Corso di Matematica I per Scienze Ambientali (2017/18)

Contenuti della pagina

News

 

Descrizione del corso

Prerequisiti

È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado) e di geometria euclidea.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Algebra lineare.
  • Funzioni reali a una variabile: continuità e derivate, studio di funzione.

Durante il corso qui sotto saranno elencati i contenuti delle singole lezioni:

  1. ??/10/2017 – Introduzione al corso, elementi di logica e di teoria degli insiemi.

Materiale del corso

  • Il testo di riferimento principale è Carlo Sbordone, Francesco Sbordone. Matematica per le Scienze della Vita. Edises 2014.
  • Per gli studenti immatricolati fino al 2015/16 del corso di laurea in VCA: Programma di Matematica I e II (6+6 CFU) e di Matematica (12 CFU)

Aspetti pratici

Crediti/ore:

  • Durata: 48 ore (10 settimane).
  • CFU: 6
  • Frequenza: non obbligatoria, ma fortemente consigliata.

Date/aule:

  • Ci sono due lezioni a settimana.

Esercizi/Esami

OFA

Le lezioni dell’OFA si terranno a settembre.

Materiale aggiuntivo.

Appelli d’esame:

  •  gennaio 2018
  • 7 febbraio 2018
  • 4 aprile 2018 (riservato agli studenti fuoricorso)
  • 13 giugno 2018.
  • luglio 2018.
  • settembre 2018.
  • novembre 2018 (riservato agli studenti  fuoricorso).

Informazioni sugli esami:

  • L’esame è scritto e orale.
  • È sempre necessario presentarsi agli esami con un documento di riconoscimento.
  • È assolutamente necessario registrarsi su esse3 per poter sostenere l’esame, anche per chi deve solo sostenere l’orale.
  • All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
  • Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.

Commenti, lamentele, domande: scrivere a Luca Spada

Corso di Matematica I per Ingegneria Meccanica e Gestionale (2017/18)

Contenuti della pagina

News

Descrizione del corso

Prerequisiti

È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.

Frequenza

La frequenza non è obbligatoria ma è fortemente consigliata.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Insiemi numerici: N, Z, Q, R, C
  • Funzioni elementari reali a una variabile: valore assoluto, potenza, radice, esponenziale, logaritmo, funzioni trigonometriche.
  • Successioni in R, limiti.
  • Proprietà delle funzioni continue.
  • Derivate.
  • Integrali definiti e indefiniti.
  • Serie numeriche.

Più dettagliatamente, qui sotto sono elencati i contenuti delle singole lezioni:

  1. 12/09/2017 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
  2. 15/09/2017 – Relazioni, funzioni e loro proprietà.
  3. 19/09/2017 – Gli insiemi numerici.  Gli assiomi dei numeri reali e loro prime conseguenze.
  4. 22/09/2017 –
  5. 26/09/2017 – Non ci sarà lezione.
  6. 29/09/2017 – Non ci sarà lezione.

Materiale del corso

  • Il testo di riferimento principale è: Paolo Marcellini, Carlo Sbordone.  Analisi Matematica. Vol 1, Liguori Editore.
  • Un utile complemento è dato dal rispettivo libro di esercitazioni: Paolo Marcellini, Carlo Sbordone.  Esercitazioni di Matematica. Vol 1 e 2, Liguori Editore.

Aspetti pratici

Crediti/ore:

  • Durata: 90 ore.
  • CFU: 9

Date/aule:

  • Le lezioni cominceranno il 12 di settembre.
  • Ci sono due lezioni a settimana:
    • martedì dalle 15:30 alle 18:30,
    • venerdì dalle 8:30 alle 11:30.

Esercizi/Esami

Esame:

  • Ci saranno tre prove di esonero durante il corso.  Chi conseguirà un voto medio pari o superiore a 18 potrà sostenere direttamente l’esame orale.  Sarà comunque possibile per tutti sostenere l’esame scritto a gennaio e ai seguenti appelli.
  • È necessario presentarsi all’esame con un documento di riconoscimento.
  • Per poter partecipare all’esame finale è assolutamente necessario registrarsi su esse3, in caso di difficoltà rivolgersi alle segreterie.
  • All’esame scritto e durante le prove intermedie è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
  • Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
  • L’esame orale verte su tutti gli argomenti trattati durante il corso.  Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso.  In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi).  Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).

