Continuous approximations of MV-algebras with product and product residuation

F. Montagna, L. Spada Dipartimento di Matematica Via del Capitano 15 53100 Siena (Italy) email: {montagna, spada}@unisi.it

Abstract. Recently, MV-algebras with product have been investigated from different points of view. In particular, in [EGM01], a variety resulting from the combination of MV-algebras and product algebras (see [H98]) has been introduced. The elements of this variety are called LII-algebras. Even though the language of LII-algebras is strong enough to describe the main properties of product and of Lukasiewicz connectives on [0, 1], the discontinuity of product implication introduces some problems in the applications, because a small error in the data may cause a relevant error in the output. In this paper we try to overcome this difficulty, substituting the product implication by a continuous approximation of it. The resulting algebras, the $L\Pi_q$ -algebras, are investigated in the present paper. In this paper we give a complete axiomatization of the quasivariety obtained in this way, and we show that such quasivariety is generated by the class of all $L\Pi_q$ -algebras whose lattice reduct is the unit interval [0, 1] with the usual order.

MSC: 03B50, 06D35

Keywords: MV-algebras, L Π -algebras.

1 Introduction

MV-algebras with product have been widely investigated by many authors, [DND01], [M000], [EGM01], [M01] and [MP02] and with many motivations, arising from algebra, algebraic geometry and from the theory of many-valued control. While an axiomatization of the variety of MV-algebras with product generated by [0,1] with the Lukasiewicz operators and with product seems to be very problematic, the presence of product residuation simplifies the situation. Consider the structure $[0,1]_{L\Pi} = \langle [0,1], \oplus, \neg, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$, where \cdot denotes ordinary product, and the remaining operations are defined as follows:

$$x \oplus y = \min\{x+y,1\}, \ \neg x = 1-x, \ x \to_{\pi} y = \begin{cases} \frac{y}{x} & \text{if } x > y\\ 1 & \text{otherwise} \end{cases}$$

Then $[0, 1]_{L\Pi}$ generates a variety which can be axiomatized by a finite number of equations. The members of such variety, called $L\Pi$ -algebras have been deeply investigated, [M000], [EGM01], [M01] and [MP01].

A negative counterpart for the expressiveness of the language of LII-algebras is the loss of continuity of the truth functions of formulas, due to the fact that the truth function of \rightarrow_{π} is not continuous in (0,0); this may cause problems when using LII in the treatment of approximate data, because a small error in the data may cause relevant errors in the output.

These observations constitute the main motivation for an investigation of a class of algebras in which the discontinuous product implication is replaced by a continuous approximation of it. The idea is the following: we fix a positive number q (the intuition is that q is greater than 0 but very close to 0), and we replace product implication \rightarrow_{π} by the operation \rightarrow_{q} defined by $x \rightarrow_{q} y = (x \lor q) \rightarrow_{\pi} y$. Note that \rightarrow_{q} defined in this way is continuous.

The present paper is devoted to an investigation of the general properties of $L\Pi_q$ -algebras. These algebras are introduced in Section 3. In this section we prove some general properties of these structures. For example, $L\Pi_q$ -algebras constitute a quasivariety, but not a variety. Moreover, every $L\Pi_q$ -algebra is isomorphic to a subdirect product of a family of linearly ordered $L\Pi_q$ -algebras, and is a subalgebra of a $L\Pi_q$ algebra obtained from a $L\Pi$ -algebra letting $x \to_q y = (x \lor q) \to_{\pi} y$, where q denotes a suitably chosen constant. Finally, in Section 4 we prove that the class of $L\Pi_q$ -algebras is generated as a quasivariety by the class of all $L\Pi_q$ -algebras whose lattice reduct is [0, 1] with the usual order.

2 Preliminaries

Definition 2.1 (see e.g. [BF00]). A *hoop* is an algebra $\langle H, \star, \to, 1 \rangle$ such that $\langle H, \star, 1 \rangle$ is a commutative monoid, and \to is a binary operation such that the following identities hold:

$$x \to x = 1, \quad x \to (y \to z) = (x \star y) \to z \quad \text{and} \quad x \star (x \to y) = y \star (y \to x).$$

A Wajsberg hoop is a hoop satisfying the identity $(x \to y) \to y = (y \to x) \to x$. A bounded hoop is a hoop equipped with a constant 0 such that $0 \to x = 1$. A Wajsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by \odot . In the sequel, given a Wajsberg algebra, we write $\neg x$ for $x \to 0$, $x \oplus y$ for $\neg x \to y$, $x \wedge y$ for $x \odot (x \to y)$, $x \lor y$ for $(x \to y) \to y$, and $x \le y$ for $x \to y = 1$. Note that \le is a distributive lattice order, and \lor and \land are the corresponding operations of join and meet. We inductively define (n)x and $x^{(n)}$ by:

 $(0)x = 0, \quad (n+1)x = (n)x \oplus x, \qquad x^{(0)} = 1, \quad x^{(n+1)} = x^{(n)} \odot x.$

Wajsberg algebras constitute a variety generated by $[0,1]_W = \langle [0,1], \odot, \rightarrow, 0, 1 \rangle$.

