Pfaffian functions vs Rolle leaves

Patrick Speissegger

joint work with Gareth Jones

Ravello, 13 June 2013
Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.
Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

A pfaffian function over \mathcal{R} is a component of some pfaffian chain over \mathcal{R}.

Example 1: the exponential function is a "classical" pfaffian chain: each g_{ij} is polynomial.
Let \mathcal{R} be an o-minimal expansion of the real field \mathbb{R}.

Definition (van den Dries, Gabrielov)

$f = (f_1, \ldots, f_k) : \mathbb{R}^n \to \mathbb{R}^k$ is a **pfaffian chain** (of length k) over \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \to \mathbb{R}$ such that

$$\frac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \ldots, f_i(x)) \quad \text{for } i, j.$$

A pfaffian function over \mathcal{R} is a component of some pfaffian chain over \mathcal{R}.

Example

1. The exponential function is a "classical" pfaffian chain: each g_{ij} is polynomial.
Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

1. $f = (f_1, \ldots, f_k) : \mathbb{R}^n \rightarrow \mathbb{R}^k$ is a **pfaffian chain (of length k) over** \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \rightarrow \mathbb{R}$ such that
 \[
 \frac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \ldots, f_i(x)) \quad \text{for } i, j.
 \]

2. A **pfaffian function over** \mathcal{R} is a component of some pfaffian chain over \mathcal{R}.
Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

1. $f = (f_1, \ldots, f_k) : \mathbb{R}^n \rightarrow \mathbb{R}^k$ is a **pfaffian chain (of length k) over \mathcal{R}** if there are definable $g_{ij} : \mathbb{R}^{n+i} \rightarrow \mathbb{R}$ such that

$$\frac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \ldots, f_i(x)) \quad \text{for } i, j.$$

2. A **pfaffian function over \mathcal{R}** is a component of some pfaffian chain over \mathcal{R}.

Example
pfaffian chains

Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

1. $f = (f_1, \ldots, f_k) : \mathbb{R}^n \to \mathbb{R}^k$ is a **pfaffian chain (of length k) over \mathcal{R}** if there are definable $g_{ij} : \mathbb{R}^{n+i} \to \mathbb{R}$ such that

$$\frac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \ldots, f_i(x)) \quad \text{for } i, j.$$

2. A **pfaffian function over \mathcal{R}** is a component of some pfaffian chain over \mathcal{R}.

Example

1. the exponential function
Let \mathcal{R} be an o-minimal expansion of the real field $\overline{\mathbb{R}}$.

Definition (van den Dries, Gabrielov)

1. $f = (f_1, \ldots, f_k) : \mathbb{R}^n \rightarrow \mathbb{R}^k$ is a **pfaffian chain (of length k) over** \mathcal{R} if there are definable $g_{ij} : \mathbb{R}^{n+i} \rightarrow \mathbb{R}$ such that

$$\frac{\partial f_i}{\partial x_j}(x) = g_{ij}(x, f_1(x), \ldots, f_i(x)) \text{ for } i, j.$$

2. A **pfaffian function over** \mathcal{R} is a component of some pfaffian chain over \mathcal{R}.

Example

1. the exponential function
2. “classical” pfaffian chain: each g_{ij} is polynomial
\[R_{\text{pfaff}} := \text{expansion of } R \text{ by all pfaffian functions over } R \]
$\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R}$

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in $\mathcal{R}_{\text{pfaff}}$ have finitely many connected components.
\(\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R} \)

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in \(\mathcal{R}_{\text{pfaff}} \) have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

\(\mathcal{R}_{\text{pfaff}} \) is model complete.
\(\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R} \)

<table>
<thead>
<tr>
<th>Theorem 1 (Khovanskii 1979)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The quantifier-free definable sets in (\overline{\mathcal{R}}_{\text{pfaff}}) have finitely many connected components.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{\mathcal{R}}_{\text{pfaff}}) is model complete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{R}_{\text{pfaff}}) is o-minimal.</td>
</tr>
</tbody>
</table>
expansions by pfaffian chains

\(\mathcal{R}_{pfaff} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R} \)

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in \(\mathcal{R}_{pfaff} \) have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

\(\mathcal{R}_{pfaff} \) is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)

\(\mathcal{R}_{pfaff} \) is o-minimal.
expansions by pfaffian chains

\[\mathcal{R}_{\text{pfaff}} := \text{expansion of } \mathcal{R} \text{ by all pfaffian functions over } \mathcal{R} \]

Theorem 1 (Khovanskii 1979)

The quantifier-free definable sets in \(\overline{\mathcal{R}}_{\text{pfaff}} \) have finitely many connected components.

