Continuous approximations of MV-algebras with product and product residuation: a category-theoretic equivalence

Luca Spada

Dipartimento di Matematica Via del Capitano 15 53100 Siena (Italy) spada@unisi.it

Abstract. In [9] a new class of MV-algebras with product, called $\mathbb{L}\Pi_q$ algebras, has been introduced. In these algebras, the discontinuous product residuation \rightarrow_{π} defined in [4] is replaced by a continuous approximation of it. These algebras seem to be a good compromise between the need of expressiveness and the need of continuity of connectives. Following a good tradition in many-valued logic (see e.g. [10], [7], [3] and [8]), in this paper we introduce a class of commutative *f*-rings with strong unit and with a sort of weak divisibility property, called *f*-quasifields, and we show that the categories of $\mathbb{L}\Pi_q$ -algebras and of *f*-quasifields are equivalent.

1 Preliminaries

Definition 1. (see e.g. [1]). A hoop is an algebra $\langle H, \star, \to, 1 \rangle$ such that $\langle H, \star, 1 \rangle$ is a commutative monoid, and \to is a binary operation such that the following identities hold:

 $x \to x = 1, \qquad x \to (y \to z) = (x \star y) \to z, \qquad x \star (x \to y) = y \star (y \to x).$

A Wajsberg hoop is a hoop satisfying $(x \to y) \to y = (y \to x) \to x$.

A bounded hoop is a hoop equipped with a constant 0 such that $0 \rightarrow x = 1$.

A Wajsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by \odot .

Wajsberg algebras constitute a variety generated by $\langle [0,1], \odot, \rightarrow, 0, 1 \rangle$. If $\langle A, \odot, \rightarrow, 0, 1 \rangle$ is a Wajsberg algebra, then the structure $\langle A, \oplus, \neg, 0, 1 \rangle$ is called MV-algebra. Every Wajsberg algebra is termwise equivalent to a MV-algebra ([6]). Thus we will often identify a Wajsberg algebra and the corresponding MV-algebra.

Notation 1 We will use the following shorthand throughout the paper:

$- \neg x \text{ for } x \rightarrow 0$	$-x \leq y$ for $x \rightarrow y = 1^{-1}$
$- x \oplus y \text{ for } \neg x \rightarrow y$	$- \neg_{\pi} x \text{ for } x \rightarrow_{\pi} 0$
$- x \ominus y \ for \ \neg(\neg x \oplus y)$	$- \Lambda(r)$ for $\neg \neg r$
$-x \wedge y \text{ for } x \odot (x \rightarrow y)$	$\Delta(x) jor \pi x,$
$-x \lor y \text{ for } (x \to y) \to y$	$- u(a)$ for $(a \lor 0) \land 1$

- We will omit the symbols \times and \cdot when there is no danger of confusion
- (n)x is inductively defined by (0)x = 0 and (n+1)x = (n)x + x
- $-x^n$ is inductively defined by $x^0 = 1$ and $x^{n+1} = x^n x$

In attempting to axiomatize the class of $L\Pi$ -algebras, in [7] the concept of PMV-algebra has been introduced.

Definition 2. A **PMV-algebra** is an algebra $\mathcal{A} = \langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ such that:

 $\langle A, \oplus, \neg, 0, 1 \rangle$ is a MV-algebra. $\langle A, \cdot, 1 \rangle$ is a commutative monoid. For all $x, y, z \in A$ one has: $x \cdot (y \ominus z) = (x \cdot y) \ominus (x \cdot z)$.