If $\langle A, \odot, \rightarrow, 0, 1 \rangle$ is a Wajsberg algebra, then the structure $\langle A, \oplus, \neg, 0, 1 \rangle$ is called a MV-algebra. Every Wajsberg algebra is termwise equivalent to a MV-algebra ([H98]). Thus we will often identify a Wajsberg algebra and the corresponding MV-algebra. In attempting to axiomatize the class of LII-algebras, in [Mo00] the concept of PMV-algebra has been introduced.

Definition 2.2 A PMV-algebra is an algebra $\mathcal{A} = \langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ such that:

 $\langle A, \oplus, \neg, 0, 1 \rangle$ is a MV-algebra.

 $\langle A, \cdot, 1 \rangle$ is a commutative monoid.

For all $x, y, z \in \mathcal{A}$ one has: $x \cdot (y \ominus z) = (x \cdot y) \ominus (x \cdot z)$, where $x \ominus y = \neg(\neg x \oplus y)$.

A $L\Pi$ -algebra is an algebra $\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ such that $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, $\langle A, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ is a bounded hoop, and letting $\neg_{\pi} x = x \rightarrow_{\pi} 0$ and $\Delta(x) = \neg_{\pi} \neg x$, the following equations hold:

$$\begin{aligned} x &\to_{\pi} y \leq x \to y. \\ x &\land \neg_{\pi} x = 0 \\ \Delta(x) \odot \Delta(x \to y) \leq \Delta(y) \\ \Delta(x) \leq x \\ \Delta(\Delta(x)) &= \Delta(x) \\ \Delta(x \lor y) &= \Delta(x) \lor \Delta(y) \\ \Delta(x) \lor \neg \Delta(x) = 1 \\ \Delta(x \to y) \leq x \to_{\pi} y. \end{aligned}$$

A $L\Pi_{\frac{1}{2}}$ -algebra is a $L\Pi$ -algebra with an additional constant $\frac{1}{2}$ satisfying $\frac{1}{2} = \neg_{\frac{1}{2}}^2$.

Notation. In the sequel we will omit the symbol \cdot when there is no danger of confusion. Moreover we inductively define x^n by $x^0 = 1$, $x^{n+1} = x^n x$.

In [Mo00], Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 2.3

- (i) Every PMV-algebra is isomorphic to a subdirect product of a family of linearly ordered PMV-algebras.
- (ii) A PMV-algebra and its underlying Wajsberg algebra have the same congruences.

Definition 2.4 (Cf [BKW77]). A lattice-ordered ring is a structure

$$\mathcal{R} = \langle R, +, -, \times, \lor, \land, 0 \rangle$$

such that:

(i) $\mathcal{R} = \langle R, +, -, \times, 0 \rangle$ is a ring.

- (ii) $\mathcal{R} = \langle R, \vee, \wedge \rangle$ is a lattice.
- (iii) Let \leq denote the partial order induced by \vee and \wedge . Then $x \leq y$ implies $x + z \leq y + z$, and $x, y \geq 0$ implies $x \times y \geq 0$.

An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring \mathcal{R} is an element $u \in \mathcal{R}$ such that $u \times u \leq u$, and for all $a \in \mathcal{R}$ there is $n \in \mathbb{N}$ such that $a \leq nu$, where $nu = \underbrace{u + \ldots + u}_{n \text{ times}}$.

A commutative unitary f-ring with strong unit (for short: a c-s-u-f-ring) is a commutative f-ring with a unit for product which is also a strong unit.

In [DND01] the authors define a functor $\Gamma_{\mathbf{R}}$ from the category of lattice-ordered rings with strong unit into a category of algebras, called *product MV-algebras*. Here we describe the restriction of $\Gamma_{\mathbf{R}}$ to c-s-u-f-rings, which turns-out to be a functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 2.5 The functor $\Gamma_{\mathbf{R}}$ is defined as follows:

- (i) Let $\mathcal{R} = \langle R, +, -, \times, \vee, \wedge, 0 \rangle$ be a c-s-u-f-ring, and let u be the unit of \mathcal{R} (which by definition is also a strong unit). Then $\Gamma_{\mathbf{R}}(\mathcal{R})$ denotes the structure $\langle [0, u], \oplus, \neg, \cdot, 0, u \rangle$, where $[0, u] = \{x \in \mathcal{R} : 0 \le x \le u\}, x \oplus y = (x + y) \land 1, \neg x = u x$, and \cdot is the restriction of \times to [0, u].
- (ii) Let \mathcal{R} , \mathcal{R}' be lattice-ordered rings, and let h be a morphism (i.e., a homomorphism) from \mathcal{R} into \mathcal{R}' . Then $\Gamma_{\mathbf{R}}(h)$ is defined as the restriction of h to $\Gamma_{\mathbf{R}}(\mathcal{R})$. (Note that $\Gamma_{\mathbf{R}}(h)$ is a homomorphism from $\Gamma_{\mathbf{R}}(\mathcal{R})$ into $\Gamma_{\mathbf{R}}(\mathcal{R}')$).