Conjecture 2 (van den Dries ca. 1981; Gabrielov 1996)

\(\overline{\mathcal{R}}_{\text{pfaff}} \) is model complete.

Theorem 4 (Wilkie 1999; Karpinski & Macintyre 1999)

\(\mathcal{R}_{\text{pfaff}} \) is o-minimal.

Still open:

Conjecture 5

\(\mathcal{R}_{\text{pfaff}} \) is model complete relative to \(\mathcal{R} \).
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \rightarrow G_n^{m-1}$ a definable distribution on M
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \rightarrow G_{n}^{m-1}$ a definable distribution on M

Example

Line fields determined by:

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \longrightarrow G_{n}^{m-1}$ a definable distribution on M

Example

Line fields determined by:

1. $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}
coordinate-independent formulation

\[M \subseteq \mathbb{R}^n \] a definable submanifold of dimension \(m \)
\[d : M \longrightarrow G_{n}^{m-1} \] a definable distribution on \(M \)

Example

Line fields determined by:

1. \(d_h(x, y) = \) horizontal line through \((x, y)\) on \(M = \mathbb{R}^2 \);
2. \(d_e(x, y) = \) orthogonal complement of \((-y, 1)\) on \(M = \mathbb{R}^2 \);

\[L \subseteq M \] a leaf of \(d \), called a leaf over \(\mathcal{R} \)
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \longrightarrow G_{n}^{m-1}$ a definable distribution on M

Example

Line fields determined by:

1. $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
2. $d_e(x, y) =$ orthogonal complement of $(-y, 1)$ on $M = \mathbb{R}^2$;
3. $d_s(x, y) =$ orthogonal complement of $(-y, x - y)$ on $M = \mathbb{R}^2 \setminus \{0\}$.

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}
coordinate-independent formulation

\[M \subseteq \mathbb{R}^n \] a definable submanifold of dimension \(m \)
\[d : M \longrightarrow G_{n}^{m-1} \] a definable distribution on \(M \)

Example

Line fields determined by:

1. \(d_h(x, y) = \) horizontal line through \((x, y)\) on \(M = \mathbb{R}^2 \);
2. \(d_e(x, y) = \) orthogonal complement of \((-y, 1)\) on \(M = \mathbb{R}^2 \);
3. \(d_s(x, y) = \) orthogonal complement of \((-y, x - y)\) on \(M = \mathbb{R}^2 \setminus \{0\} \).

\(L \subseteq M \) a leaf of \(d \), called a **leaf over** \(\mathcal{R} \)
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \longrightarrow G^{m-1}_n$ a definable distribution on M

Example

Line fields determined by:

1. $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
2. $d_e(x, y) =$ orthogonal complement of $(-y, 1)$ on $M = \mathbb{R}^2$;
3. $d_s(x, y) =$ orthogonal complement of $(-y, x - y)$ on $M = \mathbb{R}^2 \setminus \{0\}$.

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example
coordinate-independent formulation

\[M \subseteq \mathbb{R}^n \] a definable submanifold of dimension \(m \)

\[d : M \longrightarrow G_{n}^{m-1} \] a definable distribution on \(M \)

Example

Line fields determined by:

1. \(d_h(x, y) = \) horizontal line through \((x, y)\) on \(M = \mathbb{R}^2 \);
2. \(d_e(x, y) = \) orthogonal complement of \((-y, 1)\) on \(M = \mathbb{R}^2 \);
3. \(d_s(x, y) = \) orthogonal complement of \((-y, x - y)\) on \(M = \mathbb{R}^2 \setminus \{0\} \).

\(L \subseteq M \) a leaf of \(d \), called a leaf over \(\mathcal{R} \)

Example

1. The horizontal lines are the leaves of \(d_h \).
$M \subseteq \mathbb{R}^n$ a definable submanifold of dimension m

$d : M \longrightarrow G_n^{m-1}$ a definable distribution on M

Example

Line fields determined by:

1. $d_h(x, y) =$ horizontal line through (x, y) on $M = \mathbb{R}^2$;
2. $d_e(x, y) =$ orthogonal complement of $(-y, 1)$ on $M = \mathbb{R}^2$;
3. $d_s(x, y) =$ orthogonal complement of $(-y, x-y)$ on $M = \mathbb{R}^2 \setminus \{0\}$.

