $[0,1], \oplus, \neg, \cdot, 0,1\rangle$.

Proof. By Corollary $3.10, \mathcal{B}$ is a subalgebra of a q-reduct of a linearly ordered ŁП-algebra \mathcal{D}. Hence it is sufficient to prove that for all $n \in \mathbf{N} \backslash\{0\}$ there is an element a of \mathcal{B}, denoted by $\frac{1}{n}$, such that $(n-1) a=\neg a$. Indeed if we prove this, then as in [Mo00] we can see that the map $\Phi: \frac{m}{n} \xrightarrow{\Phi}(m) \frac{1}{n}$ is an embedding of $\langle\mathbf{Q} \cap[0,1], \oplus, \neg, \cdot, 0,1\rangle$ into the PMV-reduct of \mathcal{B}. Let $h=(q \oplus q) \rightarrow_{q} q$. Then $h=\neg h$, because this property can be expressed by an equation which is true in any q-reduct of $[0,1]_{\mathrm{£} \Pi}$, hence by Theorem 4.2 it is true in any $\mathrm{£} \Pi_{q}$-algebra. Let k be the minimum natural number such that $2^{k} \geq n$, and let $a=(n) h^{k} \rightarrow_{q} h^{k}$. Then for any choice of $0<q \leq h$ we have that $q \leq h \leq(n) h^{k}$. Hence $a=(n) h^{k} \rightarrow_{q} h^{k}=(n) h^{k} \rightarrow_{\pi} h^{k}$. Now in $[0,1]_{\text {Łп }}$ if $h=\neg h$ and $a=(n) h^{k} \rightarrow_{\pi} h^{k}$, then $(n-1) a=\neg a$. Since this fact can be expressed by a universal Horn formula, it holds in any ŁП-algebra. Hence $(n-1) a=\neg a$, and we can take $\frac{1}{n}=a$.

References

[BKW77] A. Bigard, K. Keimel and S. Wolfenstein, Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608, Springer Verlag, Berlin 1977.
[BF00] W.J. Blok and I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis 43 2000, 233-257.
[COM00] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, 2000.
[DND01] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001). Theorem 4.2.
[EGM01] F. Esteva, L. Godo, F. Montagna, $Е \Pi$ and $£ \Pi \frac{1}{2}$: two fuzzy logics joining Lukasiewicz and Product logics, Archive for Mathematical Logic 40 (2001), pp. 39-67.
[F92] I.M.A. Ferreirim, On varieties and quasi varieties of hoops and their reducts, PhD thesis, University of Illinois at Chicago, 1992.
[H98] P. HÁJEk, Metamathematics of Fuzzy Logic, Kluwer, 1988.
[K95] K. Keimel, Some trends in lattice-ordered groups and rings Lattice theory and its applications K.A. Baker and R. Wille eds, Darmstadt, Helderman Verlag (1995), 131-161.
[MMT87] R. McKenzie, G. McNulty, W. Taylor, Algebras, Lattices, Varieties, Vol I, Wadsworth and Brooks/Cole, Monterey CA, 1987.
[Mo00] F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (2000), 91-124.
[MP01] F. Montagna, G. Panti, Adding structure to MV algebras, Journal of Pure and Applied Algebra 164 (2001), 365-387.
[Mu86] D. Mundici, Interpretations of AF C^{\star} algebras in Eukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.