Definition 3. A *L* Π -algebra is an algebra $\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ such that $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, $\langle A, \cdot, \rightarrow_{\pi}, 0, 1 \rangle$ is a bounded hoop, and the following equations hold:

 $\begin{array}{ll} -x \rightarrow_{\pi} y \leq x \rightarrow y. & -\Delta(\Delta(x)) = \Delta(x) \\ -x \wedge \neg_{\pi} x = 0 & -\Delta(x \vee y) = \Delta(x) \vee \Delta(y) \\ -\Delta(x) \odot \Delta(x \rightarrow y) \leq \Delta(y) & -\Delta(x) \vee \neg \Delta(x) = 1 \\ -\Delta(x) \leq x & -\Delta(x \rightarrow y) \leq x \rightarrow_{\pi} y. \end{array}$

A $L\Pi \frac{1}{2}$ -algebra is a $L\Pi$ -algebra with an additional constant $\frac{1}{2}$ satisfying $\frac{1}{2} = -\frac{1}{2}$.

In [7], Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 1.

- (i) Every PMV-algebra is isomorphic to a subdirect product of a family of linearly ordered PMV-algebras.
- (ii) A PMV-algebra and its underlying MV-algebra have the same congruences.

Definition 4. (Cf [2]). A lattice-ordered ring is a structure $\mathcal{R} = \langle R, +, -, \times, \vee, \wedge, 0 \rangle$ such that:

(i) $\mathcal{R} = \langle R, +, -, \times, 0 \rangle$ is a ring.

(ii) $\mathcal{R} = \langle R, \lor, \land \rangle$ is a lattice.

(iii) Let \leq denote the partial order induced by \vee and \wedge . Then $x \leq y$ implies $x + z \leq y + z$, and $x, y \geq 0$ implies $x \times y \geq 0$.

 $\mathbf{2}$

 $^{^1}$ Note that \leq is a distributive lattice order, and \vee and \wedge are the corresponding operations of join and meet

An *f*-ring is a lattice-ordered ring which is isomorphic to a subdirect product of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring \mathcal{R} is an element $u \in \mathcal{R}$ such that $u^2 \leq u$, and for all $a \in \mathcal{R}$ there is $n \in \mathbb{N}$ such that $a \leq (n)u$.

A commutative unitary *f*-ring with strong unit (for short: a *c*-*s*-*u*-*f*-ring) is a commutative *f*-ring with a unit for product which is also a strong unit.

In [3] the authors define a functor $\Gamma_{\mathbf{R}}$ from the category of lattice-ordered rings with strong unit into a category of algebras, called **product** *MV*-algebras. Here we describe the restriction of $\Gamma_{\mathbf{R}}$ to c-s-u-f-rings, which turns out to be a functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 5. The functor $\Gamma_{\mathbf{R}}$ is defined as follows:

- (i) Let $\mathcal{R} = \langle R, +, -, \times, \vee, \wedge, 0 \rangle$ be a c-s-u-f-ring, and let u be the unit of \mathcal{R} (which by definition is also a strong unit). Then $\Gamma_{\mathbf{R}}(\mathcal{R})$ denotes the structure $\langle [0, u], \oplus, \neg, \cdot, 0, u \rangle$, where $[0, u] = \{x \in \mathcal{R} : 0 \le x \le u\}, x \oplus y = (x + y) \wedge 0, \neg x = u - x, and \cdot is the restriction of <math>\times$ to [0, u].
- (ii) Let R, R' be lattice-ordered rings, and let u, u' be strong units of R and of R' respectively. Let h be a morphism from (R, u) into (R', u'), i.e., a homomorphism from R into R' such that h(u) = u'. Then Γ_{**R**}(h) is defined as the restriction of h to Γ_{**R**}(R, u). (Note that Γ_{**R**}(h) is a homomorphism from Γ_{**R**}(R, u) into Γ_{**R**}(R', u')).

In [8], as a special case of a result contained in [3], Theorem 4.2, the following is shown:

Proposition 2. $\Gamma_{\mathbf{R}}$ is an equivalence between the category of c-s-u-f-rings and the category of PMV-algebras.