$L \subseteq M$ a leaf of d, called a **leaf over** \mathcal{R}

Example

1. The horizontal lines are the leaves of d_h.
2. The graph of \exp is a leaf of d_e.
coordinate-independent formulation

\[M \subseteq \mathbb{R}^n \text{ a definable submanifold of dimension } m \]
\[d : M \longrightarrow G_n^{m-1} \text{ a definable distribution on } M \]

Example

Line fields determined by:

1. \(d_h(x, y) = \text{horizontal line through } (x, y) \text{ on } M = \mathbb{R}^2; \)
2. \(d_e(x, y) = \text{orthogonal complement of } (-y, 1) \text{ on } M = \mathbb{R}^2; \)
3. \(d_s(x, y) = \text{orthogonal complement of } (-y, x - y) \text{ on } M = \mathbb{R}^2 \setminus \{0\}. \)

\[L \subseteq M \text{ a leaf of } d, \text{ called a leaf over } \mathcal{R} \]

Example

1. The horizontal lines are the leaves of \(d_h. \)
2. The graph of \(\exp \) is a leaf of \(d_e. \)
3. The image of every trajectory of the vector field
\[-y \frac{\partial}{\partial x} + (x - y) \frac{\partial}{\partial y} \text{ in } \mathbb{R}^2 \setminus \{0\} \text{ is an integral manifold of } d_s. \]
Definition (Moussu & Roche 1991, based on Khovanskii 1979)

L is a **Rolle leaf** if L is a closed, embedded submanifold of M and, for every C^1 curve $\gamma : [0, 1] \to M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example 1

The leaves of ds are not Rolle, as they spiral around the origin.

Example 2

Rolle's Theorem states that every leaf of dh is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let $f = (f_1, \ldots, f_k) : \mathbb{R}^n \to \mathbb{R}^k$ be a pfaffian chain over \mathbb{R}. Then the graph of each f_i is a Rolle leaf over $(\mathbb{R}, f_1, \ldots, f_{i-1})$.

Patrick Speissegger

pfaffian functions vs rolle leaves
Definition (Moussu & Roche 1991, based on Khovanskii 1979)

L is a **Rolle leaf** if **L** is a closed, embedded submanifold of **M** and, for every C^1 curve $\gamma : [0, 1] \to M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example
Definition (Moussu & Roche 1991, based on Khovanskii 1979)

L is a Rolle leaf if L is a closed, embedded submanifold of M and, for every C^1 curve $\gamma : [0, 1] \rightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

1. The leaves of d_s are not Rolle, as they spiral around the origin.
Definition (Moussu & Roche 1991, based on Khovanskii 1979)

L is a **Rolle leaf** if L is a closed, embedded submanifold of M and, for every C^1 curve $\gamma : [0, 1] \rightarrow M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

1. The leaves of d_s are not Rolle, as they spiral around the origin.
2. Rolle’s Theorem states that every leaf of d_h is a Rolle leaf.
Definition (Moussu & Roche 1991, based on Khovanskii 1979)

L is a **Rolle leaf** if L is a closed, embedded submanifold of M and, for every C^1 curve $\gamma : [0, 1] \to M$ with $\gamma(0), \gamma(1) \in L$, there exists $t \in [0, 1]$ such that $\gamma'(t)$ is tangent to $d(\gamma(t))$.

Example

1. The leaves of d_s are not Rolle, as they spiral around the origin.
2. Rolle’s Theorem states that every leaf of d_h is a Rolle leaf.

Lemma 6 (Khovanskii 1979)

Let $f = (f_1, \ldots, f_k) : \mathbb{R}^n \to \mathbb{R}^k$ be a pfaffian chain over \mathcal{R}. Then the graph of each f_i is a Rolle leaf over $(\mathcal{R}, f_1, \ldots, f_{i-1})$.

Patrick Speissegger
	pfaffian functions vs rolle leaves
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.
1. Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

2. Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

3. The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}$, S 1999) $\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

1. Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.

2. \mathcal{R}_{pfaff} is a reduct of $\mathcal{P}(\mathcal{R})$.

