Weakly Projective MV-algebras

Leonardo Manuel Cabrer

University of Bern
Weakly Projective MV-algebras

Leonardo Manuel Cabrer

Introduction
Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and \(\mathbb{Z} \)-maps
Duality
Duality: Projectives
Motivation

Combinatorics
Analizing \(\mathbb{Z} \)-maps
Regular Simplexes
Regular Triangulations
Weighted Abstract Simplicial Complexes

Z-images of cubes
Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras

Admissible Rules
Admissible Saturated Formulas

Summarizing
Introduction

Finitely Presented MV-algebras and Rational Polyhedra

Theorem (McNaughton (1951))

For each $n = 1, 2, \ldots$, the MV-algebra $\mathcal{M}([0, 1]^n)$ of McNaughton maps from the n-cube is freely generated by the projection maps $\xi_i(a_1, \ldots, a_n) = a_i$.

A McNaughton map is a continuous function $f : [0, 1]^n \rightarrow [0, 1]$ satisfying:

There are linear polynomials p_1, \ldots, p_m with integer coefficients, such that for all $x \in [0, 1]^n$ there is $i \in \{1, \ldots, m\}$ with $f(x) = p_i(x)$.
An MV-algebra A is **finitely presented** if there exist n and $f \in \mathcal{M}([0, 1]^n)$ such that

$$A \cong \mathcal{M}([0, 1]^n) / \text{cong}(f, 1)$$
An MV-algebra A is **finitely presented** if there exist n and $f \in \mathcal{M}([0, 1]^n)$ such that

$$A \cong \mathcal{M}([0, 1]^n) / \text{cong}(f, 1) \cong \mathcal{M}([0, 1]^n) \upharpoonright f^{-1}(1)$$
An MV-algebra A is **finitely presented** if there exist n and $f \in M([0, 1]^n)$ such that

$$A \cong M([0, 1]^n) / \text{cong}(f, 1) \cong M(f^{-1}(1))$$
Introduction
Finitely Presented MV-algebras and Rational Polyhedra

A rational polyhedron P in $[0, 1]^n$ is a finite union of closed simplexxes $P = S_1 \cup \cdots \cup S_t$ in $[0, 1]^n$ such that the coordinates of the vertices of every simplex S_i are rational numbers.
A rational polyhedron P in $[0, 1]^n$ is a finite union of closed simplexes $P = S_1 \cup \cdots \cup S_t$ in $[0, 1]^n$ such that the coordinates of the vertices of every simplex S_i are rational numbers.

Theorem

A subset $P \subseteq [0, 1]^n$ is a rational polyhedron if and only if it there exists $f \in \mathcal{M}([0, 1]^n)$ such that $P = f^{-1}(1)$.
An MV-algebra A is finitely presented if there exist n and a rational polyhedron $P \subseteq [0, 1]^n$ such that

$$A \cong \mathcal{M}(P)$$
\[\mathcal{M}(P \subseteq [0, 1]^n) \xrightarrow{h} \mathcal{M}(Q \subseteq [0, 1]^m) \]
\[\xi_i \xrightarrow{\text{h}} h(\xi_i): Q \to [0, 1] \]
Introduction

Homomorphisms and \mathbb{Z}-maps

\[\mathcal{M}(P \subseteq [0, 1]^n) \xrightarrow{h} \mathcal{M}(Q \subseteq [0, 1]^m) \]

\[\xi_i \xrightarrow{\eta h} h(\xi_i) : Q \rightarrow [0, 1] \]

\[\eta h = (h(\xi_1), \ldots, h(\xi_n)) : Q \rightarrow [0, 1]^n \]

\[P \xleftarrow{\eta h} Q \]
Introduction

Homomorphisms and \mathbb{Z}-maps

\[\mathcal{M}(P \subseteq [0, 1]^n) \xrightarrow{h} \mathcal{M}(Q \subseteq [0, 1]^m) \]