Definition 6. [9]. A $L\Pi_q$ -algebra is a structure $\mathcal{A} = \langle A, \oplus, \neg, \cdot, \rightarrow_q, q, 0, 1 \rangle$ where $\langle A, \oplus, \neg, \cdot, 0, 1 \rangle$ is a PMV-algebra, q is a constant, and \rightarrow_q is a binary operation such that the following conditions hold:

 $\begin{array}{ll} (A1) & q \leq \neg q \\ (A2) & x \rightarrow_q y = (x \lor q) \rightarrow_q y \\ (A3) & (x \lor q)(x \rightarrow_q y) = (x \lor q) \land y \\ (A4) & q \rightarrow_q (xq) = x \\ (A5) & If \ x^2 = 0 \ then \ x = 0 \end{array}$

In [9] it is shown that $L\Pi_q$ -algebras constitute a quasivariety but not a variety, that every $L\Pi_q$ -algebra is isomorphic to a subdirect product of a family of linearly ordered $L\Pi_q$ -algebras, and that the quasivariety of $L\Pi_q$ -algebras is generated by the class of $L\Pi_q$ -algebras whose lattice reduct is [0, 1] with the usual order.

2 *f*-Quasifields

Definition 7. A f-quasifield is a structure $\langle K, +, -, \times, /q, \vee, \wedge, 0, 1, q \rangle$ where $\langle K, +, -, \times, \vee, \wedge, 0, 1, q \rangle$ is a c-s-u-f-ring with strong unit 1, q is a constant and /q is a binary operation such that the following conditions are satisfied:

 $\begin{array}{l} (K1) \ \ 0 \leq q \leq 1-q \\ (K2) \ \ x/_q y = u(x)/_q u(y) = u(x)/_q (u(y) \lor q). \\ (K3) \ \ (u(x) \lor q) \times (u(y)/_q u(x)) = (u(x) \lor q) \land u(y) \\ (K4) \ \ (u(x) \times q)/_q q = u(x) \\ (K5) \ \ If \ x \times x = 0 \ \ then \ x = 0. \end{array}$

If \mathcal{K} is any *f*-quasifield, then for all x, y such that $q \leq x \leq 1$ and $0 \leq y \leq x$, there is z (namely z = y/qx) such that zx = y. Thus any *f*-quasifield enjoys a weak form of divisibility property.

The next theorem characterizes the class of linearly ordered f-quasifields which are fields, i.e. of linearly ordered f-quasifields in which full divisibility holds. In fact, as the categorical equivalence would suggest, it is closely related to Corollary 3.12 in [9].

Theorem 2. Let $\mathcal{K} = \langle K, +, -, \times, /_q, \vee, \wedge, 0, 1, q \rangle$ be a linearly ordered quasifield. The following are equivalent:

(i) \mathcal{K} is Archimedean (i.e. $\forall b \forall a > 0 \exists n \in \mathbf{N} (na \ge b)$). (ii) $\langle K, +, -, \times, 0, 1 \rangle$ is a field.

Proof.

- (i) \Rightarrow (ii) Let h = q/q(q + q). Then h(q + q) = q, which immediately implies that 2h = 1. It follows that 2hz = z for every $z \in \mathcal{K}$. Now let $x \in \mathcal{K} \setminus \{0\}$, and let us prove that there is a $y \in \mathcal{K}$ such that yx = 1. Without loss of generality we may assume that x > 0. Let k be minimal such that $x \leq 2^k$ (such a k exists because \mathcal{K} is Archimedean). Then $h^k x \leq 1$. Moreover by the minimality of k we have $h^{k-1}x > 1$ (where we put $h^{k-1} = 2$ if k = 0). Hence $q \leq h < h^k x \leq 1$, and by axiom (K3) there is a $z \in \mathcal{K}$ such that $h^k xz = h$. Now let $y = h^{k-1}z$. Then $yx = h^{k-1}zx = 2h^k zx = 2h = 1$. Hence y is the desired element.
- (ii) \Rightarrow (i) Let by contradiction \mathcal{K} be a linearly ordered f-quasifield such that for some $a, b \in \mathcal{K}$ one has a > 0 and na > b for every $n \in \mathbb{N}$. Then for every $n \in \mathbb{N}$ we have $n < ba^{-1}$, against the fact that 1 is a strong unit of \mathcal{K} .