3. $\mathcal{P}(\mathcal{R})$ admits quantifier elimination.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the pfaffian closure of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

$\mathcal{P}(\mathcal{R})$ is o-minimal.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{\text{an}}$, S 1999)

$\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

1. Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
2. $\mathcal{R}_{\text{pfaff}}$ is a reduct of $\mathcal{P}(\mathcal{R})$.
3. $\mathcal{P}(\mathcal{R})$ admits quantifier elimination.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the pfaffian closure of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{\text{an}}$, S 1999)

$\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

1. Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the **pfaffian closure** of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{an}$, S 1999)

$\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

1. Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
2. \mathcal{R}_{pfaff} is a reduct of $\mathcal{P}(\mathcal{R})$.
Let $\mathcal{L}(\mathcal{R})$ be the set of all Rolle leaves over \mathcal{R}.

Set $\mathcal{R}_0 := \mathcal{R}$ and, for $i > 0$, let \mathcal{R}_i be the expansion of \mathcal{R}_{i-1} by all Rolle leaves over \mathcal{R}_{i-1}.

The expansion $\mathcal{P}(\mathcal{R})$ by all leaves in $\bigcup_i \mathcal{L}(\mathcal{R}_i)$ is the pfaffian closure of \mathcal{R}.

Theorem 7 (Lion & Rolin for $\mathcal{R} = \mathbb{R}_{\text{an}}$, S 1999)

$\mathcal{P}(\mathcal{R})$ is o-minimal.

Remarks

1. Every Rolle leaf over $\mathcal{P}(\mathcal{R})$ is definable in $\mathcal{P}(\mathcal{R})$.
2. $\mathcal{R}_{\text{pfaff}}$ is a reduct of $\mathcal{P}(\mathcal{R})$.
3. $\mathcal{P}(\mathcal{R})$ admits quantifier elimination.
\(d = (d_0, \ldots, d_k) \) a definable nested distribution on \(M \); i.e.,
\(d_i : M \rightarrow G_n^{m-i} \) and \(d_k \subset \cdots \subset d_0 \)
\(d = (d_0, \ldots, d_k) \) a definable nested distribution on \(M \); i.e.,
\(d_i : M \rightarrow G_n^{m-i} \) and \(d_k \subset \cdots \subset d_0 \)

\(L = (L_0, \ldots, L_k) \) a nested leaf of \(d \), called \textbf{over} \(\mathcal{R} \); i.e., each \(L_i \)
is a leaf of \(d_i \) and \(L_k \subset \cdots \subset L_0 = M \)
nested rolle leaves

\[d = (d_0, \ldots, d_k) \] a definable nested distribution on \(M \); i.e.,
\[d_i : M \rightarrow G^m_n \] and \(d_k \subset \cdots \subset d_0 \)

\[L = (L_0, \ldots, L_k) \] a nested leaf of \(d \), called \textit{over} \(\mathcal{R} \); i.e., each \(L_i \)
is a leaf of \(d_i \) and \(L_k \subset \cdots \subset L_0 = M \)

Definition (Lion & S 2010)

\(L \) is a **nested Rolle leaf of** \(d \) if, for each \(i > 0 \), the leaf \(L_i \) is a Rolle leaf of \(d_i |_{L_{i-1}} \).
nested rolle leaves

d = (d_0, \ldots, d_k) \text{ a definable nested distribution on } M; \text{ i.e., } d_i : M \rightarrow G_n^{m-i} \text{ and } d_k \subset \cdots \subset d_0

L = (L_0, \ldots, L_k) \text{ a nested leaf of } d, \text{ called \textbf{over } } \mathcal{R}; \text{ i.e., each } L_i \text{ is a leaf of } d_i \text{ and } L_k \subset \cdots \subset L_0 = M

Definition (Lion & S 2010)

\text{\textbf{L} is a \textbf{nested Rolle leaf of } d} \text{ if, for each } i > 0, \text{ the leaf } L_i \text{ is a Rolle leaf of } d_i\upharpoonright_{L_{i-1}}.