\[\xi_i \xrightarrow{\longrightarrow} h(\xi_i) : Q \rightarrow [0, 1] \]

\[\eta_h = (h(\xi_1), \ldots, h(\xi_n)) : Q \rightarrow [0, 1]^n \]

\[P \xleftarrow{\eta_h} Q \]

\[h(f) = f \circ \eta_h \]
Definition
Given rational polyhedra $P \subseteq [0, 1]^n$ and $Q \subseteq [0, 1]^m$ a continuous map $\eta: P \rightarrow Q$ is called a \mathbb{Z}-map if there are finite affine linear maps q_1, \ldots, q_k such that for each $x \in P$, $\eta(x) = q_i(x)$ for some $i = 1, \ldots, k$.

Lemma
η is a \mathbb{Z}-map if and only if $\xi_i \circ \eta \in M(P)$ for each $i = 1, \ldots, m$.

Definition
Given rational polyhedra $P \subseteq [0, 1]^n$ and $Q \subseteq [0, 1]^m$ a continuous map $\eta: P \to Q$ is called a \mathbb{Z}-map if there are finite affine linear maps q_1, \ldots, q_k such that for each $x \in P$, $\eta(x) = q_i(x)$ for some $i = 1, \ldots, k$.

Lemma
η is a \mathbb{Z}-map if and only if $\xi_i \circ \eta \in \mathcal{M}(P)$ for each $i = 1, \ldots, m$.
The category of Rational Polyhedra with \mathbb{Z}-maps is dually equivalent to the category of finitely presented MV-algebras.
Projectives are retractions of Free algebras.

Retractions are preserved under dualities.
Introduction
Duality: Projectives

- Projectives are retractions of Free algebras.
- Retractions are preserved under dualities.

Theorem

A finitely generated MV-algebra is projective iff there exist a number \(n = 1, 2, \ldots \) and a \(\mathbb{Z} \)-map \(\eta : [0, 1]^n \to [0, 1]^n \) such that

(i) \(\eta \circ \eta = \eta \),

(ii) \(A \cong \mathcal{M}(\eta([0, 1]^n)) \).
Introduction

Duality: Projectives

[LMC & D. Mundici, Projective MV-algebras and rational polyhedra, Algebra Universalis Volume 62, Number 1, 63-74]
Introduction

Duality: Projectives

[LMC & D. Mundici, Projective MV-algebras and rational polyhedra, *Algebra Universalis* Volume 62, Number 1, 63-74]

[LMC & D. Mundici, Rational polyhedra and projective lattice-ordered abelian groups with order unit, *Communications in Contemporary Mathematics* (to appear)]
Can we characterize the range of \mathbb{Z}-maps which domain is some n-cube?
Introduction
Motivation

Can we characterize the range of \(\mathbb{Z} \)-maps which domain is some \(n \)-cube?

In other words:

Are there intrinsic necessary and sufficient conditions for a rational polyhedron \(P \) to be equal to \(\eta([0, 1]^n) \) for some \(n \) and some \(\mathbb{Z} \)-map \(\eta \)?
Weakly Projective MV-algebras

Leonardo Manuel Cabrera

Introduction
Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and \mathbb{Z}-maps
Duality
Duality: Projectives
Motivation

Combinatorics
Analizing \mathbb{Z}-maps

η is a \mathbb{Z}-map iff there is a triangulation Δ of P such that over every simplex T of Δ, η coincides with an (affine) linear map η_T with integer coefficients.

