Pfaffian functions vs Rolle leaves

Patrick Speissegger

joint work with Gareth Jones

Ravello, 13 June 2013

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

• $f = (f_1, \dots, f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \longrightarrow \mathbb{R}$ such that

$$rac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \dots, f_i(x)) \quad ext{for } i, j.$$

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

• $f = (f_1, \dots, f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \longrightarrow \mathbb{R}$ such that

$$rac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \dots, f_i(x)) \quad ext{for } i, j.$$

A pfaffian function over R is a component of some pfaffian chain over R.

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

• $f = (f_1, ..., f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \longrightarrow \mathbb{R}$ such that

$$rac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \dots, f_i(x)) \quad ext{for } i, j.$$

A pfaffian function over R is a component of some pfaffian chain over R.

Example

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

• $f = (f_1, ..., f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \longrightarrow \mathbb{R}$ such that

$$rac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \dots, f_i(x)) \quad ext{for } i, j.$$

A pfaffian function over R is a component of some pfaffian chain over R.

Example

the exponential function

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

• $f = (f_1, ..., f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \longrightarrow \mathbb{R}$ such that

$$rac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \dots, f_i(x)) \quad ext{for } i, j.$$

A pfaffian function over R is a component of some pfaffian chain over R.

Example

- the exponential function
- 2 "classical" pfaffian chain: each g_{ij} is polynomial

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\overline{\mathbb{R}}_{pfaff}$ have finitely many connected components.

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\overline{\mathbb{R}}_{\text{pfaff}}$ have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

 $\overline{\mathbb{R}}_{pfaff}$ is model complete.

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\overline{\mathbb{R}}_{\text{pfaff}}$ have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

 $\overline{\mathbb{R}}_{pfaff}$ is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)

 \mathcal{R}_{pfaff} is o-minimal.

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\overline{\mathbb{R}}_{\text{pfaff}}$ have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

 $\overline{\mathbb{R}}_{pfaff}$ is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)

 \mathcal{R}_{pfaff} is o-minimal.

 $\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\overline{\mathbb{R}}_{\text{pfaff}}$ have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

 $\overline{\mathbb{R}}_{pfaff}$ is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)

 \mathcal{R}_{pfaff} is o-minimal.

Still open:

Conjecture 5

 \mathcal{R}_{pfaff} is model complete relative to \mathcal{R} .

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

 $L \subseteq M$ a leaf of *d*, called a **leaf over** \mathcal{R}

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

• $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 2 $d_e(x, y)$ = orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 2 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;
- 3 $d_s(x, y) = \text{orthogonal complement of } (-y, x y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$
- $L \subseteq M$ a leaf of *d*, called a **leaf over** \mathcal{R}

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 2 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;
- 3 $d_s(x, y) = \text{orthogonal complement of } (-y, x y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$
- $L \subseteq M$ a leaf of *d*, called a **leaf over** \mathcal{R}

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 2 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;
- 3 $d_s(x, y) = \text{orthogonal complement of } (-y, x y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$
- $L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 3 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;

3 $d_s(x, y) = \text{orthogonal complement of } (-y, x - y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example

• The horizontal lines are the leaves of d_h .

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 2 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;

3 $d_s(x, y) = \text{orthogonal complement of } (-y, x - y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example

- The horizontal lines are the leaves of d_h .
- 2 The graph of exp is a leaf of d_e .

 $M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m $d: M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

- $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
- 3 $d_e(x, y) =$ orthogonal complement of (-y, 1) on $M = \mathbb{R}^2$;

3 $d_s(x, y) = \text{orthogonal complement of } (-y, x - y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}.$

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example

- The horizontal lines are the leaves of d_h .
- 2 The graph of exp is a leaf of d_e .
- The image of every trajectory of the vector field $-y\frac{\partial}{\partial x} + (x y)\frac{\partial}{\partial y}$ in $\mathbb{R}^2 \setminus \{0\}$ is an integral manifold of d_s .

Patrick Speissegger

L is a **Rolle leaf** if *L* is a closed, embedded submanifold of *M* and, for every C^1 curve $\gamma : [0, 1] \longrightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

L is a **Rolle leaf** if *L* is a closed, embedded submanifold of *M* and, for every C^1 curve $\gamma : [0, 1] \longrightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

L is a **Rolle leaf** if *L* is a closed, embedded submanifold of *M* and, for every C^1 curve $\gamma : [0, 1] \longrightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

• The leaves of d_s are not Rolle, as they spiral around the origin.

