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Abstract. In [9] a new class of MV -algebras with product, called  LΠq-
algebras, has been introduced. In these algebras, the discontinuous prod-
uct residuation →π defined in [4] is replaced by a continuous approxi-
mation of it. These algebras seem to be a good compromise between the
need of expressiveness and the need of continuity of connectives.
Following a good tradition in many-valued logic (see e.g. [10], [7], [3] and
[8]), in this paper we introduce a class of commutative f -rings with strong
unit and with a sort of weak divisibility property, called f -quasifields,
and we show that the categories of  LΠq-algebras and of f -quasifields are
equivalent.

1 Preliminaries

Definition 1. (see e.g. [1]). A hoop is an algebra 〈H, ?,→, 1〉 such that 〈H, ?, 1〉
is a commutative monoid, and → is a binary operation such that the following
identities hold:

x→ x = 1, x→ (y → z) = (x ? y) → z, x ? (x→ y) = y ? (y → x).

A Wajsberg hoop is a hoop satisfying (x→ y) → y = (y → x) → x.
A bounded hoop is a hoop equipped with a constant 0 such that 0 → x = 1.
A Wajsberg algebra is a bounded Wajsberg hoop.

The monoid operation of a Wajsberg algebra is usually denoted by �.
Wajsberg algebras constitute a variety generated by 〈[0, 1],�,→, 0, 1〉.

If 〈A,�,→, 0, 1〉 is a Wajsberg algebra, then the structure 〈A,⊕,¬, 0, 1〉 is called
MV -algebra. Every Wajsberg algebra is termwise equivalent to a MV -algebra
([6]). Thus we will often identify a Wajsberg algebra and the corresponding
MV -algebra.

Notation 1 We will use the following shorthand throughout the paper:
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– ¬x for x→ 0
– x⊕ y for ¬x→ y
– x	 y for ¬(¬x⊕ y)
– x ∧ y for x� (x→ y)
– x ∨ y for (x→ y) → y

– x ≤ y for x→ y = 1 1

– ¬πx for x→π 0
– ∆(x) for ¬π¬x,
– u(a) for (a ∨ 0) ∧ 1

– We will omit the symbols × and · when there is no danger of confusion
– (n)x is inductively defined by (0)x = 0 and (n+ 1)x = (n)x+ x
– xn is inductively defined by x0 = 1 and xn+1 = xnx

In attempting to axiomatize the class of  LΠ-algebras, in [7] the concept of PMV-
algebra has been introduced.

Definition 2. A PMV-algebra is an algebra A = 〈A,⊕,¬, ·, 0, 1〉 such that:

〈A,⊕,¬, 0, 1〉 is a MV-algebra.
〈A, ·, 1〉 is a commutative monoid.
For all x, y, z ∈ A one has: x · (y 	 z) = (x · y)	 (x · z).

Definition 3. A  LΠ-algebra is an algebra A = 〈A,⊕,¬, ·,→π, 0, 1〉 such that
〈A,⊕,¬, ·, 0, 1〉 is a PMV-algebra, 〈A, ·,→π, 0, 1〉 is a bounded hoop, and the
following equations hold:

– x→π y ≤ x→ y.
– x ∧ ¬πx = 0
– ∆(x)�∆(x→ y) ≤ ∆(y)
– ∆(x) ≤ x

– ∆(∆(x)) = ∆(x)
– ∆(x ∨ y) = ∆(x) ∨∆(y)
– ∆(x) ∨ ¬∆(x) = 1
– ∆(x→ y) ≤ x→π y.

A  LΠ 1
2-algebra is a  LΠ-algebra with an additional constant 1

2 satisfying 1
2 =

¬ 1
2 .

In [7], Lemma 2.11 and Theorem 5.1, the following is shown:

Proposition 1.
(i) Every PMV-algebra is isomorphic to a subdirect product of a family of lin-

early ordered PMV-algebras.
(ii) A PMV-algebra and its underlying MV-algebra have the same congruences.

Definition 4. (Cf [2]). A lattice-ordered ring is a structure
R = 〈R,+,−,×,∨,∧, 0〉 such that:

(i) R = 〈R,+,−,×, 0〉 is a ring.
(ii) R = 〈R,∨,∧〉 is a lattice.

(iii) Let ≤ denote the partial order induced by ∨ and ∧. Then x ≤ y implies
x+ z ≤ y + z, and x, y ≥ 0 implies x× y ≥ 0.