Z-images of cubes
Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras

Admissible Rules
Admissible Saturated Formulas

Summarizing
Lemma

Given rational polyhedra $P \subseteq [0, 1]^n$ and $Q \subseteq [0, 1]^m$ a map $\eta: P \to Q$ is a \mathbb{Z}-map iff there is a triangulation Δ of P such that over every simplex T of Δ, η coincides with a (affine) linear map η_T with integer coefficients.
Combinatorics

Analizing \mathbb{Z}-maps

Given a t-simplex $S = \text{conv}(v_0, \ldots, v_t) \subseteq [0, 1]^n$ then linear maps from S into $[0, 1]^m$ are in one-one correspondence with maps from $\{v_0, \ldots, v_t\}$ into $[0, 1]^m$.
Given a t-simplex $S = \text{conv}(v_0, \ldots, v_t) \subseteq [0, 1]^n$ then linear maps from S into $[0, 1]^m$ are in one-one correspondence with maps from $\{v_0, \ldots, v_t\}$ into $[0, 1]^m$.
Let $f : [0, 1]^n \to \mathbb{R}^m$ be linear map with integer coefficients, i.e. there exists $M \in \mathbb{Z}^{n \times m}$ and $b \in \mathbb{Z}^m$ such that $f(w) = Mw + b$ for each $w \in [0, 1]^n$.

Let $f : [0, 1]^n \rightarrow \mathbb{R}^m$ be linear map with integer coefficients, i.e. there exists $M \in \mathbb{Z}^{n \times m}$ and $b \in \mathbb{Z}^m$ such that $f(w) = Mw + b$ for each $w \in [0, 1]^n$.

Let $v = (x_1, \ldots, x_n) \in [0, 1]^n$ be a rational vector. We define $\text{den}(v)$ to be the least common denominator of $\{x_1, \ldots, x_n\}$, i.e. the smallest $k \in \mathbb{Z}$ such that $kv \in \mathbb{Z}^n$.
Combinatorics

Analizing \mathbb{Z}-maps

Let $f : [0, 1]^n \to \mathbb{R}^m$ be linear map with integer coefficients, i.e. there exists $M \in \mathbb{Z}^{n \times m}$ and $b \in \mathbb{Z}^m$ such that $f(w) = Mw + b$ for each $w \in [0, 1]^n$.

Let $\nu = (x_1, \ldots, x_n) \in [0, 1]^n$ be a rational vector. We define $\text{den}(\nu)$ to be the least common denominator of $\{x_1, \ldots, x_n\}$, i.e. the smallest $k \in \mathbb{Z}$ such that $kv \in \mathbb{Z}^n$.

Observe that

$$\text{den}(\nu)f(\nu) = k(M\nu + b) = M(\text{den}(\nu)\nu) + \text{den}(\nu)b \in \mathbb{Z}^m.$$

Then $\text{den}(f(\nu))$ is a divisor of $\text{den}(\nu)$.
The vector $\tilde{v} = \text{den}(v)(v, 1) \in \mathbb{Z}^{n+1}$ is called the **homogeneous correspondent** of v.
Combinatorics
Regular Simplexes

The vector \(\tilde{v} = \text{den}(v)(v, 1) \in \mathbb{Z}^{n+1} \) is called the **homogeneous correspondent** of \(v \).

Definition
A simplex \(S \subseteq [0, 1]^n \) is called **regular** if the set of homogeneous correspondents of its vertices is part of a basis of the free abelian group \(\mathbb{Z}^{n+1} \).
Lemma

Let $S = \text{conv}(v_0, \ldots, v_k) \subseteq [0, 1]^n$ be a regular k-simplex, and \{w_0, \ldots, w_k\} a set of rational points in $[0, 1]^m$. Then the following conditions are equivalent:

(i) For each $i = 1, \ldots, k$, $\text{den}(w_i)$ is a divisor of $\text{den}(v_i)$.

