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Abstract. Recently, MV -algebras with product have been investigated from different points
of view. In particular, in [EGMO1], a variety resulting from the combination of MV-algebras
and product algebras (see [H98]) has been introduced. The elements of this variety are called
LII-algebras. Even though the language of LII-algebras is strong enough to describe the main
properties of product and of Lukasiewicz connectives on [0, 1], the discontinuity of product
implication introduces some problems in the applications, because a small error in the data
may cause a relevant error in the output. In this paper we try to overcome this difficulty,
substituting the product implication by a continuous approximation of it. The resulting
algebras, the LII4-algebras, are investigated in the present paper. In this paper we give a
complete axiomatization of the quasivariety obtained in this way, and we show that such
quasivariety is generated by the class of all LIl4-algebras whose lattice reduct is the unit
interval [0, 1] with the usual order.
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1 Introduction

MYV -algebras with product have been widely investigated by many authors,
[DNDO01], [Mo00] , [EGMO01], [M01] and [MP02] and with many motivations,
arising from algebra, algebraic geometry and from the theory of many-valued
control. While an axiomatization of the variety of MV-algebras with product
generated by [0, 1] with the Lukasiewicz operators and with product seems to
be very problematic, the presence of product residuation simplifies the situa-
tion. Consider the structure [0, 1]y ;; = ([0, 1], ®, =, -, —x,0, 1), where - denotes
ordinary product, and the remaining operations are defined as follows:
. L ifr>y
r@y=min{x +y,1}, v=1—-2, z—ory= { T otherwise

Then [0, 1], ; generates a variety which can be axiomatized by a finite number
of equations. The members of such variety, called LII-algebras have been deeply
investigated, [Mo00] , [EGMO01], [M01] and [MPO1].



A negative counterpart for the expressiveness of the language of LII-algebras is
the loss of continuity of the truth functions of formulas, due to the fact that
the truth function of —, is not continuous in (0,0); this may cause problems
when using LII in the treatment of approximate data, because a small error in
the data may cause relevant errors in the output.

These observations constitute the main motivation for an investigation of a
class of algebras in which the discontinuous product implication is replaced by
a continuous approximation of it. The idea is the following: we fix a positive
number ¢ (the intuition is that ¢ is greater than 0 but very close to 0), and
we replace product implication —, by the operation —, defined by z —, y =
(x V ¢q) == y. Note that —, defined in this way is continuous.

The present paper is devoted to an investigation of the general properties of
LII,-algebras. These algebras are introduced in Section 3. In this section we
prove some general properties of these structures. For example, LIl ,-algebras
constitute a quasivariety, but not a variety. Moreover, every LIl -algebra is
isomorphic to a subdirect product of a family of linearly ordered LII;-algebras,
and is a subalgebra of a LII, algebra obtained from a LII-algebra letting x —,
y = (xVq) —r y, where ¢ denotes a suitably chosen constant. Finally, in Section
4 we prove that the class of LII,-algebras is generated as a quasivariety by the
class of all LII,-algebras whose lattice reduct is [0, 1] with the usual order.

2 Preliminaries

Definition 2.1 (see e.g. [BF00]). A hoop is an algebra (H,x, —, 1) such that
(H,*,1) is a commutative monoid, and — is a binary operation such that the
following identities hold:

s—e=1 z—(y—z)=(xy) -z and zk(r—y)=yx(y—a).

A Wagsberg hoop is a hoop satisfying the identity (x — y) —y = (y — x) — x.
A bounded hoop is a hoop equipped with a constant 0 such that 0 — x = 1.
A Wagsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by ©. In the
sequel, given a Wajsberg algebra, we write —x for x — 0, z®y for ~z — y, xAy
forx @ (x — y), zVy for (x > y) =y, and < y for x — y = 1. Note that <
is a distributive lattice order, and V and A are the corresponding operations of
join and meet. We inductively define (n)z and z(™) by:

0)z=0, (n+1)z=Mn)rxdu, 2O =1, 20tD) =) o g
Wajsberg algebras constitute a variety generated by [0, 1Jyws = ([0,1],®, —,0, 1).

