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quasivariety is generated by the class of all  LΠq-algebras whose lattice reduct is the unit
interval [0, 1] with the usual order.
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1 Introduction

MV -algebras with product have been widely investigated by many authors,
[DND01], [Mo00] , [EGM01], [M01] and [MP02] and with many motivations,
arising from algebra, algebraic geometry and from the theory of many-valued
control. While an axiomatization of the variety of MV-algebras with product
generated by [0, 1] with the  Lukasiewicz operators and with product seems to
be very problematic, the presence of product residuation simplifies the situa-
tion. Consider the structure [0, 1] LΠ = 〈[0, 1],⊕,¬, ·,→π, 0, 1〉, where · denotes
ordinary product, and the remaining operations are defined as follows:

x⊕ y = min{x + y, 1}, ¬x = 1− x, x →π y =
{

y
x if x > y
1 otherwise

Then [0, 1] LΠ generates a variety which can be axiomatized by a finite number
of equations. The members of such variety, called  LΠ-algebras have been deeply
investigated, [Mo00] , [EGM01], [M01] and [MP01].
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A negative counterpart for the expressiveness of the language of  LΠ-algebras is
the loss of continuity of the truth functions of formulas, due to the fact that
the truth function of →π is not continuous in (0, 0); this may cause problems
when using  LΠ in the treatment of approximate data, because a small error in
the data may cause relevant errors in the output.
These observations constitute the main motivation for an investigation of a
class of algebras in which the discontinuous product implication is replaced by
a continuous approximation of it. The idea is the following: we fix a positive
number q (the intuition is that q is greater than 0 but very close to 0), and
we replace product implication →π by the operation →q defined by x →q y =
(x ∨ q) →π y. Note that →q defined in this way is continuous.

The present paper is devoted to an investigation of the general properties of
 LΠq-algebras. These algebras are introduced in Section 3. In this section we
prove some general properties of these structures. For example,  LΠq-algebras
constitute a quasivariety, but not a variety. Moreover, every  LΠq-algebra is
isomorphic to a subdirect product of a family of linearly ordered  LΠq-algebras,
and is a subalgebra of a  LΠq algebra obtained from a  LΠ-algebra letting x →q

y = (x∨q) →π y, where q denotes a suitably chosen constant. Finally, in Section
4 we prove that the class of  LΠq-algebras is generated as a quasivariety by the
class of all  LΠq-algebras whose lattice reduct is [0, 1] with the usual order.

2 Preliminaries

Definition 2.1 (see e.g. [BF00]). A hoop is an algebra 〈H, ?,→, 1〉 such that
〈H, ?, 1〉 is a commutative monoid, and → is a binary operation such that the
following identities hold:

x → x = 1, x → (y → z) = (x ? y) → z and x ? (x → y) = y ? (y → x).

A Wajsberg hoop is a hoop satisfying the identity (x → y) → y = (y → x) → x.
A bounded hoop is a hoop equipped with a constant 0 such that 0 → x = 1.
A Wajsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by �. In the
sequel, given a Wajsberg algebra, we write ¬x for x → 0, x⊕y for ¬x → y, x∧y
for x� (x → y), x ∨ y for (x → y) → y, and x ≤ y for x → y = 1. Note that ≤
is a distributive lattice order, and ∨ and ∧ are the corresponding operations of
join and meet. We inductively define (n)x and x(n) by:

(0)x = 0, (n + 1)x = (n)x⊕ x, x(0) = 1, x(n+1) = x(n) � x.

Wajsberg algebras constitute a variety generated by [0, 1]W = 〈[0, 1],�,→, 0, 1〉.

If 〈A,�,→, 0, 1〉 is a Wajsberg algebra, then the structure 〈A,⊕,¬, 0, 1〉 is called
a MV -algebra. Every Wajsberg algebra is termwise equivalent to a MV -algebra
([H98]). Thus we will often identify a Wajsberg algebra and the corresponding
MV -algebra.
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In attempting to axiomatize the class of  LΠ-algebras, in [Mo00] the concept of
PMV-algebra has been introduced.