(ii) For some integer matrix $M \in \mathbb{Z}^{n \times m}$ and integer vector $b \in \mathbb{Z}^m$, $Mv_i + b = w_i$.
Combinatorics
Regular Triangulations

By a **regular triangulation** of a polyhedron P we understand a triangulation of P consisting of regular simplexes.
Corollary

Let $P \subset [0, 1]^n$ be a polyhedron, Δ be a regular triangulation of P and $f : \text{ver}(\Delta) \to ([0, 1] \cap \mathbb{Q})^m$ be such that $\text{den}(f(v))$ divides $\text{den}(v)$ for each $v \in \text{ver}(\Delta)$. Then there exists a unique \mathbb{Z}-map $\eta : P \to [0, 1]^m$ satisfying:

1. η is linear on each simplex of Δ,
2. $\eta \upharpoonright \text{ver}(\Delta) = f$.
Combinatorics
Regular Triangulations

Corollary

Let $P \subset [0, 1]^n$ be a polyhedron, Δ be a regular triangulation of P and $f : \text{ver}(\Delta) \to ([0, 1] \cap \mathbb{Q})^m$ be such that $\text{den}(f(v))$ divides $\text{den}(v)$ for each $v \in \text{ver}(\Delta)$. Then there exists a unique \mathbb{Z}-map $\eta : P \to [0, 1]^m$ satisfying:

1. η is linear on each simplex of Δ,
2. $\eta \upharpoonright \text{ver}(\Delta) = f$.

Lemma

Let $\eta : P \to Q$ be a \mathbb{Z}-map there exists a regular triangulation Δ of P such that η is linear over each simplex in Δ.
Combinatorics
Weighted Abstract Simplicial Complexes

For a regular triangulation Δ of a rational polyhedron P, the **skeleton** of Δ is weighted abstract simplicial complex

$$W_\Delta = (\mathcal{V}, \Sigma, \omega)$$

given by the following stipulations:

1. $\mathcal{V} =$ vertices of Δ.
2. For every subset $W = \{w_1, \ldots, w_k\}$ of \mathcal{V}, $W \in \Sigma$ iff $\text{conv}(w_1, \ldots, w_k) \in \Delta$.
3. $\omega: \mathcal{V} \to \mathbb{N}$, is defined by $\omega(v) = \text{den}(v)$
Let \(\mathcal{W} = (\mathcal{V}, \Sigma, \omega) \) be a weighted abstract simplicial complex with vertex set \(\mathcal{V} = \{v_1, \ldots, v_n\} \).
Combinatorics
Weighted Abstract Simplicial Complexes

Let $\mathcal{W} = (\mathcal{V}, \Sigma, \omega)$ be a weighted abstract simplicial complex with vertex set $\mathcal{V} = \{v_1, \ldots, v_n\}$.

Let e_1, \ldots, e_n the standard basis vectors of \mathbb{R}^n, and $\Delta_{\mathcal{W}}$ be the complex whose vertices are

$$v'_1 = e_1/\omega(v_1), \ldots, v'_n = e_n/\omega(v_n),$$
Combinatorics
Weighted Abstract Simplicial Complexes

Let $\mathcal{W} = (\mathcal{V}, \Sigma, \omega)$ be a weighted abstract simplicial complex with vertex set $\mathcal{V} = \{v_1, \ldots, v_n\}$.

Let e_1, \ldots, e_n the standard basis vectors of \mathbb{R}^n, and $\Delta_\mathcal{W}$ be the complex whose vertices are

$$v'_1 = e_1/\omega(v_1), \ldots, v'_n = e_n/\omega(v_n),$$

and whose k-simplexes ($k = 0, \ldots, n$) are given by

$$\text{conv}(v'_{i(0)}, \ldots, v'_{i(k)}) \in \Delta_\mathcal{W} \iff \{v_{i(0)}, \ldots, v_{i(k)}\} \in \Sigma.$$
Let $\mathcal{W} = (\mathcal{V}, \Sigma, \omega)$ be a weighted abstract simplicial complex with vertex set $\mathcal{V} = \{v_1, \ldots, v_n\}$.