Appelli d’esame:

  • Primo appello invernale
    • gennaio 2018.
  • Secondo appello invernale
    • febbraio 2018.
  • Primo appello estivo.
    • giugno 2018.
  • Secondo appello estivo.
    • luglio 2018.
  • Terzo appello estivo.
    • settembre 2018.

Prove intermedie:

  • Chi supera le prove intermedie può sostenere l’orale negli appelli di gennaio, febbraio, giugno o luglio.
  • Per sostenere l’orale è comunque necessario registrarsi per l’appello su esse3 (come per fare lo scritto, ma presentandosi direttamente all’orale).
  • Esempi: Traccia 1, Traccia 2Traccia 3Traccia 5Traccia 6 Traccia 7Traccia 8Traccia 9.

 

Commenti, lamentele, domande: scrivere a Luca Spada

Corso di Matematica I per Ingegneria Meccanica e Gestionale

 

Corso di Matematica I per Ingegneria Meccanica e Gestionale

 

(I semestre 2016/17)

 

Contenuti della pagina

 

 

News

Pubblicati i risultati del secondo appello invernale. Vedi

Pubblicati i risultati del primo appello invernale. Vedi

Descrizione del corso

 

Prerequisiti

È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Successioni e serie numeriche.
  • Funzioni reali a una variabile: continuità, derivate e integrali.

Più dettagliatamente, qui sotto sono elencati i contenuti delle singole lezioni:

  1. 14/09/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
  2. 15/09/2016 – Relazioni: relazioni d’ordine, relazioni di equivalenza. Funzioni: iniettività, suriettività, biezioni, monotonia.  Insiemi numerici.
  3. 16/09/2016 – Massimi e minimi. Maggiorante, minorante, estremo superiore e inferiore di un insieme ordinato.
  4. 21/09/2016 – San Matteo.  Non c’è lezione.
  5. 22/09/2016 – Rappresentazione cartesiana.  Vettori e operazioni tra vettori.  Spazi vettoriali e sottospazi. Combinazioni lineari. Dipendenza lineare.*
  6. 23/09/2016 – Base di uno spazio vettoriale, dimensione.*
  7. 28/09/2016 – Teorema di Rouché-Capelli in forma vettoriale.*  Disequazioni algebriche.
  8. 29/09/2016 – Disequazioni irrazionali, esponenziali e logaritmiche.
  9. 30/09/2016 – Funzioni trigonometriche. Cenni sui numeri complessi.
  10. 05/10/2016– Forma trigonometrica dei numeri complessi.  Potenze radici di numeri complessi.  Dominio di una funzione. Principio di Induzione.
  11. 06/10/2016 – Esercitazione.
  12. 07/10/2016 – Descrizioni analitiche della retta: equazione implicita, esplicita e parametrica. Fascio di rette per un punto.
  13. 12/10/2016 – Esercitazione.
  14. 13/10/2016 – Prima prova intermedia.
  15. 14/10/2016 – Definizione di successione e convergenza di una successione.
  16. 19/10/2016 – Successioni convergenti divergenti e non regolari.
  17. 20/10/2016 – Teorema della permanenza del segno e sue conseguenze.
  18. 21/10/2016 – Criteri di confronto per le successioni e limiti notevoli: potenze, radici e trigonometrici.
  19. 26/10/2016 – Successioni monotone e loro proprietà. Il numero di Nepero e.
  20. 26/10/2016 – Esercitazione.
  21. 27/10/2016 – Teorema di Bolzano-Weierstrass. Successioni di Cauchy e loro proprietà. Stima degli errori.
  22. 28/10/2016 – Limiti di funzioni.
  23. 02/11/2016 – Operazioni con i limiti di funzioni. Limiti di funzioni composte.
  24. 03/11/2016 – Funzioni continue, discontinuità.  Teoremi sulle funzioni continue: permanenza del segno, esistenza degli zeri, esistenza dei valori intermedi.
  25. 04/11/2016 – Teorema di Weierstrass.  Relazioni tra monotonia e funzioni continue.  Grafico di una funzione.
  26. 09/11/2016 – Derivate: interpretazione fisica e geometrica.
  27. 10/11/2016 – Formule per le derivate: somma, prodotto e frazione; funzione composta, funzione inversa.  Teorema di Fermat.
  28. 11/11/2016 – Teorema di Rolle e teorema di Lagrange. Esercitazione.
  29. 16/11/2016 – Uso delle derivate per la ricerca di massimi e minimi.
  30. 17/11/2016 – Seconda prova intermedia.
  31. 18/11/2016 – Derivate seconde. Criterio di convessità. Teorema di de l’Hôpital (senza dimostrazione).
  32. 23/11/2016 – Integrale definito. Idea intuitiva e definizione tramite somme integrali inferiori e superiori.
  33. 24/11/2016 – Proprietà degli integrali definiti. Teorema di Cantor e integrabili delle funzioni continue.
  34. 25/11/2016 – Teorema della media. Integrali indefiniti.
  35. 30/11/2016 –  Non c’è lezione.
  36. 01/12/2016 – Integrali elementari. Scomposizione in somma.  Integrazione per parti.  Integrazione per sostituzione.
  37. 02/12/2016 – Calcolo di aree e di volumi di solidi di rotazione.  Integrali impropri.
  38. 07/12/2016 – Formula di Taylor con resto di Peano, resto integrale e resto  di Lagrange (quest’ultimo senza dimostrazione).
  39. 07/12/2016 – Integrali di funzioni razionali e sostituzioni di Eulero.
  40. 08/12/2016 – Festa dell’Immacolata. Non c’è lezione.
  41. 09/12/2016 – Non c’è lezione.
  42. 14/12/2016 – Introduzione alle serie.  Criterio di Cauchy e teorema del resto.
  43. 15/12/2016 – Serie geometrica e serie armonica generalizzata. Criterio del confronto e criterio degli infinitesimi.
  44. 16/12/2016 – Criterio della radice.  Criterio di convergenza per serie a segni alternati. Convergenza assoluta.
  45. 21/12/2016 – Esercitazione.
  46. 21/12/2016 – Esercitazione.
  47. 22/12/2016 – Terza prova intermedia.
  48. 23/12/2016 – Esercitazione.

Due lezioni perse verranno recuperate mercoledì 7 dicembre e mercoledì 21 dicembre.  Entrambe in aula E dalle 16:30 alle 18:30.

La lezione persa per San Matteo verrà recuperata mercoledì 26 ottobre alle 16:30 in Aula E.

*Gli argomenti di algebra lineare non sono richiesti né all’esame scritto né all’orale.

Materiale del corso

 

  • Il testo di riferimento principale è: Paolo Marcellini, Carlo Sbordone.  Analisi Matematica. Vol 1, Liguori Editore.
  • Un utile complemento è dato dal rispettivo libro di esercitazioni: Paolo Marcellini, Carlo Sbordone.  Esercitazioni di Matematica. Vol 1 e 2, Liguori Editore.

 

Aspetti pratici

 

 

Crediti/ore:

 

  • Durata: 90 ore.
  • CFU: 9

 

Date/aule:

 

  • Le lezioni cominceranno il 13 settembre.
  • Ci sono tre lezioni a settimana:
    1. mercoledì dalle 8:45 alle 10:30, aula A.
    2. giovedì dalle 14:30 alle 16:30, aula A.
    3. venerdì dalle 8:45 alle 10:30, aula A.