Definition 2.2 A PMV-algebra is an algebra A = 〈A,⊕,¬, ·, 0, 1〉 such that:

〈A,⊕,¬, 0, 1〉 is a MV-algebra.

〈A, ·, 1〉 is a commutative monoid.

For all x, y, z ∈ A one has: x · (y 	 z) = (x · y) 	 (x · z), where x 	 y =
¬(¬x⊕ y).

A  LΠ-algebra is an algebra A = 〈A,⊕,¬, ·,→π, 0, 1〉 such that 〈A,⊕,¬, ·, 0, 1〉
is a PMV-algebra, 〈A, ·,→π, 0, 1〉 is a bounded hoop, and letting ¬πx = x →π 0
and ∆(x) = ¬π¬x, the following equations hold:

x →π y ≤ x → y.

x ∧ ¬πx = 0

∆(x)�∆(x → y) ≤ ∆(y)

∆(x) ≤ x

∆(∆(x)) = ∆(x)

∆(x ∨ y) = ∆(x) ∨∆(y)

∆(x) ∨ ¬∆(x) = 1

∆(x → y) ≤ x →π y.

A  LΠ 1
2 -algebra is a  LΠ-algebra with an additional constant 1

2 satisfying 1
2 = ¬ 1

2 .

Notation. In the sequel we will omit the symbol · when there is no danger of
confusion. Moreover we inductively define xn by x0 = 1, xn+1 = xnx.

In [Mo00] , Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 2.3

(i) Every PMV-algebra is isomorphic to a subdirect product of a family of
linearly ordered PMV-algebras.

(ii) A PMV-algebra and its underlying Wajsberg algebra have the same con-
gruences.

Definition 2.4 (Cf [BKW77]). A lattice-ordered ring is a structure

R = 〈R, +,−,×,∨,∧, 0〉

such that:

(i) R = 〈R, +,−,×, 0〉 is a ring.
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(ii) R = 〈R,∨,∧〉 is a lattice.

(iii) Let ≤ denote the partial order induced by ∨ and ∧. Then x ≤ y implies
x + z ≤ y + z, and x, y ≥ 0 implies x× y ≥ 0.

An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product
of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring R is an element u ∈ R such that u×u ≤ u,
and for all a ∈ R there is n ∈ N such that a ≤ nu, where nu = u + . . . + u︸ ︷︷ ︸

n times

.

A commutative unitary f-ring with strong unit (for short: a c-s-u-f-ring) is a
commutative f -ring with a unit for product which is also a strong unit.

In [DND01] the authors define a functor ΓR from the category of lattice-ordered
rings with strong unit into a category of algebras, called product MV -algebras.
Here we describe the restriction of ΓR to c-s-u-f-rings, which turns-out to be a
functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 2.5 The functor ΓR is defined as follows:

(i) Let R = 〈R, +,−,×,∨,∧, 0〉 be a c-s-u-f-ring, and let u be the unit of
R (which by definition is also a strong unit). Then ΓR(R) denotes the
structure 〈[0, u],⊕,¬, ·, 0, u〉, where [0, u] = {x ∈ R : 0 ≤ x ≤ u}, x⊕ y =
(x + y) ∧ 1, ¬x = u− x, and · is the restriction of × to [0, u].

(ii) Let R, R′ be lattice-ordered rings, and let h be a morphism (i.e., a ho-
momorphism) from R into R′. Then ΓR(h) is defined as the restriction
of h to ΓR(R). (Note that ΓR(h) is a homomorphism from ΓR(R) into
ΓR(R′)).

In [Mo02], as a special case of a result contained in [DND01], Theorem 4.2, the
following is shown:

Proposition 2.6 ΓR is an equivalence between the category of c-s-u-f-rings and
the category of PMV-algebras.