L is a **Rolle leaf** if *L* is a closed, embedded submanifold of *M* and, for every C^1 curve $\gamma : [0, 1] \longrightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

- The leaves of d_s are not Rolle, as they spiral around the origin.
- 2 Rolle's Theorem states that every leaf of d_h is a Rolle leaf.

L is a **Rolle leaf** if *L* is a closed, embedded submanifold of *M* and, for every C^1 curve $\gamma : [0, 1] \longrightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

- The leaves of d_s are not Rolle, as they spiral around the origin.
- 2 Rolle's Theorem states that every leaf of d_h is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let $f = (f_1, \ldots, f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ be a pfaffian chain over \mathcal{R} . Then the graph of each f_i is a Rolle leaf over $(\mathcal{R}, f_1, \ldots, f_{i-1})$.

• Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- 2 Set $\mathcal{R}_0 := \mathcal{R}$ and, for i > 0, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1} .
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

 $\mathcal{P}(\mathcal{R})$ is o-minimal.

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

 $\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

 $\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

• Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

 $\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

- Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
- **2** \mathcal{R}_{pfaff} is a reduct of $\mathcal{P}(\mathcal{R})$.

- Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R} .
- Set R₀ := R and, for i > 0, let R_i be the expansion of R_{i-1} by all Rolle leaves over R_{i-1}.
- Solution The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R} .

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

 $\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

- Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
- **2** \mathcal{R}_{pfaff} is a reduct of $\mathcal{P}(\mathcal{R})$.
- **3** $\mathcal{P}(\mathcal{R})$ admits quantifier elimination.

 $d = (d_0, \dots, d_k)$ a definable nested distribution on M; i.e., $d_i : M \longrightarrow G_n^{m-i}$ and $d_k \subset \dots \subset d_0$

 $d = (d_0, \dots, d_k)$ a definable nested distribution on M; i.e., $d_i : M \longrightarrow G_n^{m-i}$ and $d_k \subset \dots \subset d_0$

 $L = (L_0, ..., L_k)$ a nested leaf of *d*, called **over** \mathcal{R} ; i.e., each L_i is a leaf of d_i and $L_k \subset \cdots \subset L_0 = M$

 $d = (d_0, \dots, d_k)$ a definable nested distribution on M; i.e., $d_i : M \longrightarrow G_n^{m-i}$ and $d_k \subset \dots \subset d_0$

 $L = (L_0, ..., L_k)$ a nested leaf of *d*, called **over** \mathcal{R} ; i.e., each L_i is a leaf of d_i and $L_k \subset \cdots \subset L_0 = M$

Definition (Lion & S 2010)

L is a **nested Rolle leaf of** *d* if, for each i > 0, the leaf L_i is a Rolle leaf of $d_i \upharpoonright_{L_{i-1}}$.

 $d = (d_0, \dots, d_k)$ a definable nested distribution on M; i.e., $d_i : M \longrightarrow G_n^{m-i}$ and $d_k \subset \dots \subset d_0$

 $L = (L_0, ..., L_k)$ a nested leaf of *d*, called **over** \mathcal{R} ; i.e., each L_i is a leaf of d_i and $L_k \subset \cdots \subset L_0 = M$

Definition (Lion & S 2010)

L is a **nested Rolle leaf of** *d* if, for each i > 0, the leaf L_i is a Rolle leaf of $d_i|_{L_{i-1}}$.

Example

If $f = (f_1, \ldots, f_k) : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is a pfaffian chain over \mathcal{R} with associated g_{ij} , set $d_0 := \mathbb{R}^{n+k}$ and $L_0 := \mathbb{R}^{n+k}$ and, for $i = 1, \ldots, k$, set $\omega_i := g_{i1}dx_1 + \cdots + g_{in}dx_n - dx_{n+i}$ and

 $d_i := \ker \omega_1 \cap \cdots \cap \ker \omega_i$ and $L_i := \operatorname{gr}(f_i) \times \mathbb{R}^{k-i}$.

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

 $\mathcal{N}(\mathcal{R}):=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

 $\mathcal{N}(\mathcal{R}):=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

 $\mathcal{N}(\mathcal{R}):=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

 $\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

 $\mathcal{N}(\mathcal{R}):=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

 $\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

 $\mathcal{N}(\mathcal{R}):=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

 $\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.

