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Abstract. In [9] a new class of MV-algebras with product, called L1T,-
algebras, has been introduced. In these algebras, the discontinuous prod-
uct residuation —, defined in [4] is replaced by a continuous approxi-
mation of it. These algebras seem to be a good compromise between the
need of expressiveness and the need of continuity of connectives.
Following a good tradition in many-valued logic (see e.g. [I0], [7], [3] and
[]]), in this paper we introduce a class of commutative f-rings with strong
unit and with a sort of weak divisibility property, called f-quasifields,
and we show that the categories of L1I,-algebras and of f-quasifields are
equivalent.

1 Preliminaries

Definition 1. (see e.g. [1]). A hoop is an algebra (H,*,—, 1) such that (H,*,1)
18 a commutative monoid, and — is a binary operation such that the following
identities hold:

r—oax=1 z—o(y—z)=(@*rxy)—z ax(@x—y =yx(y— ).

A Wagsberg hoop is a hoop satisfying (x — y) — y=(y — z) — x.
A bounded hoop is a hoop equipped with a constant 0 such that 0 — x = 1.
A Wagjsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by ©.
Wajsberg algebras constitute a variety generated by ([0, 1], ®, —,0,1).

If (A,®,—,0,1) is a Wajsberg algebra, then the structure (A4, ®, -, 0, 1) is called

MYV-algebra. Every Wajsberg algebra is termwise equivalent to a MV -algebra

([6]). Thus we will often identify a Wajsberg algebra and the corresponding

MV -algebra.

Notation 1 We will use the following shorthand throughout the paper:



— =z forx — 0 x<y forx—y=1[]
—z®y forx—y — =z forz —, 0
— x26y for =(~zDy) — A(@) for —a
—xz Ay forxz®(x —y) ™
—zVy for (z —y) —y u(a) for (aVO0) A1

— We will omit the symbols X and - when there is no danger of confusion
— (n)x is inductively defined by (0)x =0 and (n+ 1)z = (n)z+z

— " is inductively defined by z° = 1 and 2"t = g™z

In attempting to axiomatize the class of LIT-algebras, in [7] the concept of PMV-
algebra has been introduced.

Definition 2. A PMV-algebra is an algebra A = (A, ®,—,-,0,1) such that:

(A, ®,-,0,1) is a MV-algebra.
(A, -, 1) is a commutative monoid.
For all z,y,z € A one has: z- (y© z) = (x-y) © (x- 2).

Definition 3. A Ell-algebra is an algebra A = (A, @, —, -, —,0,1) such that
(A, ®,—,-,0,1) is a PMV-algebra, (A,-,—,,0,1) is a bounded hoop, and the
following equations hold:

—T—=ryY< T =Y. — A(A(x)) = A(x)

— A zz=0 — Az Vy) = A(z) vV Ay)
— Az) ® Az — y) < Ay) — Alx)V-A(z) =1

— Alr) <2 CAr—y) Sz —ry

A LH%-algebra is a LII-algebra with an additional constant % satisfying % =

-

N

In [7], Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 1.

(i) Every PMV-algebra is isomorphic to a subdirect product of a family of lin-
early ordered PMV-algebras.

(ii) A PMV-algebra and its underlying MV-algebra have the same congruences.

Definition 4. (Cf [2]). A lattice-ordered ring is a structure
R = (R,+,—, X,V,A,0) such that:

(i) R = (R,+,—, x,0) is a ring.
(i) R =(R,V,N) is a lattice.
(iii) Let < denote the partial order induced by V and A. Then x < y implies
42z <y+z, and z,y > 0 implies x x y > 0.

! Note that < is a distributive lattice order, and V and A are the corresponding oper-
ations of join and meet



An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product
of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring R is an element u € R such that
u? < u, and for all a € R there is n € N such that a < (n)u.

A commutative unitary f-ring with strong unit (for short: a c-s-u-
f-ring) is a commutative f-ring with a unit for product which is also a strong
unit.

In [3] the authors define a functor I'g from the category of lattice-ordered
rings with strong unit into a category of algebras, called product M V-algebras.
Here we describe the restriction of I'g to c-s-u-f-rings, which turns out to be a
functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 5. The functor I'r is defined as follows:

(i) Let R = (R,+,—, X,V,A,0) be a c-s-u-f-ring, and let u be the unit of R
(which by definition is also a strong unit). Then I'r(R) denotes the structure
([0,u],®,—,-,0,u), where [0,u] ={r e R:0<z<u},zdy=(r+y) A0,
—x =wu—x, and - is the restriction of x to [0,u].