3  LΠq algebras

Definition 3.1 A  LΠq-algebra is a structure A = 〈A,⊕,¬, ·,→q, q, 0, 1〉 where
〈A,⊕,¬, ·, 0, 1〉 is a PMV-algebra, q is a constant, and →q is a binary operation
such that the following conditions hold:

(A1) q ≤ ¬q

(A2) x →q y = (x ∨ q) →q y

(A3) (x ∨ q)(x →q y) = (x ∨ q) ∧ y

(A4) q →q (xq) = x
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(A5) If x2 = 0 then x = 0

Examples. Let A = 〈A,⊕,¬, ·,→π, 0, 1〉 be a linearly ordered  LΠ-algebra with
more than two elements, and let q ∈ A \ {0} with q ≤ ¬q. Define x →q y =
(x∨ q) →Π y,. Then Aq = 〈A,⊕,¬, ·,→q, 0, 1〉 is a  LΠq-algebra. We call Aq the
q-reduct of A.

The next example shows that not all  LΠq-algebras are q-reducts of  LΠ-algebras.
Let [0, 1]∗ be the unit interval of a non-trivial ultraproduct of R, and let ε be
a positive infinitesimal. Let A be the set of all elements of the form p+ε2P (ε)

r+ε2R(ε)

where p, r ∈ [0, 1], r > 0, P and Q are polynomials with integer coefficients, and
0 ≤ p+ε2P (ε)

r+ε2R(ε) ≤ 1. Let q = 1/2. Then it is easily seen that A contains 0 and
1, and is closed under ⊕, ¬, · and →q defined by x →q y = (x ∨ 1

2 ) →π y. We
verify e.g. closure under · and under →π.
Let α, β ∈ A, where α = p+ε2P (ε)

q+ε2Q(ε) , and β = r+ε2R(ε)
s+ε2S(ε) . Then αβ = pr+ε2H(ε)

sq+ε2K(ε) ,

where H(x) = rP (x)+pR(x)+x2P (x)R(x), K(x) = qS(x)+sQ(x)+x2Q(x)S(x).
Hence A is closed under ·.
Now if α∨ 1

2 ≤ β, then α →q β = 1 ∈ A. If β < α ≤ 1
2 , then α →q β = (2)β ∈ A.

Thus we may assume without loss of generality β < α and 1
2 < α. In this case,

α →q β = β
α = rq+ε2T (ε)

sp+ε2U(ε) , where T (x) = qR(x) + rQ(x) + x2Q(x)R(x), and
U(x) = sP (x) + pS(x) + x2P (x)S(x).
Thus A is the domain of a  LΠq-algebra A.

However, A is not a q-reduct of a  LΠ-algebra, because A is not closed under
→π. To see this, note that both ε2 and ε3 have the form p+ε2P (ε)

q+ε2Q(ε) : take p = 0,
q = 1, and Q(x) = 0; then ε2 is obtained letting P (x) = 1, and ε2 is obtained
letting P (x) = x. Hence ε2 and ε3 are elements of A. However, ε2 →π ε3 =
ε /∈ A. Indeed, ε = p+ε2P (ε)

q+ε2Q(ε) would imply p + ε2P (ε) = qε + ε3Q(ε), and finally
p = q = 0. But q = 0 is excluded by the definition of A.

From Definition 3.1 it follows that the  LΠq-algebras form a quasivariety. How-
ever:

Theorem 3.2 The class of  LΠq-algebras does not constitute a variety.

Proof. Let [0, 1]∗, q, ε and →q be as in the example above, and let us consider
the structure A = 〈[0, 1]∗,⊕,¬, ·,→q, 0, 1, q〉 (with ⊕,¬, · defined in the obvious
way). It is readily seen that A is a  LΠq-algebra.
Define for x, y ∈ A, xθy iff there is k ∈ N such that | x − y |≤ (k)ε2, where
| x − y |= (x 	 y) ∨ (y 	 x). It is easy to see that θ is a congruence of PMV-
algebras. We show that θ is compatible with →q. It is sufficient to prove that
if | x− y |≤ (k)ε2 then:

(a) | (x →q z)−(y →q z) |≤ (4k)ε2 and (b) | (z →q x)−(z →q y) |≤ (4k)ε2.