1 Note that ≤ is a distributive lattice order, and ∨ and ∧ are the corresponding oper-
ations of join and meet
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An f-ring is a lattice-ordered ring which is isomorphic to a subdirect product
of linearly ordered lattice-ordered rings.

A strong unit of a lattice-ordered ring R is an element u ∈ R such that
u2 ≤ u, and for all a ∈ R there is n ∈ N such that a ≤ (n)u.

A commutative unitary f-ring with strong unit (for short: a c-s-u-
f-ring) is a commutative f-ring with a unit for product which is also a strong
unit.

In [3] the authors define a functor ΓR from the category of lattice-ordered
rings with strong unit into a category of algebras, called productMV -algebras.
Here we describe the restriction of ΓR to c-s-u-f-rings, which turns out to be a
functor from the category of c-s-u-f-rings into the category of PMV-algebras.

Definition 5. The functor ΓR is defined as follows:

(i) Let R = 〈R,+,−,×,∨,∧, 0〉 be a c-s-u-f-ring, and let u be the unit of R
(which by definition is also a strong unit). Then ΓR(R) denotes the structure
〈[0, u],⊕,¬, ·, 0, u〉, where [0, u] = {x ∈ R : 0 ≤ x ≤ u}, x⊕ y = (x+ y) ∧ 0,
¬x = u− x, and · is the restriction of × to [0, u].

(ii) Let R, R′ be lattice-ordered rings, and let u, u′ be strong units of R and
of R′ respectively. Let h be a morphism from (R, u) into (R′, u′), i.e., a
homomorphism from R into R′ such that h(u) = u′. Then ΓR(h) is defined
as the restriction of h to ΓR(R, u). (Note that ΓR(h) is a homomorphism
from ΓR(R, u) into ΓR(R′, u′)).

In [8], as a special case of a result contained in [3], Theorem 4.2, the following
is shown:

Proposition 2. ΓR is an equivalence between the category of c-s-u-f-rings and
the category of PMV-algebras.

Definition 6. [9]. A  LΠq-algebra is a structure A = 〈A,⊕,¬, ·,→q, q, 0, 1〉
where 〈A,⊕,¬, ·, 0, 1〉 is a PMV-algebra, q is a constant, and →q is a binary
operation such that the following conditions hold:

(A1) q ≤ ¬q
(A2) x→q y = (x ∨ q) →q y

(A3) (x ∨ q)(x→q y) = (x ∨ q) ∧ y
(A4) q →q (xq) = x

(A5) If x2 = 0 then x = 0

In [9] it is shown that  LΠq-algebras constitute a quasivariety but not a vari-
ety, that every  LΠq-algebra is isomorphic to a subdirect product of a family of
linearly ordered  LΠq-algebras, and that the quasivariety of  LΠq-algebras is gen-
erated by the class of  LΠq-algebras whose lattice reduct is [0, 1] with the usual
order.
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2 f-Quasifields

Definition 7. A f -quasifield is a structure 〈K,+,−,×, /q,∨,∧, 0, 1, q〉 where
〈K,+,−,×,∨,∧, 0, 1, q〉 is a c-s-u-f-ring with strong unit 1, q is a constant and
/q is a binary operation such that the following conditions are satisfied:

(K1) 0 ≤ q ≤ 1− q
(K2) x/qy = u(x)/qu(y) = u(x)/q(u(y) ∨ q).
(K3) (u(x) ∨ q)× (u(y)/qu(x)) = (u(x) ∨ q) ∧ u(y)
(K4) (u(x)× q)/qq = u(x)
(K5) If x× x = 0 then x = 0.

If K is any f -quasifield, then for all x, y such that q ≤ x ≤ 1 and 0 ≤ y ≤ x,
there is z (namely z = y/qx) such that zx = y. Thus any f -quasifield enjoys a
weak form of divisibility property.

The next theorem characterizes the class of linearly ordered f -quasifields
which are fields, i.e. of linearly ordered f -quasifields in which full divisibility
holds. In fact, as the categorical equivalence would suggest, it is closely related
to Corollary 3.12 in [9].

Theorem 2. Let K = 〈K,+,−,×, /q,∨,∧, 0, 1, q〉 be a linearly ordered quasi-
field. The following are equivalent:

(i) K is Archimedean (i.e. ∀b∀a > 0∃n ∈ N(na ≥ b)).
(ii) 〈K,+,−,×, 0, 1〉 is a field.