Let e_1, \ldots, e_n the standard basis vectors of \mathbb{R}^n, and $\Delta_{\mathcal{W}}$ be the complex whose vertices are

$$v'_1 = e_1/\omega(v_1), \ldots, v'_n = e_n/\omega(v_n),$$

and whose k-simplexes ($k = 0, \ldots, n$) are given by

$$\text{conv}(v'_{i(0)}, \ldots, v'_{i(k)}) \in \Delta_{\mathcal{W}} \quad \text{iff} \quad \{v_{i(0)}, \ldots, v_{i(k)}\} \in \Sigma.$$

Then $\Delta_{\mathcal{W}}$ is a regular triangulation of the polyhedron $|\Delta_{\mathcal{W}}| \subseteq [0, 1]^n$ called the canonical realization of \mathcal{W}.
Combinatorics
Weighted Abstract Simplicial Complexes

Given a weighted abstract simplicial complex $\mathcal{W} = (V, \Sigma, \omega)$.
Combinatorics
Weakly Projective MV-algebras
Leonardo Manuel Cabrer

Introduction
Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and Z-maps
Duality
Duality: Projectives
Motivation
Combinatorics
Analizing Z-maps
Regular Simplexes
Regular Triangulations
Weighted Abstract Simplicial Complexes
Z-images of cubes
Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras
Admissible Rules
Admissible Saturated Formulas
Summarizing

Combinatorics
Weighted Abstract Simplicial Complexes

Given a weighted abstract simplicial complex \(\mathcal{W} = (\mathcal{V}, \Sigma, \omega) \).

The maps

\[
\mathcal{V} \xrightarrow{f} [0, 1]^n
\]

such that \(\text{den}(f(v)) \) is a divisor of \(\omega(v) \)
Given a weighted abstract simplicial complex $\mathcal{W} = (\mathcal{V}, \Sigma, \omega)$.

The maps

$$\mathcal{V} \xrightarrow{f} [0, 1]^n$$

such that $\text{den}(f(\nu))$ is a divisor of $\omega(\nu)$

are in one-one correspondence with
Combinatorics
Weighted Abstract Simplicial Complexes

Given a weighted abstract simplicial complex \(\mathcal{W} = (V, \Sigma, \omega) \).

The maps

\[
V \xrightarrow{f} [0, 1]^n
\]

such that \(\text{den}(f(v)) \) is a divisor of \(\omega(v) \)

are in one-one correspondence with

the \(\mathbb{Z} \)-maps

\[
|\Delta_\mathcal{W}| \xrightarrow{\eta} [0, 1]^n
\]

that are linear over each simplex of \(\Delta_\mathcal{W} \).
Z-images of cubes

Strongly Regular Polyhedra

Definition
A rational polyhedron P is said to be strongly regular if there is a regular triangulation Δ of P such that the denominators of the vertices of each maximal simplex of Δ are coprime.

Lemma
A rational polyhedron P is strongly regular if and only if every regular triangulation Δ of P is such that the denominators of the vertices of each maximal simplex of Δ are coprime.
Definition

A rational polyhedron P is said to be strongly regular if there is a regular triangulation Δ of P such that the denominators of the vertices of each maximal simplex of Δ are coprime.
Z-images of cubes
Strongly Regular Polyhedra

Definition
A rational polyhedron \(P \) is said to be strongly regular if there is a regular triangulation \(\Delta \) of \(P \) such that the denominators of the vertices of each maximal simplex of \(\Delta \) are coprime.

Lemma
A rational polyhedron \(P \) is strongly regular if and only if every regular triangulation \(\Delta \) of \(P \) is such that the denominators of the vertices of each maximal simplex of \(\Delta \) are coprime.
Examples

- For every $n = 1, 2, \ldots$ the n-dimensional cube $[0, 1]^n$ is strongly regular.
- Every regular n-simplex $S \subset [0, 1]^n$ is strongly regular.
Theorem

Let P and Q be rational polyhedra and $\eta: P \to Q$ be a \mathbb{Z}-morphism onto Q. If P is a strongly regular then Q is strongly regular.
Theorem

Given a polyhedron $P \subseteq [0, 1]^n$ the following conditions are equivalent:

(a) There exist m and a \mathbb{Z}-map $\eta: [0, 1]^m \to P$ onto P.