If (A,®,—,0,1) is a Wajsberg algebra, then the structure (A, ®,—,0, 1) is called
a MV -algebra. Every Wajsberg algebra is termwise equivalent to a MV-algebra
([H98]). Thus we will often identify a Wajsberg algebra and the corresponding
MYV -algebra.



In attempting to axiomatize the class of LII-algebras, in [Mo00] the concept of
PMV-algebra has been introduced.

Definition 2.2 A PMV-algebra is an algebra A = (A, &, —,+,0,1) such that:
(A, ®,—,0,1) is a MV-algebra.
(A, -, 1) is a commutative monoid.

For all z,y,2 € Aone has: - (y©z2) = (z-y)S (v 2), where z Sy =
—(-z ®y).

A Ell-algebra is an algebra A = (A, ®,—, -, —,0,1) such that (A, ®,—,-,0,1)
is a PMV-algebra, (4, -, —,0,1) is a bounded hoop, and letting & =z —, 0
and A(z) = —,—x, the following equations hold:

T —=ry<xT— Y.

Alz) <z
A(A(x)) = A(z)
Az Vy) =Az) VAy)

xT—y) <z —ry.
A LH%-algebm is a LIT-algebra with an additional constant % satisfying % = ﬁ%.

Notation. In the sequel we will omit the symbol - when there is no danger of
confusion. Moreover we inductively define ™ by 2° = 1, z"*! = z"2.

In [Mo00] , Lemma 2.11 and Theorem 5.1, the following is shown:
Proposition 2.3

(i) Every PMV-algebra is isomorphic to a subdirect product of a family of
linearly ordered PMV-algebras.

(ii) A PMV-algebra and its underlying Wagsberg algebra have the same con-
gruences.

Definition 2.4 (Cf [BKW77]). A lattice-ordered ring is a structure
R = <Ra+777 Xa\/v/\70>
such that:

(i) R =(R,+,—, x,0) is a ring.



(ii) R = (R, V,A) is a lattice.

(iii) Let < denote the partial order induced by V and A. Then z < y implies
r+2z<y+z and x,y > 0 implies x x y > 0.

An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product
of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring R is an element v € R such that uxu < u,
and for all @ € R there is n € N such that a < nu, where nu = u+ ...+ u.
—_———

n times

A commutative unitary f-ring with strong unit (for short: a c-s-u-f-ring) is a
commutative f-ring with a unit for product which is also a strong unit.

In [DNDO1] the authors define a functor I'g from the category of lattice-ordered
rings with strong unit into a category of algebras, called product MV -algebras.
Here we describe the restriction of I'g to c-s-u-f-rings, which turns-out to be a
functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 2.5 The functor I'r is defined as follows:

(i) Let R = (R,+,—, X, V,A,0) be a c-s-u-f-ring, and let u be the unit of
R (which by definition is also a strong unit). Then I'r(R) denotes the
structure ([0, u], ®, —,,0,u), where [0,u] ={z € R:0<zx<u},zPy=
(x+y)A1l, =z =u—x, and - is the restriction of X to [0, u].

(ii) Let R, R’ be lattice-ordered rings, and let A be a morphism (i.e., a ho-
momorphism) from R into R’. Then I'r(h) is defined as the restriction
of h to T'r(R). (Note that I'g(h) is a homomorphism from I'g (R) into
Tr(R)).

In [Mo02], as a special case of a result contained in [DNDO1], Theorem 4.2, the
following is shown:

Proposition 2.6 I'r is an equivalence between the category of c-s-u-f-rings and
the category of PMV-algebras.

3 LII, algebras

Definition 3.1 A LII,-algebra is a structure A= (A, ®,—,-, —4,¢,0,1) where
(A, @®,-,-,0,1) is a PMV-algebra, ¢ is a constant, and — is a binary operation
such that the following conditions hold:

(Al) ¢ < —q

(A2) r—gy=(xVq) —qy

(A3) (zVa)(z —qy)=(xVa) Ay
(Ad4)

Ad) =y (0q) =2



(A5) If 22 =0 then . =0

Examples. Let A= (A, ®,—,-,—,,0,1) be a linearly ordered LII-algebra with
more than two elements, and let ¢ € A\ {0} with ¢ < —¢. Define z —, y =
(xVq) —ny, Then A, = (A, ®,, -, —,0,1) is a LIl ,-algebra. We call A, the
g-reduct of A.