Proof.
(i)⇒(ii) Let h = q/q(q + q). Then h(q + q) = q, which immediately implies that

2h = 1. It follows that 2hz = z for every z ∈ K. Now let x ∈ K \ {0},
and let us prove that there is a y ∈ K such that yx = 1. Without loss of
generality we may assume that x > 0. Let k be minimal such that x ≤ 2k

(such a k exists because K is Archimedean). Then hkx ≤ 1. Moreover by the
minimality of k we have hk−1x > 1 (where we put hk−1 = 2 if k = 0). Hence
q ≤ h < hkx ≤ 1, and by axiom (K3) there is a z ∈ K such that hkxz = h.
Now let y = hk−1z. Then yx = hk−1zx = 2hkzx = 2h = 1. Hence y is the
desired element.

(ii)⇒(i) Let by contradiction K be a linearly ordered f -quasifield such that for some
a, b ∈ K one has a > 0 and na > b for every n ∈ N. Then for every n ∈ N
we have n < ba−1, against the fact that 1 is a strong unit of K.

Corollary 1. If F is a f-quasifield, then the ring of rationals Q can be embedded
into the ring-reduct of F .

Proof. By the argument used in the proof of Theorem 2 we see that for all
n ∈ N there is y ∈ K such that ny = 1. Let us denote this y by n−1. Then it
is readily seen that the map Ψ from Q into K defined by Ψ(±m

n ) = ±(n−1m) is
an embedding of Q into the ring-reduct of K.
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Example. Let R? be any non-trivial ultrapower of the ordered field R
of real numbers, and let ε be any strictly positive infinitesimal. Then for all
n ∈ N, n < 1

ε . So 1 is not a strong unit and for any choice of q ∈ (0, 1
2 ],

〈R?,+,−,×, /q,∨,∧, , 0, 1, q〉 (where × denotes product and x/qy = u(x)
u(y)∨q ) is

not a f -quasifield although 〈R?,+,−,×, 0, 1, 〉 is a field.
Example. Let R? be as before, let q = 1

2 and let R?
fin = {x ∈ R? : ∃n ∈

N(| x |≤ n)}. It is easy to see that R?
fin is a c-s-u-f-ring. Now let x, y ∈ [ 12 , 1] be

such that x ≤ y, and let z = x
y . Then 1

2 ≤ z ≤ 1, therefore z ∈ R?
fin.

It follows that, letting a/qb = u(a)
(u(b)∨q) , R?

fin is closed under /q, and /q makes
R?

fin a f -quasifield. Nevertheless R?
fin is not a field, because if ε ∈ R?

fin is a
strictly positive infinitesimal, then 1

ε /∈ R?
fin.

3 Categorical Equivalence

We are ready to introduce an equivalence between the category of  LΠq-algebras
(called LP) and the category of f -quasifields (called FQ).

Definition 8. Let Πq be the functor from FQ into LP defined as follows: for
every f-quasifield F we define a structure Πq(F) whose domain Πq(F ) is [0, 1] =
{x ∈ F : 0 ≤ x ≤ 1}, whose constants 0, 1 and q are those of F , and the other
operations are: x⊕y = (x+y)∧1, ¬x = 1−x, and x→q y = y/qx. The operation
· is the restriction of × to [0, 1]. For every morphism Φ from a f-quasifield F
into a f-quasifield K, we define Πq(Φ) to be the restriction of Φ to Πq(F).

The following lemmas are easy to demonstrate:

Lemma 1.  LΠq is a functor from FQ to LP
ut

Lemma 2. Let F be any c-s-u-f-ring equipped with an additional constant q and
an additional binary operation /q such that for all x, y ∈ F , x/qy = u(x)/qu(y),
and 0 ≤ x/qy ≤ 1. Let Πq(F) be defined from F according to Definition 8, (a).
The following are equivalent:

(i) F is a f-quasifield.
(ii) Πq(F) is a  LΠq-algebra.

ut

In order to prove that Πq is an equivalence of categories, we start from the
following observation. Let F be the forgetful functor from LPq into the category
PMV of PMV-algebras, and let S be the forgetful functor from FQ into the
category FR of c-s-u-f-rings. Then it follows from the definition of Πq (and from
the definition of ΓR, see definition 5) that the functors F◦Πq and ΓR ◦S, where
◦ denotes the composition of functors coincide.
Now we define a functor Π−1

q as follows:
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• For every  LΠq-algebraA, the c-s-u-f-ring subreduct ofΠ−1
q (A) is Γ−1

R (F(A)).
Moreover the constant q is interpreted as q0 = iF(A)(qA), where qA is the in-
terpretation of q in A. Note that the domain of ΓR(Γ−1

R (F(A))) is contained
into the domain of Γ−1

R (F(A)), therefore iF(A)(qA) ∈ Π−1
q (A).