(i) Let R, R’ be lattice-ordered rings, and let u,u’ be strong units of R and
of R’ respectively. Let h be a morphism from (R,u) into (R',u'), i.e., a
homomorphism from R into R’ such that h(u) = u'. Then I'r(h) is defined
as the restriction of h to I'm(R,u). (Note that I'r(h) is a homomorphism
from I'r (R, u) into I'r(R',u’)).

In [8], as a special case of a result contained in [3], Theorem 4.2, the following
is shown:

Proposition 2. I'r is an equivalence between the category of c-s-u-f-rings and
the category of PMV-algebras.

Definition 6. [9]. A LIl,-algebra is a structure A = (A, ®,-,-,—4,q,0,1)
where (A, &,-,-,0,1) is a PMV-algebra, q is a constant, and —, is a binary
operation such that the following conditions hold:

(A1) ¢ < —q

(A2) x —qy=(xVq) —qy

(A3) (zVq)(x —qy)=(zVa Ay
(A4) q —q (zq) =

(A5) If 22 =0 then x =0

In [9] it is shown that LII,-algebras constitute a quasivariety but not a vari-
ety, that every LIl ,-algebra is isomorphic to a subdirect product of a family of
linearly ordered LIl -algebras, and that the quasivariety of L1l ,-algebras is gen-
erated by the class of LI -algebras whose lattice reduct is [0, 1] with the usual
order.



2  f-Quasifields

Definition 7. A f-quasifield is a structure (K,+,—,%,/q,V,A,0,1,q) where
(K,4+,—, X,V,A,0,1,q) is a c-s-u-f-ring with strong unit 1, q is a constant and
/q is a binary operation such that the following conditions are satisfied:

(K1) 0<g<1-gq

(K2) z/qy = u(x)/quly) = u(z)/q(uly) V q).

(K3) (u(x) vV q) x (u(y)/qu(x)) = (u(z) V q) Auly)
(K1) (u(z)  0)/q0 = u(z)

(K5) If x x x =0 then z = 0.

If I is any f-quasifield, then for all x,y such that ¢ <z <1and 0 <y <z,
there is z (namely z = y/,x) such that zo = y. Thus any f-quasifield enjoys a
weak form of divisibility property.

The next theorem characterizes the class of linearly ordered f-quasifields
which are fields, i.e. of linearly ordered f-quasifields in which full divisibility
holds. In fact, as the categorical equivalence would suggest, it is closely related
to Corollary 3.12 in [9].

Theorem 2. Let K = (K,+,—,X,/q,V,A,0,1,q) be a linearly ordered quasi-
field. The following are equivalent:

(i) K is Archimedean (i.e. ¥Yb¥a > 03n € N(na > b)).
(i) (K,+,—,%,0,1) is a field.

Proof.

(i)=(ii) Let h = ¢/4(q + q). Then h(q + q) = ¢, which immediately implies that
2h = 1. Tt follows that 2hz = z for every z € K. Now let z € K\ {0},
and let us prove that there is a y € I such that yx = 1. Without loss of
generality we may assume that 2 > 0. Let k& be minimal such that z < 2
(such a k exists because K is Archimedean). Then h*z < 1. Moreover by the
minimality of k& we have h*~!z > 1 (where we put h*~! = 2 if k = 0). Hence
g < h < hFz <1, and by axiom (K3) there is a z € K such that h*zz = h.
Now let y = h*~1z. Then yxr = h*'zz = 2h¥22 = 2h = 1. Hence y is the
desired element.

(ii)=(i) Let by contradiction K be a linearly ordered f-quasifield such that for some
a,b € K one has a > 0 and na > b for every n € N. Then for every n € N
we have n < ba~!, against the fact that 1 is a strong unit of K.

Corollary 1. If F is a f-quasifield, then the ring of rationals Q can be embedded
into the ring-reduct of F.

Proof. By the argument used in the proof of Theorem [2] we see that for all
n € N there is y € K such that ny = 1. Let us denote this y by n~!. Then it
is readily seen that the map ¥ from Q into K defined by ¥(£2) = +(n"'m) is
an embedding of Q into the ring-reduct of K.



Example. Let R* be any non-trivial ultrapower of the ordered field R
of real numbers, and let € be any strictly positive infinitesimal. Then for all

ne N n< % So 1 is not a strong unit and for any choice of ¢ € (0, %],

(R*, 4+, —, %, /q,V,A,,0,1,q) (where x denotes product and z/,y = u?é)z&q) is
not a f-quasifield although (R*,+, —, x,0,1,) is a field.

Example. Let R* be as before, let ¢ = 5 and let R%,, = {x € R* : 3n €
N(| z |< n)}. It is easy to see that R%,, is a c-s-u-f-ring. Now let z,y € [1,1] be
such that x <y, and let z = 5 Then % < z <1, therefore z € R%,,,.