Example

If \(f = (f_1, \ldots, f_k) : \mathbb{R}^n \rightarrow \mathbb{R}^k \) is a pfaffian chain over \(\mathcal{R} \) with associated \(g_{ij} \), set \(d_0 := \mathbb{R}^{n+k} \) and \(L_0 := \mathbb{R}^{n+k} \) and, for \(i = 1, \ldots, k \), set \(\omega_i := g_{i1} dx_1 + \cdots + g_{in} dx_n - dx_{n+i} \) and

\[
d_i := \ker \omega_1 \cap \cdots \cap \ker \omega_i \quad \text{and} \quad L_i := \text{gr}(f_i) \times \mathbb{R}^{k-i}.
\]
Remark

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

$\mathcal{N}(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}
Remark

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

$\mathcal{N}(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}
Remark

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

$\mathcal{N}(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

$\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.
Remark

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

$\mathcal{N}(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

$\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.
Remark

Every nested Rolle leaf over \mathcal{R} is definable in $\mathcal{P}(\mathcal{R})$.

$\mathcal{N}(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested Rolle leaves over \mathcal{R}

Theorem 8 (Lion & S 2010)

$\mathcal{N}(\mathcal{R})$ is model complete relative to \mathcal{R} and interdefinable with $\mathcal{P}(\mathcal{R})$, provided \mathcal{R} admits analytic cell decomposition.

So, one way to approach Conjecture 5 is to consider the following:

Question

Is every nested Rolle leaf over \mathcal{R} existentially definable in $\mathcal{R}_{\text{pfaff}}$?
Problem 1

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R}, the domains of these functions are generally not definable in \mathcal{R}.
Problem 1

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R}, the domains of these functions are generally not definable in \mathcal{R}.

Problem 2

Are nested Rolle leaves over \mathcal{R} even locally existentially definable in \mathcal{R}_{pfaff}?
two problems

Problem 1
While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R}, the domains of these functions are generally not definable in \mathcal{R}. Are they at least piecewise existentially definable in $\mathcal{R}_{\text{pfaff}}$?

Problem 2
Are nested Rolle leaves over \mathcal{R} even locally existentially definable in $\mathcal{R}_{\text{pfaff}}$?
Problem 1

While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R}, the domains of these functions are generally not definable in \mathcal{R}. Are they at least piecewise existentially definable in $\mathcal{R}_{\text{pfaff}}$?

What about nested Rolle leaves over \mathcal{R}?
two problems

Problem 1
While a Rolle leaf over \mathcal{R} can be covered by finitely many graphs of functions satisfying pfaffian equations over \mathcal{R}, the domains of these functions are generally not definable in \mathcal{R}. Are they at least piecewise existentially definable in $\mathcal{R}_{\text{pfaff}}$?

What about nested Rolle leaves over \mathcal{R}?

Problem 2
Are nested Rolle leaves over \mathcal{R} even locally existentially definable in $\mathcal{R}_{\text{pfaff}}$?
Let \(d = (d_0, \ldots, d_k) \) be a definable nested distribution on \(\mathbb{R}^n \) and \(L = (L_0, \ldots, L_k) \) be a nested Rolle leaf of \(d \).
Let \(d = (d_0, \ldots, d_k) \) be a definable nested distribution on \(\mathbb{R}^n \) and \(L = (L_0, \ldots, L_k) \) be a nested Rolle leaf of \(d \).

Definition

\(L \) is a **nested pfaffian map** (over \(\mathcal{R} \)) if each \(L_i \) is the graph of a map \(f_i : \mathbb{R}^{n-i} \rightarrow \mathbb{R}^i \), for \(i > 0 \).

\(\mathcal{N}'(\mathcal{R}) := \) expansion of \(\mathcal{R} \) by all nested pfaffian maps over \(\mathcal{R} \)
Let $d = (d_0, \ldots, d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, \ldots, L_k)$ be a nested Rolle leaf of d.

Definition

L is a **nested pfaffian map** (over \mathcal{R}) if each L_i is the graph of a map $f_i : \mathbb{R}^{n-i} \to \mathbb{R}^i$, for $i > 0$.

$\mathcal{N}'(\mathcal{R}) :=$ expansion of \mathcal{R} by all nested pfaffian maps over \mathcal{R}
Let \(d = (d_0, \ldots, d_k) \) be a definable nested distribution on \(\mathbb{R}^n \) and \(L = (L_0, \ldots, L_k) \) be a nested Rolle leaf of \(d \).