The proof of (a) splits into the following cases:
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If x ∨ q ≤ z and y ∨ q ≤ z, the claim is trivial.

If x ∨ q ≤ z and y ∨ q > z, then | (x →q z) − (y →q z) |=| 1 − z
y∨q |=

(y∨q)−z
y∨q ≤ (y∨q)−(x∨q)

y∨q ≤ y−x
y∨q ≤

y−x
q = 2 | x− y |≤ (2k)ε2 ≤ (4k)ε2.

If x ∨ q > z and y ∨ q ≤ z, we reason as in the previous case.

If x ∨ q > z and y ∨ q > z, then | (x →q z) − (y →q z) |=| z
x∨q −

z
y∨q |=

z|(x∨q)−(y∨q)|
(x∨q)(y∨q) ≤ z|x−y|

(x∨q)(y∨q) ≤
|x−y|

q2 ≤ (4k)ε2.

The proof of (b) splits into the following cases:

If z ∨ q ≤ x and z ∨ q ≤ y, the claim is trivial.

If z ∨ q ≤ x and z ∨ q > y, then | (z →q x) − (z →q y) |=| 1 − y
z∨q |≤

(z∨q)−y
z∨q ≤ |x−y|

q ≤ (2k)ε2 ≤ (4k)ε2.

If z ∨ q > x and z ∨ q ≤ y we reason as in the previous case.

If z ∨ q > x and z ∨ q > y, then | (z →q x) − (z →q y) |=| x
z∨q −

y
z∨q |≤

|x−y|
z∨q ≤ |x−y|

q ≤ (4k)ε2

Let ε2
θ denote the equivalence class of ε modulo θ. Then A/θ |= ε2

θ = 0 but
A/θ 6|= εθ = 0. Therefore A/θ does not satisfy the axiom (A5) in Definition 3.1
It follows that the class of  LΠq-algebras is not closed under quotients, hence it
is not a variety.

Lemma 3.3 Let A be any  LΠq-algebra. Then for any x ∈ A and for any
n, k ∈ N \ {0}, if qkxn = 0 then x = 0.

Proof. Induction on k. For k = 0 the claim follows from (A5). Suppose that
the claim holds for k = m, and let us prove it for k = m + 1. First note that
letting x = 0 in axiom (A4) we get q →q 0 = 0. Hence if qx = 0 then, by axiom
(A4) one has x = q →q qx = q →q 0 = 0. So we have:

qx = 0 ⇒ x = 0. (1)

Now if qm+1xn = 0 then 0 = qm+1xn = q(qmxn). Thus replacing x by qmxn in
(1), we obtain qmxn = 0 and by the induction hypothesis, x = 0.

Lemma 3.4

(i) In any non-trivial  LΠq-algebra one has q > 0.

(ii) Any linearly ordered  LΠq-algebra has no zero divisors, i.e. if xy = 0, then
either x = 0 or y = 0.

Proof. Claim (i) follows from Lemma 3.3, and claim (ii) follows from axiom
(A5) of  LΠq-algebras.
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Theorem 3.5 Every subdirectly irreducible  LΠq-algebra is linearly ordered. Hence
every  LΠq-algebra A can be decomposed as a subdirect product of a family of lin-
early ordered  LΠq-algebras.

Proof. For any a ∈ A\{0}, consider the family Ia of all MV-ideals J such that
for every n, k > 0, qkan 6∈ J . Ia is non-empty, since by Lemma 3.3 {0} ∈ Ia.
Moreover Ia is closed under unions of chains, therefore 〈Ia,⊆〉 is an inductive
partially ordered set, and, by Zorn’s lemma, it has a maximal element, call it Ja.
Let A− be the PMV-reduct of A. Since a PMV-algebra and its MV-reduct have
the same congruences, the congruence θa associated with Ja is a congruence of
PMV-algebras, too. Therefore A−/θa is a PMV-algebra. To continue the proof
we show the following lemmas.

