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pfaffian chains

Let R be an o-minimal expansion of the real field R.

Definition (van den Dries, Gabrielov)

1 f = (f1, . . . , fk ) : Rn −→ Rk is a pfaffian chain (of length
k ) over R if there are definable gij : Rn+i −→ R such that

∂fi
∂xj

(x) = gij(x , f1(x), . . . , fi(x)) for i , j .

2 A pfaffian function over R is a component of some
pfaffian chain over R.

Example

1 the exponential function
2 “classical” pfaffian chain: each gij is polynomial
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expansions by pfaffian chains

Rpfaff := expansion of R by all pfaffian functions over R

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in Rpfaff have finitely many
connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

Rpfaff is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)
Rpfaff is o-minimal.

Still open:

Conjecture 5
Rpfaff is model complete relative to R.
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coordinate-independent formulation

M ⊆ Rn a definable submanifold of dimension m

d : M −→ Gm−1
n a definable distribution on M

Example
Line fields determined by:

1 dh(x , y) = horizontal line through (x , y) on M = R2;
2 de(x , y) = orthogonal complement of (−y ,1) on M = R2;
3 ds(x , y) = orthogonal complement of (−y , x − y) on

M = R2 \ {0}.

L ⊆ M a leaf of d , called a leaf over R

Example

1 The horizontal lines are the leaves of dh.
2 The graph of exp is a leaf of de.
3 The image of every trajectory of the vector field
−y ∂

∂x + (x − y) ∂
∂y in R2 \ {0} is an integral manifold of ds.
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rolle leaves

Definition (Moussu & Roche 1991, based on Khovanskii 1979)
L is a Rolle leaf if L is a closed, embedded submanifold of M
and, for every C1 curve γ : [0,1] −→ M with γ(0), γ(1) ∈ L,
there exists t ∈ [0,1] such that γ′(t) is tangent to d(γ(t)).

Example

1 The leaves of ds are not Rolle, as they spiral around the
origin.

2 Rolle’s Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let f = (f1, . . . , fk ) : Rn −→ Rk be a pfaffian chain over R. Then
the graph of each fi is a Rolle leaf over (R, f1, . . . , fi−1).

Patrick Speissegger pfaffian functions vs rolle leaves



scpmsm

rolle leaves

Definition (Moussu & Roche 1991, based on Khovanskii 1979)
L is a Rolle leaf if L is a closed, embedded submanifold of M
and, for every C1 curve γ : [0,1] −→ M with γ(0), γ(1) ∈ L,
there exists t ∈ [0,1] such that γ′(t) is tangent to d(γ(t)).

Example

1 The leaves of ds are not Rolle, as they spiral around the
origin.

2 Rolle’s Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let f = (f1, . . . , fk ) : Rn −→ Rk be a pfaffian chain over R. Then
the graph of each fi is a Rolle leaf over (R, f1, . . . , fi−1).

Patrick Speissegger pfaffian functions vs rolle leaves



scpmsm

rolle leaves

Definition (Moussu & Roche 1991, based on Khovanskii 1979)
L is a Rolle leaf if L is a closed, embedded submanifold of M
and, for every C1 curve γ : [0,1] −→ M with γ(0), γ(1) ∈ L,
there exists t ∈ [0,1] such that γ′(t) is tangent to d(γ(t)).

Example
1 The leaves of ds are not Rolle, as they spiral around the

origin.

2 Rolle’s Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let f = (f1, . . . , fk ) : Rn −→ Rk be a pfaffian chain over R. Then
the graph of each fi is a Rolle leaf over (R, f1, . . . , fi−1).

Patrick Speissegger pfaffian functions vs rolle leaves



scpmsm

rolle leaves

Definition (Moussu & Roche 1991, based on Khovanskii 1979)
L is a Rolle leaf if L is a closed, embedded submanifold of M
and, for every C1 curve γ : [0,1] −→ M with γ(0), γ(1) ∈ L,
there exists t ∈ [0,1] such that γ′(t) is tangent to d(γ(t)).

Example
1 The leaves of ds are not Rolle, as they spiral around the

origin.
2 Rolle’s Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let f = (f1, . . . , fk ) : Rn −→ Rk be a pfaffian chain over R. Then
the graph of each fi is a Rolle leaf over (R, f1, . . . , fi−1).

Patrick Speissegger pfaffian functions vs rolle leaves



scpmsm

rolle leaves

Definition (Moussu & Roche 1991, based on Khovanskii 1979)
L is a Rolle leaf if L is a closed, embedded submanifold of M
and, for every C1 curve γ : [0,1] −→ M with γ(0), γ(1) ∈ L,
there exists t ∈ [0,1] such that γ′(t) is tangent to d(γ(t)).