In [Mo02], as a special case of a result contained in [DND01], Theorem 4.2, the following is shown:

Proposition 2.6 $\Gamma_{\mathbf{R}}$ is an equivalence between the category of c-s-u-f-rings and the category of PMV-algebras.

3 $L\Pi_q$ algebras

Definition 3.1 A $L\Pi_q$ -algebra is a structure $\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_q, q, 0, 1 \rangle$ where $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, q is a constant, and \rightarrow_q is a binary operation such that the following conditions hold:

- (A1) $q \leq \neg q$
- (A2) $x \to_q y = (x \lor q) \to_q y$
- (A3) $(x \lor q)(x \to_q y) = (x \lor q) \land y$
- (A4) $q \rightarrow_q (xq) = x$

(A5) If $x^2 = 0$ then x = 0

Examples. Let $\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ be a linearly ordered LII-algebra with more than two elements, and let $q \in \mathcal{A} \setminus \{0\}$ with $q \leq \neg q$. Define $x \to_q y =$ $(x \lor q) \to_{\Pi} y$. Then $\mathcal{A}_q = \langle A, \oplus, \neg, \cdot, \to_q, 0, 1 \rangle$ is a $\mathbb{L}\Pi_q$ -algebra. We call \mathcal{A}_q the q-reduct of \mathcal{A} .

The next example shows that not all $L\Pi_q$ -algebras are q-reducts of L\Pi-algebras. Let $[0,1]^*$ be the unit interval of a non-trivial ultraproduct of **R**, and let ε be a positive infinitesimal. Let A be the set of all elements of the form $\frac{p+\varepsilon^2 P(\varepsilon)}{r+\varepsilon^2 R(\varepsilon)}$ where $p, r \in [0, 1], r > 0, P$ and Q are polynomials with integer coefficients, and $0 \leq \frac{p + \varepsilon^2 P(\varepsilon)}{r + \varepsilon^2 R(\varepsilon)} \leq 1$. Let q = 1/2. Then it is easily seen that A contains 0 and 1, and is closed under \oplus , \neg , \cdot and \rightarrow_q defined by $x \rightarrow_q y = (x \lor \frac{1}{2}) \rightarrow_{\pi} y$. We

verify e.g. closure under \cdot and under \rightarrow_{π} . Let $\alpha, \beta \in A$, where $\alpha = \frac{p+\varepsilon^2 P(\varepsilon)}{q+\varepsilon^2 Q(\varepsilon)}$, and $\beta = \frac{r+\varepsilon^2 R(\varepsilon)}{s+\varepsilon^2 S(\varepsilon)}$. Then $\alpha\beta = \frac{pr+\varepsilon^2 H(\varepsilon)}{sq+\varepsilon^2 K(\varepsilon)}$, where $H(x) = rP(x) + pR(x) + x^2 P(x)R(x)$, $K(x) = qS(x) + sQ(x) + x^2Q(x)S(x)$. Hence A is closed under \cdot .

Now if $\alpha \vee \frac{1}{2} \leq \beta$, then $\alpha \to_q \beta = 1 \in A$. If $\beta < \alpha \leq \frac{1}{2}$, then $\alpha \to_q \beta = (2)\beta \in A$. Thus we may assume without loss of generality $\beta < \alpha$ and $\frac{1}{2} < \alpha$. In this case, $\alpha \to_q \beta = \frac{\beta}{\alpha} = \frac{rq + \varepsilon^2 T(\varepsilon)}{sp + \varepsilon^2 U(\varepsilon)}, \text{ where } T(x) = qR(x) + rQ(x) + x^2Q(x)R(x), \text{ and } R(x) + rQ(x) + x^2Q(x)R(x), \text{ and } R(x) + rQ(x) + x^2Q(x)R(x), \text{ and } R(x) + x^2Q(x)R(x) +$ $U(x) = sP(x) + pS(x) + x^2P(x)S(x).$

Thus A is the domain of a $L\Pi_{\sigma}$ -algebra \mathcal{A} .