Corollary 1. If \mathcal{F} is a *f*-quasifield, then the ring of rationals \mathbf{Q} can be embedded into the ring-reduct of \mathcal{F} .

Proof. By the argument used in the proof of Theorem 2 we see that for all $n \in \mathbf{N}$ there is $y \in \mathcal{K}$ such that ny = 1. Let us denote this y by n^{-1} . Then it is readily seen that the map Ψ from \mathbf{Q} into \mathcal{K} defined by $\Psi(\pm \frac{m}{n}) = \pm (n^{-1}m)$ is an embedding of \mathbf{Q} into the ring-reduct of \mathcal{K} .

Example. Let \mathbf{R}^* be any non-trivial ultrapower of the ordered field \mathbf{R} of real numbers, and let ε be any strictly positive infinitesimal. Then for all $n \in \mathbf{N}, n < \frac{1}{\varepsilon}$. So 1 is not a strong unit and for any choice of $q \in (0, \frac{1}{2}]$, $\langle \mathbf{R}^*, +, -, \times, /q, \vee, \wedge, 0, 1, q \rangle$ (where \times denotes product and $x/qy = \frac{u(x)}{u(y)\vee q}$) is not a *f*-quasifield although $\langle \mathbf{R}^*, +, -, \times, 0, 1, \rangle$ is a field.

Example. Let \mathbf{R}^* be as before, let $q = \frac{1}{2}$ and let $\mathbf{R}_{fin}^* = \{x \in \mathbf{R}^* : \exists n \in \mathbf{N}(|x| \leq n)\}$. It is easy to see that \mathbf{R}_{fin}^* is a c-s-u-f-ring. Now let $x, y \in [\frac{1}{2}, 1]$ be such that $x \leq y$, and let $z = \frac{x}{y}$. Then $\frac{1}{2} \leq z \leq 1$, therefore $z \in \mathbf{R}_{fin}^*$. It follows that, letting $a/qb = \frac{u(a)}{(u(b)\vee q)}$, \mathbf{R}_{fin}^* is closed under /q, and /q makes \mathbf{R}_{fin}^* a *f*-quasifield. Nevertheless \mathbf{R}_{fin}^* is not a field, because if $\varepsilon \in \mathbf{R}_{fin}^*$ is a

3 Categorical Equivalence

strictly positive infinitesimal, then $\frac{1}{\varepsilon} \notin \mathbf{R}_{fin}^{\star}$.

We are ready to introduce an equivalence between the category of $L\Pi_q$ -algebras (called **LP**) and the category of f-quasifields (called **FQ**).

Definition 8. Let Π_q be the functor from **FQ** into **LP** defined as follows: for every f-quasifield \mathcal{F} we define a structure $\Pi_q(\mathcal{F})$ whose domain $\Pi_q(F)$ is $[0,1] = \{x \in \mathcal{F} : 0 \leq x \leq 1\}$, whose constants 0, 1 and q are those of \mathcal{F} , and the other operations are: $x \oplus y = (x+y) \wedge 1$, $\neg x = 1-x$, and $x \to_q y = y/qx$. The operation \cdot is the restriction of \times to [0,1]. For every morphism Φ from a f-quasifield \mathcal{F} into a f-quasifield \mathcal{K} , we define $\Pi_q(\Phi)$ to be the restriction of Φ to $\Pi_q(\mathcal{F})$.

The following lemmas are easy to demonstrate:

Lemma 1. $L\Pi_q$ is a functor from FQ to LP

Lemma 2. Let \mathcal{F} be any c-s-u-f-ring equipped with an additional constant q and an additional binary operation $/_q$ such that for all $x, y \in \mathcal{F}$, $x/_q y = u(x)/_q u(y)$, and $0 \le x/_q y \le 1$. Let $\Pi_q(\mathcal{F})$ be defined from \mathcal{F} according to Definition 8, (a). The following are equivalent:

(i) \mathcal{F} is a f-quasifield. (ii) $\Pi_q(\mathcal{F})$ is a $L\Pi_q$ -algebra.