(b) P satisfies the following conditions:

1. P is connected,
2. $P \cap \{0, 1\}^n \neq \emptyset$, and
3. P is strongly regular.
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra

Given an abstract simplicial complex $\langle V, \Sigma \rangle$ a simplex $T \in \Sigma$ is said to have a free face F if $\emptyset \neq F \subseteq T$ is a facet of T, and if $F \subseteq S \in \Sigma$ then $S = F$ or $S = T$.

The transition from $\langle V, \Sigma \rangle$ to the subcomplex $\langle V', \Sigma' = \Sigma \setminus \{T, F\} \rangle$ of $\langle V, \Sigma \rangle$, where $V' = V \setminus F$ if F is a singleton and otherwise $V' = V$ is called an (abstract) elementary collapse.

We say that $\langle V, \Sigma \rangle$ is collapsible if it collapses to the abstract simplicial complex consisting of one of its vertices (equivalently any of its vertices).
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra

Given an abstract simplicial complex \(\langle V, \Sigma \rangle \) a simplex \(T \in \Sigma \) is said to have a free face \(F \) if \(\emptyset \neq F \subseteq T \) is a facet of \(T \), and if \(F \subseteq S \in \Sigma \) then \(S = F \) or \(S = T \).
Given an abstract simplicial complex \(\langle V, \Sigma \rangle \) a simplex \(T \in \Sigma \) is said to have a free face \(F \) if \(\emptyset \neq F \subseteq T \) is a facet of \(T \), and if \(F \subseteq S \in \Sigma \) then \(S = F \) or \(S = T \).

The transition from \(\langle V, \Sigma \rangle \) to the subcomplex \(\langle V', \Sigma' = \Sigma \setminus \{T, F\} \rangle \) of \(\langle V, \Sigma \rangle \), where \(V' = V \setminus F \) if \(F \) is a singleton and otherwise \(V' = V \) is called an (abstract) elementary collapse.
Given an abstract simplicial complex $\langle V, \Sigma \rangle$ a simplex $T \in \Sigma$ is said to have a \textit{free face} F if $\emptyset \neq F \subseteq T$ is a facet of T, and if $F \subseteq S \in \Sigma$ then $S = F$ or $S = T$.

The transition from $\langle V, \Sigma \rangle$ to the subcomplex $\langle V', \Sigma' \rangle = \Sigma \setminus \{T, F\}$ of $\langle V, \Sigma \rangle$, where $V' = V \setminus F$ if F is a singleton and otherwise $V' = V$ is called an (abstract) \textit{elementary collapse}.

We say that $\langle V, \Sigma \rangle$ is \textbf{collapsible} if it collapses to the abstract simplicial complex consisting of one of its vertices (equivalently any of its vertices).
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Theorem (Mundici & LMC)

Let $P \subseteq [0, 1]^n$ be a polyhedron. Suppose

(i) P has a collapsible triangulation ∇;

(ii) P contains a vertex v of $[0, 1]^n$;

(iii) P is strongly regular.

Then there is a \mathbb{Z}-map $\eta : [0, 1]^n \rightarrow P$ onto P.
Theorem (Mundici & LMC)

Let \(P \subseteq [0,1]^n \) be a polyhedron. Suppose

(i) \(P \) has a collapsible triangulation \(\nabla \);

(ii) \(P \) contains a vertex \(v \) of \([0,1]^n\);

(iii) \(P \) is strongly regular.