Moreover we define:

x/qy = iF(A)((iF(A))−1(u(y)) →q (iF(A))−1(u(x))). (1)

Roughly speaking, we first compute u(x) and u(y), two members of the  LΠq-
algebra Πq(Π−1

q (F(A)). Then we apply to them the inverse of iF(A), thus
obtaining two elements of A. Next we apply to these elements (taken in the
inverse order, because intuitively a/qb = u(b) →q u(a)) the operation →q,
thus getting an element of A. Finally we apply the isomorphism iF(A) to such
an element, thus obtaining its isomorphic copy in Πq(Π−1

q (A)) ⊆ Π−1
q (A).

• If φ is a morphism of  LΠ-algebras from A into B, then Π−1
q (φ) = Γ−1(F(φ)).

In order to prove that Πq is an equivalence of categories, by Proposition 2 and
Lemma 1 it is sufficient to prove the following lemma:

Lemma 3.
(i) For every  LΠq-algebra A, iF(A) is an isomorphism from A onto Πq(Π−1

q (A)).
(ii) For every f-quasifield F , jS(F) is an isomorphism from F onto Π−1

q (Πq(F)).
(iii) For every morphism φ of  LΠq-algebras from A into B, Γ−1

R (F(φ)) is a mor-
phism from Π−1

q (A) into Π−1
q (B).

Proof. (i). That iF(A) is an isomorphism of PMV-algebras follows from Propo-
sition 2. That iF(A) preserves the constant q follows from the definition of Πq

and of Π−1
q .

We prove that iF(A) preserves →q. Let ⇒q denote the interpretation of →q in
Πq(Π−1

q (A)). Thus a ⇒q b = b/qa, and since u(a) = a and u(b) = b, from eq.
(1) we obtain:

a⇒q b = iF(A)((iF(A))−1(a) →q (iF(A))−1(b)). (2)

Now for x, y ∈ A, substituting iF(A)(x) for a and iF(A)(y) for b in equation (2),
we obtain:

iF(A)(x) ⇒q iF(A)(y) = iF(A)(x→q y),

and the claim is proved.
(ii). Let us denote Πq(F) by B. That jS(F) is an isomorphism of c-s-u-f-rings

follows from Proposition 2. In order to prove that jS(F) preserves q, note that
the interpretation of q is the same in F and in Πq(F) = B. Moreover in Π−1

q (B),
q is interpreted as iF(B)(qB), where qB is the interpretation of q in both B and F .
Therefore we only need to prove that iF(B)(qB) = jS(F)(qB). Now by Proposition
2, iF(B)(qB) = ΓR(jF (qB)) = jF (qB), and the claim follows.

Finally we prove that jS(F) preserves /q. Let //q denote the interpreta-
tion of /q in Π−1

q (Πq(F)) (and let us identify /q with its realization in F).
Let x, y ∈ F , and let us prove that jS(F)(x/qy) = jS(F)(x)//qjS(F)(y). Since
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x/qy = u(x)/qu(y) and jS(F) preserves the operation u, we may assume with-
out loss of generality that u(x) = x and u(y) = y. Thus for every x, y ∈ B,
jS(F)(x) = Πq(jS(F)(x)) = iF(B)(x). Similarly, jS(F)(y) = iF(B)(y). Thus re-
calling the last claim of Proposition 2 and the definition of Π−1

q , we obtain:
jS(F)(x)//qjS(F)(y) = iF(B)(x)//qiF(B)(y) = iF(B)(y →q x) = jS(F)(y →q x) =
jS(F)(x/qy), and (ii) is proved.