Lemma 3.6 For every b, c ∈ A, either b	 c ∈ Ja or c	 b ∈ Ja.

Proof. Let by contradiction b, c ∈ A be such that b 	 c /∈ Ja and c 	 b /∈
Ja. Let for any subset X of A−, X denote the ideal generated by X. By
the maximality of Ja there exist k, n, h, m > 0 with qkan ∈ Ja ∪ {b	 c} and
qham ∈ Ja ∪ {c	 b}. Thus there are f, g ∈ Ja and r, s ∈ N such that

qkan ≤ f ⊕ (r)(b	 c) and qham ≤ g ⊕ (s)(c	 b).

Let u = f ∨ g and t = max{k, n, h, m, r, s}. Then

qtat ≤ u⊕ (t)(b	 c) and qtat ≤ u⊕ (t)(c	 b),

therefore qtat ≤ u ⊕ ((t)(b 	 c) ∧ (t)(c 	 b)) = u and qtat ∈ Ja, which is a
contradiction.

Lemma 3.7 If bc ∈ Ja then either b ∈ Ja or c ∈ Ja.

Proof. Let by contradiction, b, c ∈ A be such that b 6∈ Ja, c 6∈ Ja and bc ∈ Ja.
By the maximality of Ja there exist h, k,m, n > 0 such that

qkan ∈ Ja ∪ {b} and qham ∈ Ja ∪ {c}.

Thus there are f, g ∈ Ja and r, s ∈ N such that qkan ≤ f ⊕ (r)b and qham ≤
g ⊕ (s)c.
Let u = f ∨ g and t = max{h, k,m, n, r, s}. Then qtat ≤ u ⊕ (t)b and qtat ≤
u⊕ (t)c, therefore q2ta2t ≤ (u⊕ (t)b)(u⊕ (t)c) ≤ u2⊕ ((t)uc)⊕ ((t)ub)⊕ ((t2)bc).
Now u2 ⊕ ((t)uc) ⊕ ((t)ub) ∈ Ja, and (t2)bc ∈ Ja, therefore q2ta2t ∈ Ja, and a
contradiction has been reached.

We continue the proof of theorem 3.5. Since a 6∈ Ja,
⋂

a∈A\{0} Ja = {0}, hence⋂
a∈A\{0} θa is the minimal congruence. It follows that the map

Φ : A− Φ−→
∏

a∈A\{0}

A−/θa defined by Φ(b) = 〈b/θa : a ∈ A \ {0}〉
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is a monomorphism from A− to
∏

a∈A\{0}A/θa.
In other words A− can be decomposed as a subdirect product of linearly ordered
PMV-algebras. Moreover by Lemma 3.7, each component A/θa has no zero
divisors. Finally, q/θa 6= 0, because q /∈ Ja. Thus we have shown:

Lemma 3.8 The PMV-reduct of any  LΠq-algebra can be decomposed as a sub-
direct product of a family of linearly ordered PMV-algebras 〈Ai : i ∈ I〉 without
zero divisors. Moreover, for every i ∈ I, qi > 0.

Lemma 3.9 For any a, b ∈ A and for every i ∈ I, the following conditions
hold:

If ai ∨ qi ≤ bi, then (a →q b)i = 1.

Otherwise, (a →q b)i is the unique zi ∈ Ai such that (ai ∨ qi)zi = bi.

In particular (a →q b)i depends on ai and bi but not on a and b.

Proof. First of all recall that (a∨q)(a →q b) = (a∨q)((a∨q) →q b) = b∧(a∨q).
Hence for every i ∈ I we have (ai ∨ qi)(a →q b)i = bi ∧ (ai ∨ qi). Let zi = (a →q

b)i. Then:

If (a∨q)i ≤ bi then (a∨q)izi = ((a∨q)∧b)i = (a∨q)i. So (a∨q)i	(a∨q)izi =
(a∨q)i(1	zi) = 0. Since (a∨q)i > 0 and Ai has no zero divisors (Lemma
3.8) we get zi = 1.