The next example shows that not all LII,-algebras are g-reducts of LII-algebras.

Let [0,1]* be the unit interval of a non-trivial ultraproduct of R, and let ¢ be
p+e’P(e)
r+e2R(e)
where p,r € [0,1], » > 0, P and @ are polynomials with integer coefficients, and

0< fiiggg < 1. Let ¢ = 1/2. Then it is easily seen that A contains 0 and

1, and is closed under &, -, - and —, defined by z —, y = (z V %) —y. We
verify e.g. closure under - and under — .

Let a, 3 € A, where a = 2)12258, and 3 = giii};((z)) Then aff = %Qgg,
where H(z) = rP(z)+pR(z)+22P(z)R(x), K (z) = ¢S(2)+sQ(z)+22Q(z)S ().
Hence A is closed under -.

Nowifa\/% <B,thena—,f=1cA Iff<a< %7thena—>qﬂ: (2)6 € A.

Thus we may assume without loss of generality 4 < a and % < «. In this case,

2
a —q B = g = %, where T'(z) = qR(z) + rQ(z) + 22Q(x)R(x), and

U(z) = sP(z) + pS(x) + 22P(x)S(x).
Thus A is the domain of a LII,-algebra A.

a positive infinitesimal. Let A be the set of all elements of the form

However, A is not a g-reduct of a LIl-algebra, because A is not closed under
— . To see this, note that both £? and €3 have the form Zigjgg take p = 0,
g =1, and Q(z) = 0; then &2 is obtained letting P(x) = 1, and £? is obtained
letting P(x) = x. Hence ¢2 and & are elements of A. However, €2 —, &3 =
e ¢ A Indeed, ¢ = sizzgg would imply p + e2P(e) = ge +£2Q(¢), and finally
p=¢q=0. But ¢ =0 is excluded by the definition of A.

From Definition 3.1 it follows that the LII,-algebras form a quasivariety. How-
ever:

Theorem 3.2 The class of £11,-algebras does not constitute a variety.

Proof. Let [0,1]*, ¢, € and —, be as in the example above, and let us consider
the structure A = ([0,1]*, 8, —,-, —4,0,1,q) (with &, -, - defined in the obvious
way). It is readily seen that A is a LII,;-algebra.

Define for z,y € A, x0y iff there is k € N such that | z — y |< (k)e2, where
|z —y|=(xey)V (ySx). Itis easy to see that 0 is a congruence of PMV-
algebras. We show that € is compatible with —,. It is sufficient to prove that
if | 2 —y |< (k)e? then:

(@) [ (z—=g2)=(y —q2) |< (@k)e® and (b) | (z —¢2)— (2 —qy) [< (4k)e™.

The proof of (a) splits into the following cases:



Ifxvg<zandyVq<z, the claim is trivial.

z

IfoxVg<zandyVg>z then | (x —¢ 2) = (y =4 2) =] 1 - 5

(yvVqg)—= (yvVq)—(zVq) —z -z __ 2 2
WO o VOV < s < u=t g | gy < (2K)€2 < (4R)e%

If xVg>zand yVqg< 2z wereason as in the previous case.

z z

Ifxvg>zandyVg>z then | (x —4 2) — (y —4 2) |=| — =

[(zVg)—(yVa)l | ‘ | ‘ zVq yVq
zl\rvg)—(yvg z|lz—y T—y 9
oWV S @V = @ S (4k)e=.

The proof of (b) splits into the following cases:

If zvg<zand zVq <y, the claim is trivial.

Ifzvg<zand z2Vgqg >y, then | (z =, 2) — (2 =g y) |=| 1 — & |<

zVq '—
(Z\;il/)q_y S |$;y‘ S (2k>€2 S (4k)52

If zVg >z and zV g <y we reason as in the previous case.

If zvg>axand 2V g >y, then | (z =4 x) — (2 —¢ ¥) |=|

lz—y| |z—y| 2

r _ Y
zVq zVq ‘S

Let €2 denote the equivalence class of € modulo . Then A/f = €2 = 0 but
A/0 [~ eg = 0. Therefore A/ does not satisfy the axiom (A5) in Definition 3.1
It follows that the class of LII,;-algebras is not closed under quotients, hence it
is not a variety. |

Lemma 3.3 Let A be any LIl -algebra. Then for any v € A and for any
n,k € N\ {0}, if ¢*2™ = 0 then x = 0.