It follows that, letting a/,b = %, R7},, is closed under /4, and /, makes

R’sz a f-quasifield. Nevertheless R
strictly positive infinitesimal, then % ¢R%,,.

is not a field, because if ¢ € R}, is a

in

3 Categorical Equivalence

We are ready to introduce an equivalence between the category of LIl -algebras
(called LP) and the category of f-quasifields (called FQ).

Definition 8. Let I, be the functor from FQ into LP defined as follows: for
every f-quasifield F we define a structure II,(F) whose domain I14(F) is [0,1] =
{x € F:0<a <1}, whose constants 0, 1 and q are those of F, and the other
operations are: t®y = (z+y)Al, "~z = 1—=x, and x —4 y = y/qx. The operation
- s the restriction of X to [0,1]. For every morphism @ from a f-quasifield F
into a f-quasifield K, we define I1,(P) to be the restriction of ¢ to II,(F).

The following lemmas are easy to demonstrate:

Lemma 1. LIl is a functor from FQ to LP
O

Lemma 2. Let F be any c-s-u-f-ring equipped with an additional constant q and
an additional binary operation [, such that for all z,y € F, x/q.y = u(x)/qu(y),
and 0 < x/qy < 1. Let IT,(F) be defined from F according to Definition[§, (a).
The following are equivalent:

(i) F is a f-quasifield.
(i1) II4(F) is a LII,-algebra.

a

In order to prove that II, is an equivalence of categories, we start from the
following observation. Let F be the forgetful functor from LP, into the category
PMV of PMV-algebras, and let S be the forgetful functor from FQ into the
category FR of c-s-u-f-rings. Then it follows from the definition of II; (and from
the definition of I'r, see deﬁnition that the functors FoIl, and I'g oS, where
o denotes the composition of functors coincide.

Now we define a functor 17, 1 as follows:



e For every LII,-algebra A, the c-s-u-f-ring subreduct of IT,*(A) is I'g' (F(A).

Moreover the constant ¢ is interpreted as gy = ip A)(qA), where ¢# is the in-
terpretation of ¢ in A. Note that the domain of FR(Ffl(F A))) is contained
into the domain of I'y"(F(A)), therefore ip(a)(¢*) € II71(A).

Moreover we define:

z/qy = ipa)((ira) " (u(y) —¢ (ire) " (u(=))). (1)

Roughly speaking, we first compute u(z) and u(y), two members of the LII,-
algebra I1, (11, '(F(A)). Then we apply to them the inverse of ig(4), thus
obtaining two elements of A. Next we apply to these elements (taken in the
inverse order, because intuitively a/,b = u(b) —, u(a)) the operation —,
thus getting an element of A. Finally we apply the isomorphism ig(4) to such
an element, thus obtaining its isomorphic copy in II, (1T, '(A)) C I, (A).
o If ¢ is a morphism of LI7-algebras from A into B, then Hq_l(¢) =I'"YF(¢)).

In order to prove that II, is an equivalence of categories, by Proposition [2| and
Lemma [1| it is sufficient to prove the following lemma:

Lemma 3.
(i) For every LIl -algebra A, ix(ay is an isomorphism from A onto I, (I1; 1 (A)).
(ii) For every f-quasifield F, js(r) is an isomorphism from F onto H;l(Hq(]:)).
(i1i) For every morphism ¢ of LII,-algebras from A into B, Fﬁl(F(gZ))) is a mor-
phism from II; ' (A) into I1;*(B).

Proof. (i). That ip(4) is an isomorphism of PMV-algebras follows from Propo-
sition I That ip(A) preserves the constant g follows from the definition of II,
and of 11

We prove that ip(A) preserves —,. Let =, denote the interpretation of —, in
I, (I1; ' (A)). Thus a =4 b = b/qa, and since u(a) = a and u(b) = b, from eq.
(1) we obtain:

a =4 b=ipa)((irca) " (a) =4 (ipca)) (D). (2)

Now for z,y € A, substituting ig(4)(z) for a and ig(4)(y) for b in equation ,
we obtain:
ir(4)(T) =g ir ) (Y) = ira) (T =4 Y),

and the claim is proved.

(ii). Let us denote II,(F) by B. That jg(s) is an isomorphism of c-s-u-f-rings
follows from Proposition l In order to prove that jg(r) preserves g, note that
the interpretation of ¢ is the same in ]-" and in IT,(F) = B. Moreover in II; ' (B),
q is interpreted as ig(g)(¢”), where ¢P is the interpretatlon of ¢ in both B and F.
Therefore we only need to prove that igg)(q By = Js(F) (¢®). Now by Proposition
ir)(¢°) = I'r(j(¢®)) = jr(¢®), and the claim follows.