Definition

\(L \) is a **nested pfaffian map (over \(\mathcal{R} \))** if each \(L_i \) is the graph of a map \(f_i : \mathbb{R}^{n-i} \rightarrow \mathbb{R}^i \), for \(i > 0 \).

\[\mathcal{N}'(\mathcal{R}) := \text{expansion of } \mathcal{R} \text{ by all nested pfaffian maps over } \mathcal{R} \]

Conjecture 9

\(\mathcal{N}'(\mathcal{R}) \) is model complete relative to \(\mathcal{R} \) and interdefinable with \(\mathcal{N}(\mathcal{R}) \).
Example ($n = 3$, $k = 2$)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ be definable,

\[
\omega_1 := g_{11} \, dx_1 + g_{12} \, dx_2 - dx_3 \quad \text{and} \quad \omega_2 := g_2 \, dx_1 - dx_2
\]

and $d_0 := \mathbb{R}^3$, $d_1 := \text{ker} \, \omega_1$ and $d_2 := \text{ker} \, \omega_1 \cap \text{ker} \, \omega_2$.
Example ($n = 3$, $k = 2$)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ be definable,

$$\omega_1 := g_{11}dx_1 + g_{12}dx_2 - dx_3 \quad \text{and} \quad \omega_2 := g_2dx_1 - dx_2$$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$.
Example ($n = 3$, $k = 2$)

Let $g_{11}, g_{12}, g_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ be definable,

$$\omega_1 := g_{11} dx_1 + g_{12} dx_2 - dx_3 \quad \text{and} \quad \omega_2 := g_2 dx_1 - dx_2$$

and $d_0 := \mathbb{R}^3$, $d_1 := \ker \omega_1$ and $d_2 := \ker \omega_1 \cap \ker \omega_2$.

Let $L = (L_0, L_1, L_2)$ be a nested Rolle leaf of $d = (d_0, d_1, d_2)$, and assume L is a nested pfaffian map with associated $f_1 : \mathbb{R}^2 \rightarrow \mathbb{R}$ and $f_2 = (f_{21}, f_{22}) : \mathbb{R} \rightarrow \mathbb{R}^2$.
Example \((n = 3, k = 2)\)

Let \(g_{11}, g_{12}, g_2 : \mathbb{R}^3 \to \mathbb{R}\) be definable,

\[
\omega_1 := g_{11} \, dx_1 + g_{12} \, dx_2 - dx_3 \quad \text{and} \quad \omega_2 := g_2 \, dx_1 - dx_2
\]

and \(d_0 := \mathbb{R}^3, d_1 := \ker \omega_1\) and \(d_2 := \ker \omega_1 \cap \ker \omega_2\).

Let \(L = (L_0, L_1, L_2)\) be a nested Rolle leaf of \(d = (d_0, d_1, d_2)\),
and assume \(L\) is a nested pfaffian map with associated
\(f_1 : \mathbb{R}^2 \to \mathbb{R}\) and \(f_2 = (f_{21}, f_{22}) : \mathbb{R} \to \mathbb{R}^2\).

Then \(f_1\) is pfaffian over \(\mathcal{R}\) and \(f_{22}(x_1) = f_1(x_1, f_{21}(x_1))\), but

\[
f'_{21}(x_1) = g_2(x_1, f_{21}(x_1), f_1(x_1, f_{21}(x_1))).
\]
Let $d = (d_0, \ldots, d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, \ldots, L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \rightarrow \mathbb{R}^i$.

Definition

The tuple (f_1, f_2, \ldots, f_k) is a nested pfaffian chain (over \mathbb{R}).
Let $d = (d_0, \ldots, d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, \ldots, L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \to \mathbb{R}^i$.

Definition

The tuple $(f_1, f_{21}, \ldots, f_{k1})$ is a **nested pfaffian chain (over \mathbb{R})**.
Let $d = (d_0, \ldots, d_k)$ be a definable nested distribution on \mathbb{R}^n and $L = (L_0, \ldots, L_k)$ be a nested Rolle leaf of d, and assume that L is a nested pfaffian map with corresponding $f_i : \mathbb{R}^{n-i} \rightarrow \mathbb{R}^i$.

Definition

The tuple $(f_1, f_{21}, \ldots, f_{k1})$ is a **nested pfaffian chain (over \mathcal{R})**.

Problem 2’

Are nested pfaffian chains over \mathcal{R} existentially definable in \mathcal{R}_{pfaff}?