Proof. Induction on k. For k = 0 the claim follows from (A5). Suppose that
the claim holds for k¥ = m, and let us prove it for kK = m + 1. First note that
letting = 0 in axiom (A4) we get ¢ —, 0 = 0. Hence if gz = 0 then, by axiom
(A4) one has © = ¢ —4 gx = ¢ —¢ 0 = 0. So we have:

gr=0=2=0. (1)

Now if ¢™T1a™ = 0 then 0 = ¢" 12" = q(¢™z™). Thus replacing = by ¢™a" in
(1), we obtain ¢™z™ = 0 and by the induction hypothesis, x = 0. [ |

Lemma 3.4
1) In any non-trivial LIl -algebra one has ¢ > 0.
q

(i1) Any linearly ordered LIl,-algebra has no zero divisors, i.e. if xy = 0, then
either x =0 or y = 0.

Proof. Claim (i) follows from Lemma 3.3, and claim (ii) follows from axiom
(A5) of LII,-algebras. [ |



Theorem 3.5 Every subdirectly irreducible LI1;-algebra is linearly ordered. Hence
every LIl;-algebra A can be decomposed as a subdirect product of a family of lin-
early ordered L1I1,-algebras.

Proof. For any a € A\ {0}, consider the family Z, of all MV-ideals J such that
for every n,k > 0, ¢*a™ ¢ J. I, is non-empty, since by Lemma 3.3 {0} € Z,.
Moreover Z, is closed under unions of chains, therefore (Z,, C) is an inductive
partially ordered set, and, by Zorn’s lemma, it has a maximal element, call it J,.
Let A~ be the PMV-reduct of A. Since a PMV-algebra and its MV-reduct have
the same congruences, the congruence 6, associated with J, is a congruence of
PMV-algebras, too. Therefore A~ /0, is a PMV-algebra. To continue the proof
we show the following lemmas.

Lemma 3.6 For every b,c € A, eitherboce J, orcobe J,.

Proof. Let by contradiction b,¢ € A be such that b& ¢ ¢ J, and c©b ¢
Ja. Let for any subset X of A=, X denote the ideal generated by X. By
the maximality of .J, there exist k,n,h,m > 0 with ¢*a™ € J, U{b© c} and
¢"a™ € J, U {c©b}. Thus there are f,g € J, and r, s € N such that

Fa" < fo(r)(boe) and ¢"a™ < g @ (s)(cOb).
Let w = f V g and t = max{k,n, h, m,r,s}. Then
¢'a' <ud (t)(boec) and ¢'a’ <u® (t)(cODb),

therefore ¢'a’ < u @ ((t)(boc) A (t)(c& b)) = u and ¢'a® € J,, which is a
contradiction. |

Lemma 3.7 If bc € J, then either b e J, orc € J,.

Proof. Let by contradiction, b,c € A be such that b & J,, ¢ € J, and be € J,.
By the maximality of J, there exist h, k, m,n > 0 such that

¢"a™ € J, U {b} and ¢"a™ € J, U {c}.

Thus there are f,g € J, and r,5 € N such that ¢¥a™ < f @ ()b and ¢"a™ <
g (s)c.

Let u = f Vg and t = max{h,k,m,n,7,s}. Then ¢'a® < u® (t)b and ¢la’ <
u® (t)c, therefore ¢*a? < (ud (£)b)(u®d (t)c) < u? @ ((t)uc) ® ((t)ub) & ((t*)be).
Now u? @ ((t)uc) ® ((t)ub) € J,, and (t?)bc € J,, therefore ¢*'a®t € J,, and a
contradiction has been reached. [ ]

We continue the proof of theorem 3.5. Since a & Ju, (,e.4\ {0} Ja = {0}, hence
Nac A\ {0} fa is the minimal congruence. It follows that the map