(iii). Set F = Π−1
q (A), K = Π−1

q (B), ψ = Γ−1(F(φ)). That ψ is a homomor-
phism of c-s-u-f-rings follows from Proposition 2. We prove that ψ preserves q.
The interpretation of q in F is qF = iF(A)(qA), and the interpretation of q in
K is qK = iF(B)(qB). Now by Proposition 2, ΓR(ψ) ◦ iF(A) = iF(B) ◦ φ, therefore
ψ(qF ) = Γ (ψ)(qF ) = (Γ (ψ) ◦ iF(A))(qA) = (iF(B) ◦ φ)(qA) = iF(B)(qB) = qK.

Finally we prove that ψ preserves /q. Let //q denote the interpretation of /q

in K, and let us identify the symbol /q and its realization in F . Let x, y ∈ F .
Since x/qy = u(x)/qu(y), and since ψ preserves u, we can assume without loss
of generality that x = u(x) and y = u(y). Then by clause (1) in the definition of
Π−1

q we have:

x/qy = iF(A)((iF(A))−1(y) →q (iF(A))−1(y)) (3)

ψ(x)//qψ(y) = iF(B)((iF(B))−1(ψ(y)) →q (iF(B))−1(ψ(x))). (4)

Note that by Proposition 2, ΓR(Γ−1
R (φ))) = iF(B) ◦ φ ◦ i−1

F(A). Therefore, for all
z ∈ ΓR(F), we have:

ψ(z) = (ΓR(ψ))(z) = (ΓR(Γ−1
R (φ)))(z) = iF(B)(φ(i−1

F(A)(z))). (5)

In particular, ψ(x) = iF(B)(φ(i−1
F(A)(x))) and ψ(y) = iF(B)(φ(i−1

F(A)(y))), therefore

(iF(B))−1(ψ(y)) = φ(i−1
F(A)(y)) and (iF(B))−1(ψ(x)) = φ(i−1

F(A)(x)). (6)

Substituting in eq. (4), recalling that φ and i−1
F(A) are homomorphisms of  LΠq-

algebras and using eq. (5) and eq. (3), we obtain:

ψ(x)//qψ(y) = iF(B)(φ(i−1
F(A)(y)) →q φ(i−1

F(A)(x))) =

= iF(B)(φ(i−1
F(A)(y) →q i

−1
F(A)(x))) = iF(B)(φ(i−1

F(A)(y →q x))) =

= ψ(y →q x) = ψ(x/qy).

This concludes the proof of the lemma.

It follows:

Theorem 3. The categories of  LΠq-algebras and of f-quasifields are equivalent
via the functors Πq and Π−1

q .

As a consequence we obtain that a number of properties of  LΠq-algebras shown
in [9] can be translated to f -quasifields. For example:



8

Corollary 2. Every f-quasifield is isomorphic to a subdirect product of a family
of linearly ordered f-quasifields.

Proof. Let F be any f -quasifield. Then we may decompose Πq(F) as a subdirect
product of a family of linearly ordered  LΠq-algebras 〈Ai : i ∈ I〉. Then it follows
from Theorem 3 that F has a subdirect embedding into

∏
i∈I Π

−1
q (Ai). More-

over the c-s-u-f-subreduct of Π−1
q (Ai) is Γ−1

R (F(Ai), and in [8] it is shown that
Γ−1

R (F(Ai) is linearly ordered whenever Ai is linearly ordered. This concludes
the proof.

Corollary 3. f-quasifields constitute a quasivariety, but not a variety.

Proof. f -quasifields are axiomatized by means of quasi equations, so they form
a quasivariety. In order to show that they do not form a variety it is sufficient to
prove that they are not closed under epimorphic images. Now in [9] it is shown
that there are a  LΠq-algebra A and a epimorphism φ from A onto a structure
B which is not a  LΠq-algebra. Let F = Π−1

q (A). By Theorem 3, F is a f -
quasifield. Now consider Γ−1

R (F(B)) with an additional constant q0 defined by
q0 = iF(B)(ψ(qA)) (where qA is the realization of q in A and F forgets q and →q),
and with the operation /q defined by means of the formula 1 in the definition
of Π−1

q . Call this algebra K. Then Γ−1(F(ψ)) is a epimorphism from F onto K.
Now let E be the structure ΓR(S(K)) (where S forgets /q and q) with a constant
q interpreted as q0 and with an operation →q defined by x →q y = y/qx. It is
readily seen that E is isomorphic to B (under the isomorphism iF(B)). Now if
K were an f -quasifield, then by Lemma 2 E would be a  LΠq-algebra, which is
impossible.
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