However, \mathcal{A} is not a q-reduct of a LII-algebra, because A is not closed under \rightarrow_{π} . To see this, note that both ε^2 and ε^3 have the form $\frac{p+\varepsilon^2 P(\varepsilon)}{q+\varepsilon^2 Q(\varepsilon)}$: take p=0, q=1, and Q(x)=0; then ε^2 is obtained letting P(x)=1, and ε^2 is obtained letting P(x)=x. Hence ε^2 and ε^3 are elements of A. However, $\varepsilon^2 \rightarrow_{\pi} \varepsilon^3 = 2\pi i \varepsilon^3$ $\varepsilon \notin A$. Indeed, $\varepsilon = \frac{p + \varepsilon^2 P(\varepsilon)}{q + \varepsilon^2 Q(\varepsilon)}$ would imply $p + \varepsilon^2 P(\varepsilon) = q\varepsilon + \varepsilon^3 Q(\varepsilon)$, and finally p = q = 0. But q = 0 is excluded by the definition of A.

From Definition 3.1 it follows that the $L\Pi_q$ -algebras form a quasivariety. However:

Theorem 3.2 The class of $L\Pi_q$ -algebras does not constitute a variety.

Proof. Let $[0,1]^*$, q, ε and \rightarrow_q be as in the example above, and let us consider the structure $\mathcal{A} = \langle [0,1]^*, \oplus, \neg, \cdot, \rightarrow_q, 0, 1, q \rangle$ (with \oplus, \neg, \cdot defined in the obvious way). It is readily seen that \mathcal{A} is a $L\Pi_q$ -algebra.

Define for $x, y \in \mathcal{A}$, $x\theta y$ iff there is $k \in \mathbf{N}$ such that $|x - y| \leq (k)\varepsilon^2$, where $|x-y| = (x \ominus y) \lor (y \ominus x)$. It is easy to see that θ is a congruence of PMValgebras. We show that θ is compatible with \rightarrow_q . It is sufficient to prove that if $|x - y| \leq (k)\varepsilon^2$ then:

(a)
$$|(x \to_q z) - (y \to_q z)| \le (4k)\varepsilon^2$$
 and (b) $|(z \to_q x) - (z \to_q y)| \le (4k)\varepsilon^2$.

The proof of (a) splits into the following cases:

If $x \lor q \le z$ and $y \lor q \le z$, the claim is trivial.

If
$$x \lor q \le z$$
 and $y \lor q > z$, then $\mid (x \to_q z) - (y \to_q z) \mid = \mid 1 - \frac{z}{y \lor q} \mid = \frac{(y \lor q) - z}{y \lor q} \le \frac{(y \lor q) - (x \lor q)}{y \lor q} \le \frac{y - x}{q} \le \frac{y - x}{q} = 2 \mid x - y \mid \le (2k)\varepsilon^2 \le (4k)\varepsilon^2.$

If $x \lor q > z$ and $y \lor q \le z$, we reason as in the previous case.

 $\begin{array}{l} \text{If } x \lor q > z \text{ and } y \lor q > z, \text{ then } \mid (x \to_q z) - (y \to_q z) \mid = \mid \frac{z}{x \lor q} - \frac{z}{y \lor q} \mid = \\ \frac{z \mid (x \lor q) - (y \lor q) \mid}{(x \lor q)(y \lor q)} \leq \frac{z \mid x - y \mid}{(x \lor q)(y \lor q)} \leq \frac{|x - y|}{q^2} \leq (4k) \varepsilon^2. \end{array}$

The proof of (b) splits into the following cases:

If $z \lor q \leq x$ and $z \lor q \leq y$, the claim is trivial.

If
$$z \lor q \le x$$
 and $z \lor q > y$, then $|(z \to_q x) - (z \to_q y)| = |1 - \frac{y}{z \lor q}| \le \frac{(z \lor q) - y}{z \lor q} \le \frac{|x - y|}{q} \le (2k)\varepsilon^2 \le (4k)\varepsilon^2$.

If $z \lor q > x$ and $z \lor q \le y$ we reason as in the previous case.

If
$$z \lor q > x$$
 and $z \lor q > y$, then $|(z \to_q x) - (z \to_q y)| = |\frac{x}{z \lor q} - \frac{y}{z \lor q}| \le \frac{|x-y|}{z \lor q} \le \frac{|x-y|}{q} \le (4k)\varepsilon^2$

Let ε_{θ}^2 denote the equivalence class of ε modulo θ . Then $\mathcal{A}/\theta \models \varepsilon_{\theta}^2 = 0$ but $\mathcal{A}/\theta \not\models \varepsilon_{\theta} = 0$. Therefore \mathcal{A}/θ does not satisfy the axiom (A5) in Definition 3.1 It follows that the class of $\mathrm{L}\Pi_q$ -algebras is not closed under quotients, hence it is not a variety.

Lemma 3.3 Let \mathcal{A} be any $L\Pi_q$ -algebra. Then for any $x \in \mathcal{A}$ and for any $n, k \in \mathbb{N} \setminus \{0\}$, if $q^k x^n = 0$ then x = 0.