-	_	ъ
L		I
L		I

In order to prove that Π_q is an equivalence of categories, we start from the following observation. Let \mathbf{F} be the forgetful functor from \mathbf{LP}_q into the category \mathbf{PMV} of PMV-algebras, and let \mathbf{S} be the forgetful functor from \mathbf{FQ} into the category \mathbf{FR} of c-s-u-f-rings. Then it follows from the definition of Π_q (and from the definition of $\Gamma_{\mathbf{R}}$, see definition 5) that the functors $\mathbf{F} \circ \Pi_q$ and $\Gamma_{\mathbf{R}} \circ \mathbf{S}$, where \circ denotes the composition of functors coincide. Now we define a functor Π_q^{-1} as follows: • For every $L\Pi_q$ -algebra \mathcal{A} , the c-s-u-f-ring subreduct of $\Pi_q^{-1}(\mathcal{A})$ is $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$. Moreover the constant q is interpreted as $q_0 = i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}})$, where $q^{\mathcal{A}}$ is the interpretation of q in \mathcal{A} . Note that the domain of $\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A})))$ is contained into the domain of $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}))$, therefore $i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}}) \in \Pi_q^{-1}(\mathcal{A})$. Moreover we define:

$$x/_{q}y = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(u(y)) \to_{q} (i_{\mathbf{F}(\mathcal{A})})^{-1}(u(x))).$$
(1)

Roughly speaking, we first compute u(x) and u(y), two members of the $L\Pi_q$ algebra $\Pi_q(\Pi_q^{-1}(\mathbf{F}(\mathcal{A})))$. Then we apply to them the inverse of $i_{\mathbf{F}(\mathcal{A})}$, thus obtaining two elements of \mathcal{A} . Next we apply to these elements (taken in the inverse order, because intuitively $a/_q b = u(b) \rightarrow_q u(a)$ the operation \rightarrow_q , thus getting an element of \mathcal{A} . Finally we apply the isomorphism $i_{\mathbf{F}(\mathcal{A})}$ to such an element, thus obtaining its isomorphic copy in $\Pi_q(\Pi_q^{-1}(\mathcal{A})) \subseteq \Pi_q^{-1}(\mathcal{A})$. • If ϕ is a morphism of $L\Pi$ -algebras from \mathcal{A} into \mathcal{B} , then $\Pi_q^{-1}(\phi) = \Gamma^{-1}(\mathbf{F}(\phi))$.

In order to prove that Π_q is an equivalence of categories, by Proposition 2 and Lemma 1 it is sufficient to prove the following lemma:

Lemma 3.

- (i) For every $L\Pi_q$ -algebra \mathcal{A} , $i_{\mathbf{F}(\mathcal{A})}$ is an isomorphism from \mathcal{A} onto $\Pi_q(\Pi_q^{-1}(\mathcal{A}))$.
- (ii) For every f-quasifield \mathcal{F} , $j_{\mathbf{S}(\mathcal{F})}$ is an isomorphism from \mathcal{F} onto $\Pi_q^{-1}(\Pi_q(\mathcal{F}))$.
- (iii) For every morphism ϕ of $L\Pi_q$ -algebras from \mathcal{A} into \mathcal{B} , $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\phi))$ is a morphism from $\Pi_{q}^{-1}(\mathcal{A})$ into $\Pi_{q}^{-1}(\mathcal{B})$.

Proof. (i). That $i_{\mathbf{F}(\mathcal{A})}$ is an isomorphism of PMV-algebras follows from Proposition 2. That $i_{\mathbf{F}(\mathcal{A})}$ preserves the constant q follows from the definition of Π_q and of Π_a^{-1} .

