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Extremal Graph Theory Ultraproducts

Definition

We define the triangles in E by:

4(E ) = {(x , y , z) ∈ V 3 | (x , y), (y , z), (z , x) ∈ E}.

Theorem (Triangle Removal Lemma, Szemerédi and Rusza)

For every ε > 0 there is a δ > 0 such that for any finite V and any
graph E on V , if µ3(4(E )) < δ then

There is an S ⊆ E with µ2(S) < ε such that
4(E \ S) = ∅ (it is possible to remove every triangle by
removing a small number of edges).

µ2(S) = |S |
|V |2 and µ3(∆(E )) = |∆(E)|

|V |3
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Combinatorial results about density generally have analogs in
which hold in sparse but pseudorandom structures.

For example, results about graphs (V ,E ) where V is a large finite

set and µ2(E ) = |E |
|V |2 > ε have analogs where

E ⊆ Γ ⊆ [V ]2,

µ2(Γ) is very small—say |Γ| ≈ γ|V |c with c < 2, but

µ2
Γ(E ) = |E |

|Γ| > ε, and
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Extremal Graph Theory Ultraproducts

Combinatorial results about density generally have analogs in
which hold in sparse but pseudorandom structures.

For example, results about graphs (V ,E ) where V is a large finite

set and µ2(E ) = |E |
|V |2 > ε have analogs where

E ⊆ Γ ⊆ [V ]2,

µ2(Γ) is very small—say |Γ| ≈ γ|V |c with c < 2, but

µ2
Γ(E ) = |E |

|Γ| > ε, and

There is a set of graphs P such that Γ ∈ P and when Γ is
chosen randomly,

lim
|V |→∞

P(Γ ∈ P) = 1.
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Theorem (Kohayakawa, Rödl, Schacht, and Skokan, 2010)

For every ε > 0 there is a δ > 0 such that for any finite V , any
sufficiently pseudorandom Γ ⊆ [V ]2, and any E ⊆ Γ, if
µ3

Γ(4(E )) < δ then

There is an S ⊆ E with µ2
Γ(S) < ε such that

4(E \ S) = ∅ (it is possible to remove every triangle by
removing a small number of edges).

Here µ3
Γ(4(E )) = |4(E)|

|4(Γ)| . If Γ is chosen randomly so |Γ| ≥ C |V |3/2

then, as |V | → ∞, the probability that the theorem applies to Γ
approaches 1.



Extremal Graph Theory Ultraproducts

Generalizations of triangle removal include:

Theorem (Graph Removal Lemma)

Let H be a fixed finite graph. For every ε > 0 there is a δ > 0 such
that for any finite V and any graph E on V , if the measure of the
set of copies of H (in µ|H|) is < δ then there is an S ⊆ E with
µ2(S) < ε such that there are no copies of H in E \ S.

Theorem (Hypergraph Removal Lemma)

Let H be any fixed finite k-regular hypergraph. For every ε > 0
there is a δ > 0 such that for any finite V and any k-regular
hypergraph E on V , if the measure of the set of copies of H (in
µ|H|) is < δ then there is an S ⊆ E with µk(S) < ε such that there
are no copies of H in E \ S.
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Theorem (T. 2012, Conlon-Fox-Zhou 2012)

Let H be a fixed finite graph. For every ε > 0 there is a δ > 0 such
that for any finite V , any sufficiently pseudorandom Γ ⊆ [V ]2, and

any E ⊆ Γ, if the measure of the set of copies of H (in µ
|H|
Γ ) is < δ

then there is an S ⊆ E with µ2
Γ(S) < ε such that there are no

copies of H in E \ S.

Theorem (T. 2012)

Let H be any fixed finite k-regular hypergraph. For every ε > 0
there is a δ > 0 such that for any finite V , any sufficiently
pseudorandom Γ ⊆ [V ]k , and any E ⊆ K , if the measure of the set

of copies of H (in µ
|H|
Γ ) is < δ then there is an S ⊆ E with

µkΓ(S) < ε such that there are no copies of H in E \ S.
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One approach to theorems like this is to use ultraproducts:
suppose that for every n, (Vn,En) is a graph with µ2(En) ≥ ε > 0
and |Vn| → ∞.

Then in the ultraproduct (V ,E ) =
∏

U(Vn,En), the measures

µ1(S) =
∏

U
|Sn|
|Vn| and µ2(T ) =

∏
U

|Tn|
|Vn|2 extend to actual

σ-additive measures and µ2(E ) ≥ ε > 0.

We can prove theorems about (Vn,En) for large n by using
measure theoretic arguments on (V ,E ).

Raw measure theory usually isn’t quite enough. For instance,
E ⊆ V 2 is generally not measurable in the product measure. Some
additional mechanism (like Keisler’s notion of a graded measure
space) is needed.
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When (Vn, Γn) are a sequence of graphs with |Γn| ≈ γ|Vn|c , c < 2,
we can always form an ultraproduct (V , Γ).

Question

What special properties does the ultraproduct have if the Γn were
pseudorandom?
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If f (x) is a function on the vertices,
∫

f (x)dµ1(x) is the average
value of f (x) over all the vertices.

If g(x , y) is a function on pairs of vertices—that is, on
edges—then

∫
g(x , y)dµ2

Γ(x , y) is the average value over edges
present in the graph above.

Fubini’s theorem fails very badly:
∫
χΓ(x , y)dµ2

Γ(x , y) = 1 while∫∫
χΓ(x , y)dµ1(y)dµ1(x)→ 0.
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We can define additional measures: for each vertex x , define
µ1
x(S) = |S∩NΓ(x)|

|NΓ(x)| where NΓ(x) is the neighbors of x in Γ.

In this case µ1
a(S) concentrates on the red vertices.

µ1
b(S) is always 0 or 1, depending on whether the blue vertex

belongs to S .
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A reasonable question is the relationship between∫
g(x , y)dµ2

Γ(x , y) and
∫∫

g(x , y)dµ1
x(y)dµ1(x).

Let R be the set of red edges. Then:∫
χR(x , y)dµ2

Γ(x , y)→ 1,∫∫
χR(x , y)dµ1

x(y)dµ1(x)→ 0.
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A natural notion of pseudorandomness is to ask that these
integrals should agree:∫

g(x , y)dµ2
Γ(x , y) =

∫∫
g(x , y)dµ1

x(y)dµ1(x).

In finite models we only expect approximate equality up to an error
term, but in the ultraproduct we expect exact equality.

These two integrals correspond to methods of selecting an edge in
Γ: µ2

Γ selects an edge in one step while µ1 × µ1
x first selects a

vertex and then extends the vertex to an edge in Γ.
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More generally, let (G ,E ) be any fixed finite (i.e. small) graph. If
we want to select a copy of (G ,E ) in Γ, there are many ways of
doing so:

We can select a copy of (G ,E ) in one step,

We can take any subset H ( G , select a copy of
(H,E � [H]2), and then extend this copy to a copy of (G ,E ),

We can take any subsets H0 ( H1 ( G , select a copy of
(H0,E � [H0]2), then extend this to a copy of (H1,E � [H1]2),
and then extend this copy to a copy of (G ,E ).

A useful (but very strong) notion of pseudorandomness is to
require that all such methods of counting give the same value. A
more reasonable notion is to require this for some fixed finite list of
graphs (G ,E ).
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