®:A” % [ A /0. defined by @(b) = (b/0, : a € A\ {0})
ac A\{0}



is a monomorphism from A~ to J[,c 4 (0} A/0a-

In other words A~ can be decomposed as a subdirect product of linearly ordered
PMV-algebras. Moreover by Lemma 3.7, each component .4/, has no zero
divisors. Finally, ¢/0, # 0, because g ¢ J,. Thus we have shown:

Lemma 3.8 The PMV-reduct of any LIl -algebra can be decomposed as a sub-
direct product of a family of linearly ordered PMV-algebras (A; : i € I) without
zero divisors. Moreover, for everyi € I, ¢; > 0. R

Lemma 3.9 For any a,b € A and for every i € I, the following conditions
hold:

Ifa; vV qi <b;, then (a —¢b); = 1.
Otherwise, (a —¢ b); is the unique z; € A; such that (a; V ¢;)z; = b;.
In particular (a —4 b); depends on a; and b; but not on a and b.

Proof. First of all recall that (aVq)(a —4 b) = (aVg)((aVqg) —4 b) =bA(aVyg).
Hence for every ¢ € I we have (a; V g;)(a —¢ b); =b; A(a; V ¢;). Let z; = (a —,
b);. Then:

If (aVvq); < b; then (aVq);z; = ((aVq)Ab); = (aVq);. So (aVq);S(aVq);z; =
(aVq)i(l1ez;) =0. Since (aV q); > 0 and A; has no zero divisors (Lemma
3.8) we get z; = 1.

If (aV q); > b;, then (aV q);z; = b;. Moreover, z; is the unique element
with this property. Indeed if (aV ¢);u = b; then (aV q); | u— z; |= 0, and
since A; has no zero divisors and ¢; > 0 we conclude that u = z;.

We conclude the proof of Theorem 3.5. Define for a,b € A and for i € I,
a; —; bj = (a —4 b);. By Lemma 3.9 this definition is admissible. By Lemma
3.8 and 3.9, A; equipped by the additional operator —; satisfies axioms (A1)
...(A3) and (A5) of LII,-algebras. Let us check axiom (A4). If x = 1 then
¢ —; ¢z = 1 = x. Otherwise, ¢;x < ¢; and by Lemma 3.9, ¢; —; ¢;x is
the unique z such that ¢;z = ¢;x. But ¢;z = ¢;x implies z = z, therefore
q; —; ¢;x = x. This concludes the proof. |

Corollary 3.10 Ewvery Lll,-algebra is a subalgebra of a g-reduct of a LI1-algebra.

Proof. Let A be any LIl,-algebra, and let A; : ¢ € I be the linearly ordered
factors in the subdirect representation of A according to Theorem 3.5, let A
denote the PMV-reduct of A;, and let I'r be the functor defined in Section 2.
Then by Proposition 2.6 for every ¢ € I there is a c-s-u-f-ring R; such that
A7 =Tgr(R;). It is readily seen that R; is linearly ordered (because I'r(R;) is
linearly ordered). Moreover R; has no zero divisors: if X y = 0, then letting
|z |= 2V -2, and z = min{1,| z |,| y |} we have z € T'r(R;) = A;, and 22 = 0.



By axiom (A5) this implies z = 0. This is only possible if either 2 = 0 or y = 0.
It follows that the ring reduct of R; is an integral domain. Now let F; be the
fraction field of R;. Then A is a subalgebra of I'r(F;). For z,y € T'r(F;),
define
1 ifx <y
(@ = y)i = { yr~! otherwise

Then —, makes I'g(F;) a LII-algebra (see [Mo00] ), call it £LP;. Moreover by
Lemma 3.9 for all z,y € A; we have: © —, y = (£V¢) —» y. Therefore A4; is a
subalgebra of a g-reduct of LP;, and A is a subalgebra of a g-reduct of [, LP;.

|

Definition 3.11 Let A be any LI -algebra. We say that ¢ € A\ {0} is an
infinitesimal if for any natural number n one has: (n)e < —e.

The next corollary shows that any linearly ordered LIl -algebra which is not a
g-reduct of a LII-algebra must have infinitesimals:

Corollary 3.12 Let A be a linearly ordered L11,-algebra without infinitesimals.
Then A is a g-reduct of an LII-algebra.