Finally we prove that jg(r) preserves /4. Let //, denote the interpreta-
tion of /g in II;'(II,(F)) (and let us identify /, with its realization in F).
Let z,y € F, and let us prove that jscr)(z/qy) = jsF)(x)//qJsF)(y). Since



r/qy = u(x)/qu(y) and jg(F) preserves the operation u, we may assume with-
out loss of generality that u(x) = x and u(y) = y. Thus for every z,y € B,

Jsr) (@) = Hy(jsr)(x)) = ips)(x). Similarly, jsr)(y) = ir@s)(y). Thus re-
calling the last claim of Proposition |2 and the definition of I 1 we obtain:
Js#) @)/ /aisr)(y) = i) (2)//qirm)(Y) = ir@m) (Y —q ) = Js@F) (Y —q 7) =
JsF)(x/qy), and (ii) is proved.

(iii). Set F = II;*(A), K = II;1(B), v = I'"'(F(¢)). That ¢ is a homomor-
phism of c-s-u-f-rings follows from Proposition [2} We prove that 1 preserves q.
The interpretation of ¢ in F is ¢7 = ipca (¢, and the interpretation of ¢ in
Kis ¢ = iF(B)(qB). Now by Proposition |2, IR (%) © ip(a) = ip(s) © ¢, therefore
(q7) = L) (¢") = (I'(®) cir)(¢*) = (irm) 0 9)(¢*) = irs) (¢°) = ¢~

Finally we prove that 1 preserves /,. Let //, denote the interpretation of /,
in IC, and let us identify the symbol /, and its realization in F. Let z,y € F.
Since /4,y = u(z)/,u(y), and since 1) preserves u, we can assume without loss
of generality that = u(z) and y = u(y). Then by clause in the definition of
II;" we have:

z/qy = ixa) ((ina) " (¥) —q (ira) "' () (3)

b(@)//a0(y) = v (ir@) ™ (@) =4 (@)~ (@(@)). (4)

Note that by Proposition [2} I'r(I'g'())) = ip(B) © ¢ O ig(lA). Therefore, for all
z € Tr(F), we have:

¥(2) = (Ir())(2) = (Tr(I'R ' (9))(2) = i) (D(ig 4 (2)))- (5)
In particular, ¥ (z) = ip(s) (qﬁ(zg(lA)(z))) and ¥(y) = iF(B)(gb(iE(lA) (y))), therefore

(ir(s) " (U (y) = @lig 4y () and (ings) ' (U(@)) = Glig 4 (@)  (6)

Substituting in eq. l) recalling that ¢ and 21;(1 A are homomorphisms of LI1,-
algebras and using eq. and eq. , we obtain:

@)/ /0(y) = v (Blity 1)) —a SlipLe (@) =
— i) (Blig ) (1) = ipia (@))) = iwe) (Diple (Y = 7)) =
=y —q ) = Y(z/qy).
This concludes the proof of the lemma.

It follows:

Theorem 3. The categories of LIl -algebras and of f-quasifields are equivalent
via the functors Iy and IT; .

As a consequence we obtain that a number of properties of LI -algebras shown
in [9] can be translated to f-quasifields. For example:



Corollary 2. FEvery f-quasifield is isomorphic to a subdirect product of a family
of linearly ordered f-quasifields.

Proof. Let F be any f-quasifield. Then we may decompose II,(F) as a subdirect
product of a family of linearly ordered LI -algebras (A; : ¢ € I). Then it follows
from Theorem (3| that F has a subdirect embedding into [[;c; /1, 1(A;). More-

over the c-s-u-f-subreduct of IT,'(A;) is I'g'(F(A;), and in [§] it is shown that
I'g'(F(A;) is linearly ordered whenever A; is linearly ordered. This concludes
the proof.

Corollary 3. f-quasifields constitute a quasivariety, but not a variety.

Proof. f-quasifields are axiomatized by means of quasi equations, so they form
a quasivariety. In order to show that they do not form a variety it is sufficient to
prove that they are not closed under epimorphic images. Now in [9] it is shown
that there are a LIl -algebra A and a epimorphism ¢ from A onto a structure
B which is not a LIl -algebra. Let F = II;'(A). By Theorem (3, F is a f-

quasifield. Now consider I'y"(F(B)) with an additional constant gy defined by
qo = iF(B) (4(¢™)) (where ¢ is the realization of ¢ in A and F forgets ¢ and —q),
and with the operation /, defined by means of the formula [1|in the definition
of IT;7!. Call this algebra K. Then I'~!(F (1)) is a epimorphism from F onto K.
Now let € be the structure I'r (S(K)) (where S forgets /, and ¢) with a constant
g interpreted as gy and with an operation —, defined by z —¢ y = y/qz. It is
readily seen that £ is isomorphic to B (under the isomorphism igy). Now if
K were an f-quasifield, then by Lemma [2| £ would be a LIl;-algebra, which is
impossible.
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