 

Esercizi/Esami

 

Esame:

 

  • Ci saranno tre prove di esonero durante il corso.  Chi conseguirà un voto medio pari o superiore a 18 potrà sostenere direttamente l’esame orale.  Sarà comunque possibile per tutti sostenere l’esame scritto a gennaio e ai seguenti appelli.
  • È necessario presentarsi all’esame con un documento di riconoscimento.
  • Per poter partecipare all’esame è assolutamente necessario registrarsi su esse3, in caso di difficoltà rivolgersi alle segreterie.
  • All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
  • Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.
  • L’esame orale verte su tutti gli argomenti trattati durante il corso.  Lo studente deve dimostrare in primis di conoscere i concetti (definizioni) trattati durante il corso.  In seguito le domande saranno volte a capire se lo studente sa usare quei concetti e definizioni e ne conosce le proprietà fondamentali viste durante il corso (teoremi).  Solo in caso entrambe le precedenti parti vengano superate con successo si discuterà del perché valgano tali proprietà (dimostrazioni).

 

Appelli d’esame:

 

  • Primo appello invernale
      • orale (i candidati verranno chiamati in ordine alfabetico, cominciando da chi ha superato le prove intermedie, ci saranno circa 20 orali al giorno):
        • 24 gennaio dalle 15:00 alle 19:00 Aula E.
        • 25 gennaio dalle 15:00 alle 19:00 Aula E.
        • 26 gennaio dalle 15:00 alle 19:00 Aula F.
        • 27 gennaio dalle 9:00 alle 12:00 Aula A.
  • Secondo appello invernale
    • orale (i candidati verranno chiamati in ordine alfabetico):
      • mercoledì 15 febbraio 9:30 – 13:00 aula 107.
      • mercoledì 15 febbraio 15:00 – 19:00 aula 133.
      • giovedì 16 febbraio 9:30 – 12:30 aula 129.
      • giovedì 16 febbraio 15:00 – 19:00 aula 129.
  • Primo appello estivo.
    • orale: a partire da mercoledì 14 ore 10:00.  Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)
  • Secondo appello estivo.
    • orale: martedì 4 ore 9:00. Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–).
  • Terzo appello estivo
    • orale: a partire da martedì 12 ore 10:00.  Studio prof. Spada (Dipartimento di Matematica, primo piano –palazzo F2 stanza 25–)

Prove intermedie:

 

Commenti, lamentele, domande: scrivere a Luca Spada

Matematica I per Scienze Ambientali (2016/17)

Corso di Matematica I per Scienze Ambientali

(I semestre 2016/17)

Contenuti della pagina

News

  • A partire dall’appello di settembre 2017 (incluso) il responsabile del corso Matematica II sarà la prof.ssa Chiara Nicotera.  Per tutte le informazioni riguardo al corso, come ad esempio programma, modalità di esame, etc., rivolgersi a lei.  Tutte le richieste riguardanti il corso Matematica I possono continuare a essere inviate al prof. Luca Spada.
  • Gli studenti di VCA che hanno nel piano di studi l’esame Matematica (12 CFU) dovranno prima sostenere l’esame di Matematica I (6 CFU) con il prof. Spada e successivamente quello di Matematica II (6 CFU) con la prof.ssa Nicotera.

 

  • Disponibile il Programma di Matematica I e II e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA. Per gli studenti del corso di laurea in VCA l’esame prevede una prova scritta e una orale.

 

 

Descrizione del corso

Prerequisiti

È richiesta familiarità con gli argomenti di base di matematica trattati nei corsi di scuola media superiore. In particolare, sono richieste competenze elementari di algebra (risoluzione di equazioni e disequazioni di primo e secondo grado), di geometria euclidea, di teoria degli insiemi, di logica e di trigonometria.

Contenuti

Il corso coprirà i seguenti argomenti:

  • Algebra lineare.
  • Funzioni reali a una variabile: continuità e derivate, studio di funzione.