Then \(P \) is a \(\mathbb{Z} \)-retract of \([0,1]^n\).
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes

First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra

Weakly Projective MV-algebras
Leonardo Manuel Cabrer

Introduction
Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and \(\mathbb{Z} \)-maps
Duality
Duality: Projectives
Motivation

Combinatorics
Analizing \(\mathbb{Z} \)-maps
Regular Simplexes
Regular Triangulations
Weighted Abstract Simplicial Complexes

Z-images of cubes
Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras

Admissible Rules
Admissible Saturated Formulas

Summarizing
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes

First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
First Step: Strongly Regular Collapsible Polyhedra
Z-images of cubes
Second Step: Collapsible Wrapping

Let $P \subseteq [0, 1]^n$ be a rational polyhedron satisfying:

1. P is connected,
2. $P \cap \{0, 1\}^n \neq \emptyset$, and
3. P is strongly regular.

Let Δ be a regular triangulation of P.
Z-images of cubes

Second Step: Collapsible Wrapping
Z-images of cubes

Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes

Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes

Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras
Leonardo Manuel Cabrer

Introduction
Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and Z-maps
Duality
Duality: Projectives
Motivation

Combinatorics
Analizing Z-maps
Regular Simplexes
Regular Triangulations
Weighted Abstract Simplicial Complexes

Z-images of cubes
Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras

Admissible Rules
Admissible Saturated Formulas

Summarizing

Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes
Second Step: Collapsible Wrapping
Z-images of cubes

Second Step: Collapsible Wrapping
Z-images of cubes

Weakly Projective MV-algebras

Definition

An MV-algebra A is said to be (finitely generated) **weakly projective** if there exist positive integers m and n, and homomorphisms $f: \mathcal{M}([0, 1]^m) \to A$ and $g: A \to \mathcal{M}([0, 1]^n)$, such that f is onto A and g is one-one.
Z-images of cubes
Weakly Projective MV-algebras

Theorem
An MV-algebra is weakly projective if and only if there exist n and a rational polyhedron $P \subseteq [0, 1]^n$ satisfying the following conditions:

1. $A \cong \mathcal{M}(P)$,
2. $P \cap \{0, 1\}^n \neq \emptyset$,
3. P is connected, and
4. P is a strongly regular.
Admissible Rules

An MV-algebra \(A \) is weakly projective if and only if it is finitely presented and...
An MV-algebra A is weakly projective if and only if it is finitely presented and $A \in \mathbb{I}(\mathcal{M}([0, 1]^n))$ for some n.
An MV-algebra A is weakly projective if and only if it is finitely presented and $A \in \mathbb{IS}(\text{Free}_{\text{MV}}(\omega))$.
Admissible Rules

If a pair of formulas φ, ψ with variables $\{x_1, \ldots, x_n\}$ are such that $\mathcal{M}([0, 1]^n) / \text{cong}(f_\varphi, f_\psi) \in \mathbb{ISP}_U(\text{Free}_{MV}(\omega)),$
Admissible Rules

If a pair of formulas φ, ψ with variables $\{x_1, \ldots, x_n\}$ are such that $\mathcal{M}([0, 1]^n) / \text{cong}(f\varphi, f\psi) \in \mathbb{ISP}_U(\text{Free}_{MV}(\omega))$, then:

$$
\varphi \equiv \psi \models_{\text{Free}_{MV}(\omega)} \{ \alpha_i \equiv \beta_i \mid i = 1, \ldots, m \}
$$

if and only if there exist $j \in \{1, \ldots, m\}$ such that

$$
\varphi \equiv \psi \models_{\text{MV}} \alpha_j \equiv \beta_j
$$
Admissible Rules

If a pair of formulas \(\varphi, \psi \) with variables \(\{x_1, \ldots, x_n\} \) are such that \(M([0,1]^n)/\text{cong}(f_\varphi, f_\psi) \in \text{ISP}_U(\text{Free}_{MV}(\omega)) \), then:

\[
\varphi \simeq \psi \models_{\text{Free}_{MV}(\omega)} \{ \alpha_i \simeq \beta_i \mid i = 1, \ldots, m \}
\]

if and only if there exist \(j \in \{1, \ldots, m\} \) such that

\[
\varphi \simeq \psi \models_{MV} \alpha_j \simeq \beta_j
\]

if and only if

\[
\varphi \leftrightarrow \psi \models_\mathbb{L}_\infty \alpha_j \leftrightarrow \beta_j
\]
Admissible Rules