Proof. We just need to check that product in A has a residual —, . This
amounts to prove that for any x,y there is a z such that ze =z Ay. If x <y
then we can take z = 1. If z = 1, then we can take z = y. Otherwise, since there
are no infinitesimals, there is n € N such that (n)z > —z. Take n minimal with
this property. Now recall that A embeds into a ¢g-reduct of a linearly ordered LII-
algebra B (Corollary 3.10), and that every linearly ordered LII-algebra embeds
into an ultrapower of the LII-algebra [0,1]§; on [0,1] ([Mo02]). Hence the
universal formula

Vay((n)a > ~a)&e((n — Dz < ~2)&(y < ©)) = (& =z y = ()7 —x (0)1))

(where & and = denote classical conjunction and classical implication respec-
tively) being true in [0, 1]f , is true in B. Now ¢ < (n)x (because ¢ < —q).
Since A embeds into a g-reduct of B, (n)z —4 (n)y = (n)z Vq) == (n)y =
(n)z =z (Ny=2 —ry. ]

4 Generation by standard LIl ,-algebras

This section is entirely devoted to the proof of the fact that the variety of LII,-
algebras is generated as a quasivariety by its standard members, i.e., by those
LII,-algebras whose lattice reduct is ([0, 1], max, min).

Definition 4.1 In the sequel, for every 0 < ¢ < 3, [0, 1], will denote the LIT,-
algebra ([0,1],&®, -, -, —4,0,1,¢), where &, - and - are defined as usual, and
Y ifxvVg>y

= vV s = Ve 1
T—gy=(xVgq) —ry { 1 otherwise




Theorem 4.2 The class of LIl;-algebras is generated as a quasivariety by the
class S ={[0,1],: 0 < ¢ < 1}.

Proof. Let ® be a quasi identity which is not valid in all LIl -algebras. Then
® fails to hold in some subdirectly irreducible, hence (Theorem 3.5) linearly
ordered, LI -algebra A. Now (Corollary 3.10) A embeds into a g-reduct B of
a linearly ordered LII-algebra D, and ® fails in B, too. Moreover, ([Mo01]) ev-
ery linearly ordered LII-algebra embeds into an ultrapower £ of the LII-algebra
[0, 1], on [0, 1]. At this point, we can observe that the existence of an evalua-
tion e in B which invalidates ® can be written as an existential formula (in the
language of LIT-algebras) of the form

Jg3x ... 2, (0 < g&q < —q&¥(x1,. .. 20, q))

where U quantifier-free, and x4, ..., x, are the variables occurring in ®. Such
a formula is preserved under taking superstructures, hence it is true in £, and
finally it is true in [0,1]j. Let ¢ € (0,3] and ai1,...,a, € [0,1] be such
that ¥(ai,...,an,q) is true in [0, 1]}, and let e be the evaluation defined by
e(x;) =a; for i =1,...,n. Then ® is invalidated by e in [0, 1],. [ |

Corollary 4.3 Let A be a linearly ordered Lll;-algebra with more than two
elements. Then the PMV-reduct A~ of A has a subalgebra isomorphic to (Q N
[Oa 1]7 @7 ey 07 1>

Proof. By Corollary 3.10, B is a subalgebra of a g-reduct of a linearly ordered
LII-algebra D. Hence it is sufficient to prove that for all n € N\ {0} there is an
element a of B, denoted by %, such that (n — 1)a = —a. Indeed if we prove this,

then as in [Mo0O] we can see that the map & : ™ 2, (m)L is an embedding

of (QN[0,1],&,—,-,0,1) into the PMV-reduct of B. Let h = (¢ ® q) —4 ¢.
Then h = —h, because this property can be expressed by an equation which
is true in any g-reduct of [0, 1]y, hence by Theorem 4.2 it is true in any
LII,-algebra. Let k£ be the minimum natural number such that 2k > n, and let
a = (n)h* —yq hE. Then for any choice of 0 < ¢ < h we have that ¢ < h < (n)h*.
Hence a = (n)h* —, h* = (n)h* —, h*. Now in [0,1]y; if » = —h and
a = (n)h* —, h¥ then (n — 1)a = —a. Since this fact can be expressed by a
universal Horn formula, it holds in any LII-algebra. Hence (n — 1)a = —a, and
we can take % =a. |
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