Proof. Induction on k. For k = 0 the claim follows from (A5). Suppose that the claim holds for k = m, and let us prove it for k = m + 1. First note that letting x = 0 in axiom (A4) we get $q \rightarrow_q 0 = 0$. Hence if qx = 0 then, by axiom (A4) one has $x = q \rightarrow_q qx = q \rightarrow_q 0 = 0$. So we have:

$$qx = 0 \Rightarrow x = 0. \tag{1}$$

Now if $q^{m+1}x^n = 0$ then $0 = q^{m+1}x^n = q(q^mx^n)$. Thus replacing x by q^mx^n in (1), we obtain $q^mx^n = 0$ and by the induction hypothesis, x = 0.

Lemma 3.4

- (i) In any non-trivial $L\Pi_q$ -algebra one has q > 0.
- (ii) Any linearly ordered $L\Pi_q$ -algebra has no zero divisors, i.e. if xy = 0, then either x = 0 or y = 0.

Proof. Claim (i) follows from Lemma 3.3, and claim (ii) follows from axiom (A5) of $L\Pi_q$ -algebras.

Theorem 3.5 Every subdirectly irreducible $L\Pi_q$ -algebra is linearly ordered. Hence every $L\Pi_q$ -algebra \mathcal{A} can be decomposed as a subdirect product of a family of linearly ordered $L\Pi_q$ -algebras.

Proof. For any $a \in \mathcal{A} \setminus \{0\}$, consider the family \mathcal{I}_a of all MV-ideals J such that for every $n, k > 0, q^k a^n \notin J$. \mathcal{I}_a is non-empty, since by Lemma 3.3 $\{0\} \in \mathcal{I}_a$. Moreover \mathcal{I}_a is closed under unions of chains, therefore $\langle \mathcal{I}_a, \subseteq \rangle$ is an inductive partially ordered set, and, by Zorn's lemma, it has a maximal element, call it J_a . Let \mathcal{A}^- be the PMV-reduct of \mathcal{A} . Since a PMV-algebra and its MV-reduct have the same congruences, the congruence θ_a associated with J_a is a congruence of PMV-algebras, too. Therefore \mathcal{A}^-/θ_a is a PMV-algebra. To continue the proof we show the following lemmas.

Lemma 3.6 For every $b, c \in A$, either $b \ominus c \in J_a$ or $c \ominus b \in J_a$.

Proof. Let by contradiction $b, c \in \mathcal{A}$ be such that $b \ominus c \notin J_a$ and $c \ominus b \notin J_a$. Let for any subset X of \mathcal{A}^- , \overline{X} denote the ideal generated by X. By the maximality of J_a there exist k, n, h, m > 0 with $q^k a^n \in \overline{J_a \cup \{b \ominus c\}}$ and $q^h a^m \in \overline{J_a \cup \{c \ominus b\}}$. Thus there are $f, g \in J_a$ and $r, s \in \mathbb{N}$ such that

$$q^k a^n \leq f \oplus (r)(b \ominus c)$$
 and $q^h a^m \leq g \oplus (s)(c \ominus b)$.

Let $u = f \lor g$ and $t = \max\{k, n, h, m, r, s\}$. Then

$$q^t a^t \le u \oplus (t)(b \ominus c) \text{ and } q^t a^t \le u \oplus (t)(c \ominus b),$$

therefore $q^t a^t \leq u \oplus ((t)(b \oplus c) \land (t)(c \oplus b)) = u$ and $q^t a^t \in J_a$, which is a contradiction.

Lemma 3.7 If $bc \in J_a$ then either $b \in J_a$ or $c \in J_a$.

Proof. Let by contradiction, $b, c \in \mathcal{A}$ be such that $b \notin J_a$, $c \notin J_a$ and $bc \in J_a$. By the maximality of J_a there exist h, k, m, n > 0 such that

$$q^k a^n \in \overline{J_a \cup \{b\}} \text{ and } q^h a^m \in \overline{J_a \cup \{c\}}.$$

Thus there are $f, g \in J_a$ and $r, s \in \mathbb{N}$ such that $q^k a^n \leq f \oplus (r)b$ and $q^h a^m \leq g \oplus (s)c$.

Let $u = f \lor g$ and $t = \max\{h, k, m, n, r, s\}$. Then $q^t a^t \le u \oplus (t)b$ and $q^t a^t \le u \oplus (t)c$, therefore $q^{2t}a^{2t} \le (u \oplus (t)b)(u \oplus (t)c) \le u^2 \oplus ((t)uc) \oplus ((t)ub) \oplus ((t^2)bc)$. Now $u^2 \oplus ((t)uc) \oplus ((t)ub) \in J_a$, and $(t^2)bc \in J_a$, therefore $q^{2t}a^{2t} \in J_a$, and a contradiction has been reached.

