Merzlyakov-type theorems after Sela

Part II

Goal

\mathbb{F} is a finitely generated non abelian free group. $\Sigma(\bar{x}, \bar{y}) \subset_{\text{finite}} \langle \bar{x}, \bar{y} \rangle.$

Theorem (Merzlyakov)

Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y} (\Sigma(\bar{x}, \bar{y}) = 1)$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$, where $G_{\Sigma} := \langle \bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y}) \rangle$.

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a "test sequence" in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F} \models \Sigma(\bar{b}_n, \bar{c}_n) = 1$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$.

Recall

Theorem A

Let $(h_n)_{n<\omega} : G \to \mathbb{F}$ be an infinite sequence of morphisms. Then there exists a sequence of base points $(*_n)_{n<\omega}$ in $X_{\mathbb{F}}$ and a sequence of rescaling constants $(r_n)_{n<\omega} \in \mathbb{R}^+$ such that a subsequence of the induced pseudo-metrics $(d_n/r_n)_{n<\omega}$ converges to a pseudo-metric d which is induced by a non-trivial action of G on a real tree (T, *).

- L is a limit group if it can be obtained as G/kerλ where λ is the limit action for a sequence of morphisms (h_n)_{n<ω} : G → F;
- L admits an action on a real tree which is non-trivial, super-stable, with trivial tripod stabilizers and abelian arc stabilizers.

Rips' Machine

Suppose G acts on a real tree T. Then the action is:

- minimal, if there is no G-invariant proper subtree;
- non-trivial, if there is no globally fixed point;
- ▶ super-stable, if for any arc *I* and subarc $J \subset I$ we have that $Stab(J) \neq Stab(I) \Rightarrow Stab(I) = \{1\}.$

Theorem (Rips' Machine)

Let G be a finitely generated group. Suppose G acts non-trivially and minimally on an \mathbb{R} -tree T. Moreover, assume that the action is super-stable and tripod stabilizers are trivial. Then the action can be understood in terms of simpler components which are of discrete, axial, surface or exotic type

Lemma (Approximating Sequences)

Assume $(X_{\mathbb{F}}, *_n, d_{X_{\mathbb{F}}})_{n < \omega}$ "converges" to $(T, *, d_T)$ as in Theorem A. Then for any $x \in T$, the following hold:

- ► there exists a sequence $(x_n)_{n < \omega}$ such that $\frac{d_{X_F}}{r_n}(x_n, g \cdot *_n) \rightarrow d_T(x, g \cdot *)$ for any $g \in G$, we call such a sequence an approximating sequence;
- ▶ if $(x_n)_{n < \omega}$, $(x'_n)_{n < \omega}$ are two approximating sequences for $x \in T$, then $\frac{d_{X_{\mathbb{F}}}}{r_n}(x_n, x'_n) \to 0$;
- if $(x_n)_{n < \omega}$ is an approximating sequence for x, then $(g \cdot x_n)_{n < \omega}$ is an approximating sequence for $g \cdot x$;
- ▶ if $(x_n)_{n < \omega}$, $(y_n)_{n < \omega}$ are approximating sequences for x, y respectively, then $\frac{d_{X_{\mathbb{F}}}}{r_n}(x_n, y_n) \rightarrow d_T(x, y)$.

Shortening Argument

Theorem

Suppose G is a non-cyclic finitely generated group. Let $(h_n)_{n < \omega} : G \to \mathbb{F}$ be an infinite sequence of short morphisms. Then either G splits as a non-trivial free product or the action on a real tree T obtained as in Theorem A is not faithful.

Definition

Let S be a finite generating set for G and $h: G \to \mathbb{F}$ be a morphism. Then the *length* of h is

$$\mathfrak{l}(h) := max_{s \in S} \{ d_{X_{\mathbb{F}}}(1, h(s) \cdot 1) \}$$

Moreover *h* is called short if:

$$\mathfrak{l}(h) \leq \max_{s \in S} \{ d_{X_{\mathbb{F}}}(x, h(\sigma(s)) \cdot x) \}$$

for any $x \in X_{\mathbb{F}}$ and $\sigma \in Aut(G)$

Idea of the proof

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Special case I: T is a line

- ▶ since ker λ = {1} we have that G is a limit group;
- ▶ in particular *G* is torsion-free;
- thus $G \hookrightarrow Isom^+(\mathbb{R})$;
- $G \cong \mathbb{Z}^m := \langle z_1, \ldots, z_m \rangle$, with m > 1;
- $\{tr(z_1), \ldots, tr(z_m)\}$ forms a linearly independent set;
- without loss of generality $tr(z_1) > tr(z_2) > \ldots > tr(z_m)$.