We prove that $i_{\mathbf{F}(\mathcal{A})}$ preserves \rightarrow_q . Let \Rightarrow_q denote the interpretation of \rightarrow_q in $\Pi_q(\Pi_q^{-1}(\mathcal{A}))$. Thus $a \Rightarrow_q b = b/qa$, and since u(a) = a and u(b) = b, from eq. (1) we obtain:

$$a \Rightarrow_q b = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(a) \rightarrow_q (i_{\mathbf{F}(\mathcal{A})})^{-1}(b)).$$
(2)

Now for $x, y \in \mathcal{A}$, substituting $i_{\mathbf{F}(\mathcal{A})}(x)$ for a and $i_{\mathbf{F}(\mathcal{A})}(y)$ for b in equation (2), we obtain:

$$i_{\mathbf{F}(\mathcal{A})}(x) \Rightarrow_q i_{\mathbf{F}(\mathcal{A})}(y) = i_{\mathbf{F}(\mathcal{A})}(x \to_q y),$$

and the claim is proved.

(ii). Let us denote $\Pi_q(\mathcal{F})$ by \mathcal{B} . That $j_{\mathbf{S}(\mathcal{F})}$ is an isomorphism of c-s-u-f-rings follows from Proposition 2. In order to prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves q, note that the interpretation of q is the same in \mathcal{F} and in $\Pi_q(\mathcal{F}) = \mathcal{B}$. Moreover in $\Pi_q^{-1}(\mathcal{B})$, q is interpreted as $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}})$, where $q^{\mathcal{B}}$ is the interpretation of q in both \mathcal{B} and \mathcal{F} . Therefore we only need to prove that $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) = j_{\mathbf{S}(\mathcal{F})}(q^{\mathcal{B}})$. Now by Proposition 2, $i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) = \Gamma_{\mathbf{R}}(j_{\mathcal{F}}(q^{\mathcal{B}})) = j_{\mathcal{F}}(q^{\mathcal{B}})$, and the claim follows.

Finally we prove that $j_{\mathbf{S}(\mathcal{F})}$ preserves $/_q$. Let $//_q$ denote the interpretation of $/_q$ in $\Pi_q^{-1}(\Pi_q(\mathcal{F}))$ (and let us identify $/_q$ with its realization in \mathcal{F}). Let $x, y \in \mathcal{F}$, and let us prove that $j_{\mathbf{S}(\mathcal{F})}(x/qy) = j_{\mathbf{S}(\mathcal{F})}(x)//qj_{\mathbf{S}(\mathcal{F})}(y)$. Since

 $\mathbf{6}$

 $x/_q y = u(x)/_q u(y)$ and $j_{\mathbf{S}(\mathcal{F})}$ preserves the operation u, we may assume without loss of generality that u(x) = x and u(y) = y. Thus for every $x, y \in \mathcal{B}$, $j_{\mathbf{S}(\mathcal{F})}(x) = \prod_q (j_{\mathbf{S}(\mathcal{F})}(x)) = i_{\mathbf{F}(\mathcal{B})}(x)$. Similarly, $j_{\mathbf{S}(\mathcal{F})}(y) = i_{\mathbf{F}(\mathcal{B})}(y)$. Thus recalling the last claim of Proposition 2 and the definition of \prod_q^{-1} , we obtain: $j_{\mathbf{S}(\mathcal{F})}(x)//_q j_{\mathbf{S}(\mathcal{F})}(y) = i_{\mathbf{F}(\mathcal{B})}(x)//_q i_{\mathbf{F}(\mathcal{B})}(y) = i_{\mathbf{F}(\mathcal{B})}(y \to_q x) = j_{\mathbf{S}(\mathcal{F})}(y \to_q x) = j_{\mathbf{S}(\mathcal{F})}(x/_q y)$, and (ii) is proved.