We continue the proof of theorem 3.5. Since $a \notin J_a$, $\bigcap_{a \in \mathcal{A} \setminus \{0\}} J_a = \{0\}$, hence $\bigcap_{a \in \mathcal{A} \setminus \{0\}} \theta_a$ is the minimal congruence. It follows that the map

$$\Phi: \mathcal{A}^- \xrightarrow{\Phi} \prod_{a \in \mathcal{A} \setminus \{0\}} \mathcal{A}^- / \theta_a \text{ defined by } \Phi(b) = \langle b / \theta_a : a \in \mathcal{A} \setminus \{0\} \rangle$$

is a monomorphism from \mathcal{A}^- to $\prod_{a \in \mathcal{A} \setminus \{0\}} \mathcal{A} / \theta_a$.

In other words \mathcal{A}^- can be decomposed as a subdirect product of linearly ordered PMV-algebras. Moreover by Lemma 3.7, each component \mathcal{A}/θ_a has no zero divisors. Finally, $q/\theta_a \neq 0$, because $q \notin J_a$. Thus we have shown:

Lemma 3.8 The PMV-reduct of any $L\Pi_q$ -algebra can be decomposed as a subdirect product of a family of linearly ordered PMV-algebras $\langle A_i : i \in I \rangle$ without zero divisors. Moreover, for every $i \in I$, $q_i > 0$.

Lemma 3.9 For any $a, b \in A$ and for every $i \in I$, the following conditions hold:

If $a_i \vee q_i \leq b_i$, then $(a \rightarrow_q b)_i = 1$.

Otherwise, $(a \rightarrow_q b)_i$ is the unique $z_i \in \mathcal{A}_i$ such that $(a_i \lor q_i)z_i = b_i$.

In particular $(a \rightarrow_q b)_i$ depends on a_i and b_i but not on a and b.

Proof. First of all recall that $(a \lor q)(a \to_q b) = (a \lor q)((a \lor q) \to_q b) = b \land (a \lor q)$. Hence for every $i \in I$ we have $(a_i \lor q_i)(a \to_q b)_i = b_i \land (a_i \lor q_i)$. Let $z_i = (a \to_q b)_i$. Then:

If $(a \lor q)_i \leq b_i$ then $(a \lor q)_i z_i = ((a \lor q) \land b)_i = (a \lor q)_i$. So $(a \lor q)_i \ominus (a \lor q)_i z_i = (a \lor q)_i (1 \ominus z_i) = 0$. Since $(a \lor q)_i > 0$ and \mathcal{A}_i has no zero divisors (Lemma 3.8) we get $z_i = 1$.

If $(a \lor q)_i > b_i$, then $(a \lor q)_i z_i = b_i$. Moreover, z_i is the unique element with this property. Indeed if $(a \lor q)_i u = b_i$ then $(a \lor q)_i | u - z_i | = 0$, and since \mathcal{A}_i has no zero divisors and $q_i > 0$ we conclude that $u = z_i$.

We conclude the proof of Theorem 3.5. Define for $a, b \in \mathcal{A}$ and for $i \in I$, $a_i \to_i b_i = (a \to_q b)_i$. By Lemma 3.9 this definition is admissible. By Lemma 3.8 and 3.9, \mathcal{A}_i equipped by the additional operator \to_i satisfies axioms (A1) \dots (A3) and (A5) of LII_q -algebras. Let us check axiom (A4). If x = 1 then $q_i \to_i q_i x = 1 = x$. Otherwise, $q_i x < q_i$ and by Lemma 3.9, $q_i \to_i q_i x$ is the unique z such that $q_i z = q_i x$. But $q_i z = q_i x$ implies z = x, therefore $q_i \to_i q_i x = x$. This concludes the proof.

Corollary 3.10 Every $L\Pi_q$ -algebra is a subalgebra of a q-reduct of a $L\Pi$ -algebra.

Proof. Let \mathcal{A} be any $\mathrm{L}\Pi_q$ -algebra, and let $\mathcal{A}_i : i \in I$ be the linearly ordered factors in the subdirect representation of \mathcal{A} according to Theorem 3.5, let \mathcal{A}_i^- denote the PMV-reduct of \mathcal{A}_i , and let $\Gamma_{\mathbf{R}}$ be the functor defined in Section 2. Then by Proposition 2.6 for every $i \in I$ there is a c-s-u-f-ring \mathcal{R}_i such that $\mathcal{A}_i^- = \Gamma_{\mathbf{R}}(\mathcal{R}_i)$. It is readily seen that \mathcal{R}_i is linearly ordered (because $\Gamma_{\mathbf{R}}(\mathcal{R}_i)$ is linearly ordered). Moreover \mathcal{R}_i has no zero divisors: if $x \times y = 0$, then letting $|x| = x \vee -x$, and $z = \min\{1, |x|, |y|\}$ we have $z \in \Gamma_{\mathbf{R}}(\mathcal{R}_i) = \mathcal{A}_i$, and $z^2 = 0$.