Durante il corso qui sotto saranno elencati i contenuti delle singole lezioni:

  1. 04/10/2016 – Introduzione al corso, elementi di logica e di teoria degli insiemi.
  2. 06/10/2016 – Calcolo combinatorio.
  3. 11/10/2016 – Definizione di funzione.  Vettori: prodotto per uno scalare e prodotto scalare; combinazione lineare.
  4. 13/10/2016 – Trigonometria: funzioni seno e coseno e loro proprietà. Interpretazione del prodotto scalare.  Dipendenza lineare tra vettori.
  5. 18/10/2016 – Spazio vettoriale.  Base di un insieme di vettori. Matrici: somma e prodotto righe per colonne.
  6. 20/10/2016 – Matrici di rotazione.  Determinante di una matrice.
  7. 25/10/2016 – Soluzioni di sistemi lineari omogenei e completi. Teorema di Rouché-Capelli.
  8. 27/10/2016 – Diagonalizzazione di matrici. Autovalori e autovettori.
  9. 1/11/2016 – Ognissanti.
  10. 3/11/2016 – Funzioni reali in una variabile. Dominio di una funzione. Iniettività e suriettività. Funzioni composte. Funzioni monotone.
  11. 8/11/2016 – Funzioni elementari: funzioni lineari e funzioni potenza.
  12. 10/11/2016 – Funzioni elementari: esponenziale e logaritmo.
  13. 15/11/2016 – Limiti di funzioni. Proprietà dei limiti.
  14. 17/11/2016 –  Limiti notevoli. Funzioni continue. Ordini di infinito e di infinitesimo. Successioni.
  15. 22/11/2016 – Limiti destro e sinistro.  Tipi di discontinuità.
  16. 24/11/2016 – Derivate.  Regolo per il calcolo delle derivate.  Uso delle derivate per trovare massimi e minimi locali e lo studio della convessità.  Cenni sulla formula di Taylor.
  17. 29/11/2016 – Non ci sarà lezione.
  18. 01/12/2016 – Teorema di de l’Hôpital.  Applicazioni delle derivate.
  19. 06/12/2016 – Esercitazione.
  20. 08/12/2016 – Festa dell’Immacolata.
  21. 13/12/2016 – Tutorato.
  22. 15/12/2016 – Prova finale.
  23. 20/12/2016 – Tutorato.
  24. 22/12/2016 – Tutorato.

 

Materiale del corso

  • Il testo di riferimento principale è: Dario Benedetto, Mirko Degli Espositi, Carlotta Maffei. Matematica per le Scienze della Vita. Casa Editrice Ambrosiana. 2008.

Programma di Matematica I e II (6+6 CFU) e di Matematica (12 CFU) per gli studenti del corso di laurea in VCA.

Aspetti pratici

Crediti/ore:

  • Durata: 48 ore (10 settimane).
  • CFU: 6
  • Frequenza: non obbligatoria.

Date/aule:

  • Le lezioni cominceranno il 4 ottobre 2016.
  • Ci sono due lezioni a settimana:
    1. martedì dalle 14:00 alle 16:00, Aula F7
    2. giovedì dalle 9:00 alle 12:00, Aula F7.
  • Il tutorato si tiene ogni mercoledì e venerdì dalle 16:00 alle 18:00 in aula F7 a partire da mercoledì 2 novembre.

OFA

Le lezioni dell’OFA si terranno a partire da martedì 10 gennaio con il seguente orario:

  • Martedì 14:00 – 16:00 Aula F7
  • Mercoledì 14:00 – 16:00 Aula F7
  • Giovedì 10:00 – 12:00 Aula F7

risultati OFA.

Esercizi/Esami

Eventuali esercizi assegnati durante il corso possono essere trovati qui sotto.

Appelli d’esame:

Informazioni sugli esami:

  • L’esame è scritto e orale.
  • È sempre necessario presentarsi agli esami con un documento di riconoscimento.
  • È assolutamente necessario registrarsi su esse3 per poter sostenere l’esame, anche per chi deve solo sostenere l’orale.
  • All’esame scritto è possibile usare i testi di teoria, le dispense utilizzate durante il corso o formulari, non sono consentiti appunti o libri con esercizi svolti.
  • Chi non passa l’esame orale (o rifiuta il voto) deve rifare lo scritto.

Commenti, lamentele, domande: scrivere a Luca Spada