(iii). Set $\mathcal{F} = \Pi_q^{-1}(\mathcal{A}), \ \mathcal{K} = \Pi_q^{-1}(\mathcal{B}), \ \psi = \Gamma^{-1}(\mathbf{F}(\phi))$. That ψ is a homomorphism of c-s-u-f-rings follows from Proposition 2. We prove that ψ preserves q. The interpretation of q in \mathcal{F} is $q^{\mathcal{F}} = i_{\mathbf{F}(\mathcal{A})}(q^{\mathcal{A}})$, and the interpretation of q in \mathcal{K} is $q^{\mathcal{K}} = i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}})$. Now by Proposition 2, $\Gamma_{\mathbf{R}}(\psi) \circ i_{\mathbf{F}(\mathcal{A})} = i_{\mathbf{F}(\mathcal{B})} \circ \phi$, therefore $\psi(q^{\mathcal{F}}) = \Gamma(\psi)(q^{\mathcal{F}}) = (\Gamma(\psi) \circ i_{\mathbf{F}(\mathcal{A})})(q^{\mathcal{A}}) = (i_{\mathbf{F}(\mathcal{B})} \circ \phi)(q^{\mathcal{A}}) = i_{\mathbf{F}(\mathcal{B})}(q^{\mathcal{B}}) = q^{\mathcal{K}}$.

Finally we prove that ψ preserves $/_q$. Let $//_q$ denote the interpretation of $/_q$ in \mathcal{K} , and let us identify the symbol $/_q$ and its realization in \mathcal{F} . Let $x, y \in \mathcal{F}$. Since $x/_q y = u(x)/_q u(y)$, and since ψ preserves u, we can assume without loss of generality that x = u(x) and y = u(y). Then by clause (1) in the definition of Π_q^{-1} we have:

$$x/_{q}y = i_{\mathbf{F}(\mathcal{A})}((i_{\mathbf{F}(\mathcal{A})})^{-1}(y) \to_{q} (i_{\mathbf{F}(\mathcal{A})})^{-1}(y))$$
(3)

$$\psi(x)//_q\psi(y) = i_{\mathbf{F}(\mathcal{B})}((i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(y)) \to_q (i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(x))).$$
(4)

Note that by Proposition 2, $\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\phi)) = i_{\mathbf{F}(\mathcal{B})} \circ \phi \circ i_{\mathbf{F}(\mathcal{A})}^{-1}$. Therefore, for all $z \in \Gamma_{\mathbf{R}}(\mathcal{F})$, we have:

$$\psi(z) = (\Gamma_{\mathbf{R}}(\psi))(z) = (\Gamma_{\mathbf{R}}(\Gamma_{\mathbf{R}}^{-1}(\phi)))(z) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(z))).$$
(5)

In particular, $\psi(x) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)))$ and $\psi(y) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)))$, therefore

$$(i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(y)) = \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)) \text{ and } (i_{\mathbf{F}(\mathcal{B})})^{-1}(\psi(x)) = \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x)).$$
 (6)

Substituting in eq. (4), recalling that ϕ and $i_{\mathbf{F}(\mathcal{A})}^{-1}$ are homomorphisms of $\mathbb{L}\Pi_{q}$ algebras and using eq. (5) and eq. (3), we obtain:

$$\begin{split} \psi(x)//_{q}\psi(y) &= i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y)) \to_{q} \phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(x))) = \\ &= i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y) \to_{q} i_{\mathbf{F}(\mathcal{A})}^{-1}(x))) = i_{\mathbf{F}(\mathcal{B})}(\phi(i_{\mathbf{F}(\mathcal{A})}^{-1}(y \to_{q} x))) = \\ &= \psi(y \to_{q} x) = \psi(x/_{q} y). \end{split}$$

This concludes the proof of the lemma.

It follows:

Theorem 3. The categories of $L\Pi_q$ -algebras and of f-quasifields are equivalent via the functors Π_q and Π_q^{-1} .

As a consequence we obtain that a number of properties of $L\Pi_q$ -algebras shown in [9] can be translated to f-quasifields. For example: **Corollary 2.** Every *f*-quasifield is isomorphic to a subdirect product of a family of linearly ordered *f*-quasifields.