By axiom (A5) this implies z = 0. This is only possible if either x = 0 or y = 0. It follows that the ring reduct of \mathcal{R}_i is an integral domain. Now let \mathcal{F}_i be the fraction field of \mathcal{R}_i . Then \mathcal{A}_i^- is a subalgebra of $\Gamma_{\mathbf{R}}(\mathcal{F}_i)$. For $x, y \in \Gamma_{\mathbf{R}}(\mathcal{F}_i)$, define

$$(x \to_{\pi} y)_i = \begin{cases} 1 & \text{if } x \le y \\ yx^{-1} & \text{otherwise} \end{cases}$$

Then \to_{π} makes $\Gamma_{\mathbf{R}}(\mathcal{F}_i)$ a LII-algebra (see [Mo00]), call it \mathcal{LP}_i . Moreover by Lemma 3.9 for all $x, y \in \mathcal{A}_i$ we have: $x \to_q y = (x \lor q) \to_{\pi} y$. Therefore \mathcal{A}_i is a subalgebra of a *q*-reduct of \mathcal{LP}_i , and \mathcal{A} is a subalgebra of a *q*-reduct of $\prod_{i \in \mathcal{LP}_i} \mathcal{LP}_i$.

Definition 3.11 Let \mathcal{A} be any $\mathbb{L}\Pi_q$ -algebra. We say that $\varepsilon \in \mathcal{A} \setminus \{0\}$ is an *infinitesimal* if for any natural number n one has: $(n)\varepsilon \leq \neg \varepsilon$.

The next corollary shows that any linearly ordered $L\Pi_q$ -algebra which is not a q-reduct of a LII-algebra must have infinitesimals:

Corollary 3.12 Let \mathcal{A} be a linearly ordered $L\Pi_q$ -algebra without infinitesimals. Then \mathcal{A} is a q-reduct of an $L\Pi$ -algebra.

Proof. We just need to check that product in \mathcal{A} has a residual \rightarrow_{π} . This amounts to prove that for any x, y there is a z such that $zx = x \land y$. If $x \leq y$ then we can take z = 1. If x = 1, then we can take z = y. Otherwise, since there are no infinitesimals, there is $n \in \mathbb{N}$ such that $(n)x \geq \neg x$. Take n minimal with this property. Now recall that \mathcal{A} embeds into a q-reduct of a linearly ordered LII-algebra \mathcal{B} (Corollary 3.10), and that every linearly ordered LII-algebra embeds into an ultrapower of the LII-algebra $[0,1]_{\mathrm{LII}}$ on [0,1] ([Mo02]). Hence the universal formula

$$\forall x \forall y (((n)x \ge \neg x) \& ((n-1)x < \neg x) \& (y < x)) \Rightarrow (x \to_{\pi} y = (n)x \to_{\pi} (n)y))$$

(where & and \Rightarrow denote classical conjunction and classical implication respectively) being true in $[0,1]_{\text{LII}}$, is true in \mathcal{B} . Now $q \leq (n)x$ (because $q \leq \neg q$). Since \mathcal{A} embeds into a q-reduct of \mathcal{B} , $(n)x \rightarrow_q (n)y = ((n)x \lor q) \rightarrow_{\pi} (n)y =$ $(n)x \rightarrow_{\pi} (n)y = x \rightarrow_{\pi} y$.

4 Generation by standard $L\Pi_{a}$ -algebras

This section is entirely devoted to the proof of the fact that the variety of $L\Pi_q$ algebras is generated as a quasivariety by its *standard* members, i.e., by those $L\Pi_q$ -algebras whose lattice reduct is $\langle [0, 1], \max, \min \rangle$.

Definition 4.1 In the sequel, for every $0 < q \leq \frac{1}{2}$, $[0,1]_q$ will denote the $L\Pi_q$ -algebra $\langle [0,1], \oplus, \neg, \cdot, \rightarrow_q, 0, 1, q \rangle$, where \oplus, \neg and \cdot are defined as usual, and $x \rightarrow_q y = (x \lor q) \rightarrow_{\pi} y = \begin{cases} \frac{y}{x \lor q} & \text{if } x \lor q > y \\ 1 & \text{otherwise} \end{cases}$

Theorem 4.2 The class of $L\Pi_q$ -algebras is generated as a quasivariety by the class $\mathbf{S} = \{[0,1]_q : 0 < q \leq \frac{1}{2}\}.$