Example
1 The leaves of ds are not Rolle, as they spiral around the

origin.
2 Rolle’s Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let f = (f1, . . . , fk ) : Rn −→ Rk be a pfaffian chain over R. Then
the graph of each fi is a Rolle leaf over (R, f1, . . . , fi−1).

Patrick Speissegger pfaffian functions vs rolle leaves



scpmsm

pfaffian closure

1 Let L(R) be the set of all Rolle leaves over R.

2 Set R0 := R and, for i > 0, let Ri be the expansion of Ri−1
by all Rolle leaves over Ri−1.

3 The expansion P(R) by all leaves in
⋃

i L(Ri) is the
pfaffian closure of R.

Theorem 7 (Lion & Rolin for R = Ran, S 1999)

P(R) is o-minimal.

Remarks

1 Every Rolle leaf over P(R) is definable in P(R).
2 Rpfaff is a reduct of P(R).
3 P(R) admits quantifier elimination.
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nested rolle leaves

d = (d0, . . . ,dk ) a definable nested distribution on M; i.e.,
di : M −→ Gm−i

n and dk ⊂ · · · ⊂ d0

L = (L0, . . . ,Lk ) a nested leaf of d , called over R; i.e., each Li
is a leaf of di and Lk ⊂ · · · ⊂ L0 = M

Definition (Lion & S 2010)
L is a nested Rolle leaf of d if, for each i > 0, the leaf Li is a
Rolle leaf of di�Li−1 .

Example

If f = (f1, . . . , fk ) : Rn −→ Rk is a pfaffian chain over R with
associated gij , set d0 := Rn+k and L0 := Rn+k and, for
i = 1, . . . , k , set ωi := gi1dx1 + · · ·+ gindxn − dxn+i and

di := kerω1 ∩ · · · ∩ kerωi and Li := gr(fi)× Rk−i .
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expansion by nested rolle leaves

Remark
Every nested Rolle leaf over R is definable in P(R).

N (R) := expansion of R by all nested Rolle leaves over R

Theorem 8 (Lion & S 2010)

N (R) is model complete relative to R and interdefinable with
P(R), provided R admits analytic cell decomposition.

So, one way to approach Conjecture 5 is to consider the
following:

Question
Is every nested Rolle leaf over R existentially definable in
Rpfaff?
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two problems

Problem 1
While a Rolle leaf over R can be covered by finitely many
graphs of functions satisfying pfaffian equations over R, the
domains of these functions are generally not definable in R.

Are they at least piecewise existentially definable in Rpfaff?

What about nested Rolle leaves over R?

Problem 2
Are nested Rolle leaves over R even locally existentially
definable in Rpfaff?
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nested pfaffian maps

Let d = (d0, . . . ,dk ) be a definable nested distribution on Rn

and L = (L0, . . . ,Lk ) be a nested Rolle leaf of d .

Definition
L is a nested pfaffian map (over R) if each Li is the graph of a
map fi : Rn−i −→ Ri , for i > 0.

N ′(R) := expansion of R by all nested pfaffian maps over R

Conjecture 9

N ′(R) is model complete relative to R and interdefinable with
N (R).
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nested pfaffian maps vs pfaffian chains

Example (n = 3, k = 2)

Let g11,g12,g2 : R3 −→ R be definable,

ω1 := g11dx1 + g12dx2 − dx3 and ω2 := g2dx1 − dx2

and d0 := R3, d1 := kerω1 and d2 := kerω1 ∩ kerω2.

Let L = (L0,L1,L2) be a nested Rolle leaf of d = (d0,d1,d2),
and assume L is a nested pfaffian map with associated
f1 : R2 −→ R and f2 = (f21, f22) : R −→ R2.
Then f1 is pfaffian over R and f22(x1) = f1(x1, f21(x1)), but

f ′21(x1) = g2(x1, f21(x1), f1(x1, f21(x1))).
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nested pfaffian chains

Let d = (d0, . . . ,dk ) be a definable nested distribution on Rn

and L = (L0, . . . ,Lk ) be a nested Rolle leaf of d , and assume
that L is a nested pfaffian map with corresponding
fi : Rn−i −→ Ri .

Definition
The tuple (f1, f21, . . . , fk1) is a nested pfaffian chain (over R).

Problem 2’
Are nested pfaffian chains over R existentially definable in
Rpfaff?
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