Proof. Let \mathcal{F} be any f-quasifield. Then we may decompose $\Pi_q(\mathcal{F})$ as a subdirect product of a family of linearly ordered $\mathbb{L}\Pi_q$ -algebras $\langle \mathcal{A}_i : i \in I \rangle$. Then it follows from Theorem 3 that \mathcal{F} has a subdirect embedding into $\prod_{i \in I} \Pi_q^{-1}(\mathcal{A}_i)$. Moreover the c-s-u-f-subreduct of $\Pi_q^{-1}(\mathcal{A}_i)$ is $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}_i))$, and in [8] it is shown that $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{A}_i))$ is linearly ordered whenever \mathcal{A}_i is linearly ordered. This concludes the proof.

Corollary 3. *f*-quasifields constitute a quasivariety, but not a variety.

Proof. f-quasifields are axiomatized by means of quasi equations, so they form a quasivariety. In order to show that they do not form a variety it is sufficient to prove that they are not closed under epimorphic images. Now in [9] it is shown that there are a $\mathbb{L}\Pi_q$ -algebra \mathcal{A} and a epimorphism ϕ from \mathcal{A} onto a structure \mathcal{B} which is not a $\mathbb{L}\Pi_q$ -algebra. Let $\mathcal{F} = \Pi_q^{-1}(\mathcal{A})$. By Theorem 3, \mathcal{F} is a fquasifield. Now consider $\Gamma_{\mathbf{R}}^{-1}(\mathbf{F}(\mathcal{B}))$ with an additional constant q_0 defined by $q_0 = i_{\mathbf{F}(\mathcal{B})}(\psi(q^{\mathcal{A}}))$ (where $q^{\mathcal{A}}$ is the realization of q in \mathcal{A} and \mathbf{F} forgets q and \rightarrow_q), and with the operation $/_q$ defined by means of the formula 1 in the definition of Π_q^{-1} . Call this algebra \mathcal{K} . Then $\Gamma^{-1}(\mathbf{F}(\psi))$ is a epimorphism from \mathcal{F} onto \mathcal{K} . Now let \mathcal{E} be the structure $\Gamma_{\mathbf{R}}(\mathcal{S}(\mathcal{K}))$ (where \mathbf{S} forgets $/_q$ and q) with a constant q interpreted as q_0 and with an operation \rightarrow_q defined by $x \rightarrow_q y = y/_q x$. It is readily seen that \mathcal{E} is isomorphic to \mathcal{B} (under the isomorphism $i_{\mathbf{F}(\mathcal{B})}$). Now if \mathcal{K} were an f-quasifield, then by Lemma 2 \mathcal{E} would be a $\mathbb{L}\Pi_q$ -algebra, which is impossible.

References

- W.J. Blok , I.M.A. Ferreirim: On the structure of hoops, Algebra Universalis 43 2000, 233-257.
- A. Bigard, K. Keimel and S. Wolfenstein: Groupes at anneaux reticulés, Lecture Notes in Mathematics, 608, Springer Verlag, Berlin 1977.
- A. Di Nola, A. Dvurecenskij: Product MV-algebras, Multi. Val. Logic, 6,193-215, (2001).
- F. Esteva, L. Godo, F. Montagna: LΠ and LΠ¹/₂: two fuzzy logics joining Lukasiewicz and Product logics, Archive for Mathematical Logic 40 (2001), pp. 39-67.
- F. Esteva, L. Godo, P. Hájek: A complete may-valued logic with product conjunction, Archive for Mathematical Logic 35 (1996), 191-208.
- 6. P. Hájek: Metamathematics of Fuzzy Logic, Kluwer, 1988.
- F. Montagna: An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (2000), 91-124.
- 8. F. Montagna: Subreducts of MV-algebras with product and product residuation, Preprint 2002.
- F. Montagna, L. Spada: Continuous approximations of MV-algebras with product and product residuation, Preprint 2003.
- D. Mundici: Interpretations of AF C^{*} algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.

8