If (a ∨ q)i > bi, then (a ∨ q)izi = bi. Moreover, zi is the unique element
with this property. Indeed if (a∨ q)iu = bi then (a∨ q)i | u− zi |= 0, and
since Ai has no zero divisors and qi > 0 we conclude that u = zi.

We conclude the proof of Theorem 3.5. Define for a, b ∈ A and for i ∈ I,
ai →i bi = (a →q b)i. By Lemma 3.9 this definition is admissible. By Lemma
3.8 and 3.9, Ai equipped by the additional operator →i satisfies axioms (A1)
. . . (A3) and (A5) of  LΠq-algebras. Let us check axiom (A4). If x = 1 then
qi →i qix = 1 = x. Otherwise, qix < qi and by Lemma 3.9, qi →i qix is
the unique z such that qiz = qix. But qiz = qix implies z = x, therefore
qi →i qix = x. This concludes the proof.

Corollary 3.10 Every  LΠq-algebra is a subalgebra of a q-reduct of a  LΠ-algebra.

Proof. Let A be any  LΠq-algebra, and let Ai : i ∈ I be the linearly ordered
factors in the subdirect representation of A according to Theorem 3.5, let A−

i

denote the PMV-reduct of Ai, and let ΓR be the functor defined in Section 2.
Then by Proposition 2.6 for every i ∈ I there is a c-s-u-f-ring Ri such that
A−

i = ΓR(Ri). It is readily seen that Ri is linearly ordered (because ΓR(Ri) is
linearly ordered). Moreover Ri has no zero divisors: if x × y = 0, then letting
| x |= x∨−x, and z = min{1, | x |, | y |} we have z ∈ ΓR(Ri) = Ai, and z2 = 0.
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By axiom (A5) this implies z = 0. This is only possible if either x = 0 or y = 0.
It follows that the ring reduct of Ri is an integral domain. Now let Fi be the
fraction field of Ri. Then A−

i is a subalgebra of ΓR(Fi). For x, y ∈ ΓR(Fi),
define

(x →π y)i =
{

1 if x ≤ y
yx−1 otherwise

Then →π makes ΓR(Fi) a  LΠ-algebra (see [Mo00] ), call it LPi. Moreover by
Lemma 3.9 for all x, y ∈ Ai we have: x →q y = (x∨ q) →π y. Therefore Ai is a
subalgebra of a q-reduct of LPi, and A is a subalgebra of a q-reduct of

∏
i∈ LPi.

Definition 3.11 Let A be any  LΠq-algebra. We say that ε ∈ A \ {0} is an
infinitesimal if for any natural number n one has: (n)ε ≤ ¬ε.

The next corollary shows that any linearly ordered  LΠq-algebra which is not a
q-reduct of a  LΠ-algebra must have infinitesimals:

Corollary 3.12 Let A be a linearly ordered  LΠq-algebra without infinitesimals.
Then A is a q-reduct of an LΠ-algebra.

Proof. We just need to check that product in A has a residual →π . This
amounts to prove that for any x, y there is a z such that zx = x ∧ y. If x ≤ y
then we can take z = 1. If x = 1, then we can take z = y. Otherwise, since there
are no infinitesimals, there is n ∈ N such that (n)x ≥ ¬x. Take n minimal with
this property. Now recall thatA embeds into a q-reduct of a linearly ordered  LΠ-
algebra B (Corollary 3.10), and that every linearly ordered  LΠ-algebra embeds
into an ultrapower of the  LΠ-algebra [0, 1] LΠ on [0, 1] ([Mo02]). Hence the
universal formula

∀x∀y(((n)x ≥ ¬x)&((n− 1)x < ¬x)&(y < x)) ⇒ (x →π y = (n)x →π (n)y))

(where & and ⇒ denote classical conjunction and classical implication respec-
tively) being true in [0, 1] LΠ, is true in B. Now q ≤ (n)x (because q ≤ ¬q).
Since A embeds into a q-reduct of B, (n)x →q (n)y = ((n)x ∨ q) →π (n)y =
(n)x →π (n)y = x →π y.