If a formula \(\varphi \) with variables \(\{x_1, \ldots, x_n\} \) is such that
\[M([0, 1]^n) / \text{cong}(f_\varphi, 1) \in \text{ISP}_U(\text{Free}_{MV}(\omega)) \], then:

\[\varphi \equiv \varphi \rightarrow \varphi \models_{\text{Free}_{MV}(\omega)} \{ \alpha_i \approx \alpha_j \rightarrow \alpha_j \mid i = 1, \ldots, m \} \]

if and only if there exist \(j \in \{1, \ldots, m\} \) such that

\[\varphi \equiv \varphi \rightarrow \varphi \models_{MV} \alpha_j \approx \alpha_j \rightarrow \alpha_j \]

if and only if

\[\varphi \models_{L_\infty} \alpha_j \]
Admissible Rules
Admissible Saturated Formulas

Admissible Rules
Admissible Saturated Formulas

Definition
A formula φ is admissibly saturated in a logic L if for every finite set Δ of formulas, $\varphi \vdash_L \Delta$ implies $\varphi \vdash_L \psi$ for some $\psi \in \Delta$.
If φ is a formula such that $\mathcal{M}([0, 1]^n) / \text{cong}(f_{\varphi}, 1)$ is weakly projective, then φ is admissible saturated (in \mathcal{L}_∞).
If \(\varphi \) is a formula such that \(\mathcal{M}([0, 1]^n) / \text{cong}(f_\varphi, 1) \) is weakly projective, then \(\varphi \) is admissible saturated (in \(\mathcal{L}_\infty \)).

Theorem (E. Jeřábek)

A formula \(\varphi \) with variables in \(\{x_1, \ldots, x_n\} \) is admissibly saturated in \(\mathcal{L}_\infty \) if and only if

1. \(f_{\varphi}^{-1}(1) \cap \{0, 1\}^n \neq \emptyset \),
2. \(f_{\varphi}^{-1}(1) \) is connected, and
3. \(f_{\varphi}^{-1}(1) \) is a finite union of anchored polytopes.
Theorem

And MV-algebra is weakly projective if and only if there exist \(n \) and a rational polyhedron \(P \subseteq [0, 1]^n \) satisfying the following conditions:

1. \(A \cong \mathcal{M}(P) \),
2. \(P \cap \{0, 1\}^n \neq \emptyset \),
3. \(P \) is connected, and
4. \(P \) is a strongly regular.
A formula \(\varphi \) with variables in \(\{x_1, \ldots, x_n\} \) is admissibly saturated in \(\mathcal{L}_\infty \) if and only if

\[
\mathcal{M}([0, 1]^n)/\text{cong}(f_\varphi, 1) \text{ is weakly projective.}
\]
Summarizing

Images of \mathbb{Z}-maps.
Introduction

Finitely Presented MV-algebras and Rational Polyhedra
Homomorphisms and \mathbb{Z}-maps
Duality
Duality: Projectives
Motivation

Combinatorics

Analizing \mathbb{Z}-maps
Regular Simplexes
Regular Triangulations
Weighted Abstract Simplicial Complexes

\mathbb{Z}-images of cubes

Strongly Regular Polyhedra
First Step: Strongly Regular Collapsible Polyhedra
Second Step: Collapsible Wrapping
Weakly Projective MV-algebras

Admissible Rules

Admissible Saturated Formulas

Summarizing

► Images of \mathbb{Z}-maps.
► Weakly projective MV-Algebras.
Summarizing

- Images of \mathbb{Z}-maps.
- Weakly projective MV-Algebras.
- Relation with admissible saturated formulas.
Thank you!

leonardo.cabrer@math.unibe.ch