So, one way to approach Conjecture 5 is to consider the following:

Question

Is every nested Rolle leaf over ${\cal R}$ existentially definable in ${\cal R}_{\text{pfaff}}?$

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R} , the domains of these functions are generally not definable in \mathcal{R} .

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R} , the domains of these functions are generally not definable in \mathcal{R} .

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R} , the domains of these functions are generally not definable in \mathcal{R} . Are they at least piecewise existentially definable in $\mathcal{R}_{\text{pfaff}}$?

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R} , the domains of these functions are generally not definable in \mathcal{R} . Are they at least piecewise existentially definable in \mathcal{R}_{pfaff} ?

What about *nested* Rolle leaves over \mathcal{R} ?

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R} , the domains of these functions are generally not definable in \mathcal{R} . Are they at least piecewise existentially definable in \mathcal{R}_{pfaff} ?

What about *nested* Rolle leaves over R?

Problem 2

Are nested Rolle leaves over ${\cal R}$ even *locally* existentially definable in ${\cal R}_{pfaff}$?

nested pfaffian maps

Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d. Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d.

Definition

L is a **nested pfaffian map (over** \mathcal{R}) if each L_i is the graph of a map $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$, for i > 0.

 $\mathcal{N}'(\mathcal{R}):=$ expansion of $\mathcal R$ by all nested pfaffian maps over $\mathcal R$

Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d.

Definition

L is a **nested pfaffian map (over** \mathcal{R}) if each L_i is the graph of a map $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$, for i > 0.

 $\mathcal{N}'(\mathcal{R}):=$ expansion of $\mathcal R$ by all nested pfaffian maps over $\mathcal R$

Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d.

Definition

L is a **nested pfaffian map (over** \mathcal{R}) if each L_i is the graph of a map $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$, for i > 0.

 $\mathcal{N}'(\mathcal{R}):=$ expansion of $\mathcal R$ by all nested pfaffian maps over $\mathcal R$

Conjecture 9

 $\mathcal{N}'(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{N}(\mathcal{R}).$

nested pfaffian maps vs pfaffian chains

Example (n = 3, k = 2)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be definable,

 $\omega_1 := g_{11} dx_1 + g_{12} dx_2 - dx_3$ and $\omega_2 := g_2 dx_1 - dx_2$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$.

nested pfaffian maps vs pfaffian chains

Example (n = 3, k = 2)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be definable,

 $\omega_1 := g_{11} dx_1 + g_{12} dx_2 - dx_3$ and $\omega_2 := g_2 dx_1 - dx_2$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$.

Example (n = 3, k = 2)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be definable,

 $\omega_1 := g_{11} dx_1 + g_{12} dx_2 - dx_3$ and $\omega_2 := g_2 dx_1 - dx_2$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$. Let $L = (L_0, L_1, L_2)$ be a nested Rolle leaf of $d = (d_0, d_1, d_2)$, and assume *L* is a nested pfaffian map with associated $f_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $f_2 = (f_{21}, f_{22}) : \mathbb{R} \longrightarrow \mathbb{R}^2$.

Example (n = 3, k = 2)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}$ be definable,

 $\omega_1 := g_{11} dx_1 + g_{12} dx_2 - dx_3$ and $\omega_2 := g_2 dx_1 - dx_2$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$. Let $L = (L_0, L_1, L_2)$ be a nested Rolle leaf of $d = (d_0, d_1, d_2)$, and assume *L* is a nested pfaffian map with associated $f_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $f_2 = (f_{21}, f_{22}) : \mathbb{R} \longrightarrow \mathbb{R}^2$. Then f_1 is pfaffian over \mathcal{R} and $f_{22}(x_1) = f_1(x_1, f_{21}(x_1))$, but

$$f'_{21}(x_1) = g_2(x_1, f_{21}(x_1), f_1(x_1, f_{21}(x_1))).$$

nested pfaffian chains

Let $d = (d_0, \ldots, d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, \ldots, L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$.

nested pfaffian chains

Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$.

Definition

The tuple $(f_1, f_{21}, \ldots, f_{k1})$ is a **nested pfaffian chain (over** \mathcal{R}).

nested pfaffian chains

Let $d = (d_0, ..., d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, ..., L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \longrightarrow \mathbb{R}^i$.

Definition

The tuple $(f_1, f_{21}, \ldots, f_{k1})$ is a **nested pfaffian chain (over** \mathcal{R}).

Problem 2'

Are nested pfaffian chains over $\mathcal R$ existentially definable in $\mathcal R_{\text{pfaff}}?$