4 Generation by standard  LΠq-algebras

This section is entirely devoted to the proof of the fact that the variety of  LΠq-
algebras is generated as a quasivariety by its standard members, i.e., by those
 LΠq-algebras whose lattice reduct is 〈[0, 1], max, min〉.

Definition 4.1 In the sequel, for every 0 < q ≤ 1
2 , [0, 1]q will denote the  LΠq-

algebra 〈[0, 1],⊕,¬, ·,→q, 0, 1, q〉, where ⊕, ¬ and · are defined as usual, and

x →q y = (x ∨ q) →π y =
{ y

x∨q if x ∨ q > y

1 otherwise
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Theorem 4.2 The class of  LΠq-algebras is generated as a quasivariety by the
class S = {[0, 1]q : 0 < q ≤ 1

2}.

Proof. Let Φ be a quasi identity which is not valid in all  LΠq-algebras. Then
Φ fails to hold in some subdirectly irreducible, hence (Theorem 3.5) linearly
ordered,  LΠq-algebra A. Now (Corollary 3.10) A embeds into a q-reduct B of
a linearly ordered  LΠ-algebra D, and Φ fails in B, too. Moreover, ([Mo01]) ev-
ery linearly ordered  LΠ-algebra embeds into an ultrapower E of the  LΠ-algebra
[0, 1] LΠ on [0, 1]. At this point, we can observe that the existence of an evalua-
tion e in B which invalidates Φ can be written as an existential formula (in the
language of  LΠ-algebras) of the form

∃q∃x1 . . .∃xn(0 < q&q ≤ ¬q&Ψ(x1, . . . xn, q))

where Ψ quantifier-free, and x1, . . . , xn are the variables occurring in Φ. Such
a formula is preserved under taking superstructures, hence it is true in E , and
finally it is true in [0, 1] LΠ. Let q ∈ (0, 1

2 ] and a1, . . . , an ∈ [0, 1] be such
that Ψ(a1, . . . , an, q) is true in [0, 1] LΠ, and let e be the evaluation defined by
e(xi) = ai for i = 1, . . . , n. Then Φ is invalidated by e in [0, 1]q.

Corollary 4.3 Let A be a linearly ordered  LΠq-algebra with more than two
elements. Then the PMV-reduct A− of A has a subalgebra isomorphic to 〈Q ∩
[0, 1],⊕,¬, ·, 0, 1〉.

Proof. By Corollary 3.10, B is a subalgebra of a q-reduct of a linearly ordered
 LΠ-algebra D. Hence it is sufficient to prove that for all n ∈ N \ {0} there is an
element a of B, denoted by 1

n , such that (n− 1)a = ¬a. Indeed if we prove this,

then as in [Mo00] we can see that the map Φ : m
n

Φ−→ (m) 1
n is an embedding

of 〈Q ∩ [0, 1],⊕,¬, ·, 0, 1〉 into the PMV-reduct of B. Let h = (q ⊕ q) →q q.
Then h = ¬h, because this property can be expressed by an equation which
is true in any q-reduct of [0, 1] LΠ, hence by Theorem 4.2 it is true in any
 LΠq-algebra. Let k be the minimum natural number such that 2k ≥ n, and let
a = (n)hk →q hk. Then for any choice of 0 < q ≤ h we have that q ≤ h ≤ (n)hk.
Hence a = (n)hk →q hk = (n)hk →π hk. Now in [0, 1] LΠ if h = ¬h and
a = (n)hk →π hk, then (n − 1)a = ¬a. Since this fact can be expressed by a
universal Horn formula, it holds in any  LΠ-algebra. Hence (n− 1)a = ¬a, and
we can take 1

n = a.
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