Proof. Let Φ be a quasi identity which is not valid in all Π_q -algebras. Then Φ fails to hold in some subdirectly irreducible, hence (Theorem 3.5) linearly ordered, Π_q -algebra \mathcal{A} . Now (Corollary 3.10) \mathcal{A} embeds into a *q*-reduct \mathcal{B} of a linearly ordered Π -algebra \mathcal{D} , and Φ fails in \mathcal{B} , too. Moreover, ([Mo01]) every linearly ordered Π -algebra embeds into an ultrapower \mathcal{E} of the Π -algebra $[0, 1]_{\mathrm{L\Pi}}$ on [0, 1]. At this point, we can observe that the existence of an evaluation e in \mathcal{B} which invalidates Φ can be written as an existential formula (in the language of Π -algebras) of the form

$$\exists q \exists x_1 \dots \exists x_n (0 < q \& q \le \neg q \& \Psi(x_1, \dots, x_n, q))$$

where Ψ quantifier-free, and x_1, \ldots, x_n are the variables occurring in Φ . Such a formula is preserved under taking superstructures, hence it is true in \mathcal{E} , and finally it is true in $[0,1]_{\mathrm{LII}}$. Let $q \in (0,\frac{1}{2}]$ and $a_1, \ldots, a_n \in [0,1]$ be such that $\Psi(a_1, \ldots, a_n, q)$ is true in $[0,1]_{\mathrm{LII}}$, and let e be the evaluation defined by $e(x_i) = a_i$ for $i = 1, \ldots, n$. Then Φ is invalidated by e in $[0,1]_q$.

Corollary 4.3 Let \mathcal{A} be a linearly ordered $L\Pi_q$ -algebra with more than two elements. Then the PMV-reduct \mathcal{A}^- of \mathcal{A} has a subalgebra isomorphic to $\langle \mathbf{Q} \cap [0,1], \oplus, \neg, \cdot, 0, 1 \rangle$.

Proof. By Corollary 3.10, \mathcal{B} is a subalgebra of a q-reduct of a linearly ordered LII-algebra \mathcal{D} . Hence it is sufficient to prove that for all $n \in \mathbb{N} \setminus \{0\}$ there is an element a of \mathcal{B} , denoted by $\frac{1}{n}$, such that $(n-1)a = \neg a$. Indeed if we prove this, then as in [Mo00] we can see that the map $\Phi : \frac{m}{n} \stackrel{\Phi}{\longrightarrow} (m)\frac{1}{n}$ is an embedding of $\langle \mathbf{Q} \cap [0,1], \oplus, \neg, \cdot, 0, 1 \rangle$ into the PMV-reduct of \mathcal{B} . Let $h = (q \oplus q) \rightarrow_q q$. Then $h = \neg h$, because this property can be expressed by an equation which is true in any q-reduct of $[0,1]_{\mathrm{LII}}$, hence by Theorem 4.2 it is true in any LII_q -algebra. Let k be the minimum natural number such that $2^k \ge n$, and let $a = (n)h^k \rightarrow_q h^k$. Then for any choice of $0 < q \le h$ we have that $q \le h \le (n)h^k$. Hence $a = (n)h^k \rightarrow_q h^k = (n)h^k \rightarrow_\pi h^k$. Now in $[0,1]_{\mathrm{LII}}$ if $h = \neg h$ and $a = (n)h^k \rightarrow_\pi h^k$, then $(n-1)a = \neg a$. Since this fact can be expressed by a universal Horn formula, it holds in any LII -algebra. Hence $(n-1)a = \neg a$, and we can take $\frac{1}{n} = a$.

References

- [BKW77] A. Bigard, K. Keimel and S. Wolfenstein, Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608, Springer Verlag, Berlin 1977.
- [BF00] W.J. Blok and I.M.A. Ferreirim, On the structure of hoops, Algebra Universalis 43 2000, 233-257.

- [COM00] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, 2000.
- [DND01] A. Di Nola, A. Dvurecenskij, Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001). Theorem 4.2.
- [EGM01] F. Esteva, L. Godo, F. Montagna, LII and LII¹/₂: two fuzzy logics joining Lukasiewicz and Product logics, Archive for Mathematical Logic 40 (2001), pp. 39-67.
- [F92] I.M.A. Ferreirim, On varieties and quasi varieties of hoops and their reducts, PhD thesis, University of Illinois at Chicago, 1992.
- [H98] P. HÁJEK, Metamathematics of Fuzzy Logic, Kluwer, 1988.
- [K95] K. Keimel, Some trends in lattice-ordered groups and rings Lattice theory and its applications K.A. Baker and R. Wille eds, Darmstadt, Helderman Verlag (1995), 131-161.
- [MMT87] R. McKenzie, G. McNulty, W. Taylor, *Algebras, Lattices, Varieties, Vol I*, Wadsworth and Brooks/Cole, Monterey CA, 1987.
- [Mo00] F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information **9** (2000), 91-124.
- [MP01] F. Montagna, G. Panti, Adding structure to MV algebras, Journal of Pure and Applied Algebra 164 (2001), 365-387.
- [Mu86] D. Mundici, Interpretations of AF C^{*} algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.