- without loss of generality $tr(z_1) > tr(z_2) > \ldots > tr(z_m)$;
- there is k such that $tr(z_1) = k \cdot tr(z_2) + u$ and $0 < u < tr(z_2)$;
- let σ be the following automorphism of \mathbb{Z}^m :

- after finitely many steps we get an automorphism (still denoted) σ such that d_T(*, σ(s) ⋅ *) < d_T(*, s ⋅ *), for every s ∈ S;
- ► thus $d_{X_{\mathbb{F}}}(*_n, h_n(\sigma(s)) \cdot *_n) < d_{X_{\mathbb{F}}}(*_n, h_n(s) \cdot *_n);$
- ▶ but $*_n = 1$ (exercise), contradicting the shortness of h_n ;

Special case II: Discrete action

- Suppose the action of G on T is discrete;
- we can analyze the action using Bass-Serre theory;

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Isometries of \mathbb{R} -trees

- Suppose G acts on a real tree T (by isometries);
- let $g \in G$, and $tr(g) := inf_{x \in T} \{ d_T(x, g \cdot x) \};$
- if g fixes a point, then it is called *elliptic*;
- otherwise g is called hyperbolic and there is a unique line L ⊂ T such that g acts on L as translation by tr(g);
- ► the line L is called the axis of g, moreover if x ∈ T, then d_T(x, g · x) = tr(g) + 2d_T(x, L)

- Let $c \in C \setminus \{1\}$;
- *h_n(c) = c_n* be the (non-trivial) image of *c* in 𝔽, and consider the axis of *c_n* in *X*_𝔅;
- ▶ let (x_n)_{n<\u03c6} and (y_n)_{n<\u03c6} be approximating sequences for x, y respectively;

- Let $c \in C \setminus \{1\}$;
- *h_n(c) = c_n* be the (non-trivial) image of *c* in 𝔽, and consider the axis of *c_n* in *X*_𝔅;
- ▶ let (x_n)_{n<\u03c6} and (y_n)_{n<\u03c6} be approximating sequences for x, y respectively;

- There exists $(k_n)_{n < \omega} \in \mathbb{Z}$ such that $c_n^{k_n} \cdot x_n$ approximates y;
- (respectively) $c_n^{-k_n} \cdot y_n$ approximates x;

• Consider the Dehn twists of $A *_C B$:

$$\delta_n(g) = egin{cases} g & ext{if } g \in A \ c^{-k_n}gc^{k_n} & ext{if } g \in B \end{cases}$$

Extended Merzlyakov theorem

Theorem

Let $(\bar{b}_n)_{n<\omega}$ be a test sequence in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F} \models \Sigma(\bar{b}_n, \bar{c}_n) = 1$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$.

Definition (Test sequence)

An infinite sequence of tuples $(\bar{b}_n)_{n < \omega} \in \mathbb{F}$ is called a *test sequence* if the tuple $(b_1(n), \ldots, b_k(n))$ satisfies C'(1/n) in \mathbb{F} , for $n < \omega$.

Recall: Let $\overline{b} := (b_1, \ldots, b_k)$ be a tuple of words in \mathbb{F} . A subword w of b_i , for some $i \leq k$, is called a *piece* if it appears in two "different" ways in \overline{b} . We say that \overline{b} satisfies C'(p) in \mathbb{F} (for 0), if for any piece <math>w, if w is a subword of b_i , for some $i \leq k$, then we have that $|w|_{\mathbb{F}} .$

Proof(Extended Merzlyakov theorem)

For expositional simplicity of the argument we make the following assumptions:

• the tuples $(b_1(n), \ldots, b_k(n))$ are not singletons, i.e. k > 1;

▶ for any $i < j \le k$ there are $c_{i,j}, c'_{i,j} \in \mathbb{R}^+$ such that $c_{i,j} < \frac{|b_i(n)|_{\mathbb{F}}}{|b_j(n)|_{\mathbb{F}}} < c'_{i,j}$ for all $n < \omega$.

Proof(Extended Merzlyakov theorem)

For expositional simplicity of the argument we make the following assumptions:

• the tuples $(b_1(n), \ldots, b_k(n))$ are not singletons, i.e. k > 1;

► for any
$$i < j \le k$$
 there are $c_{i,j}, c'_{i,j} \in \mathbb{R}^+$ such that $c_{i,j} < \frac{|b_i(n)|_{\mathbb{F}}}{|b_j(n)|_{\mathbb{F}}} < c'_{i,j}$ for all $n < \omega$.

Definition (Very Short Morphism)

Let $G := \langle \bar{x}, y_1, \dots, y_m \rangle$. Then $h : G \to \mathbb{F}$ is called *very short* with respect to (\bar{x}, \bar{y}) if for any h' that extends $h \upharpoonright \langle \bar{x} \rangle$ we have that $\sum_{i \le m} |h(y_i)|_{\mathbb{F}} \le \sum_{i \le m} |h'(y_i)|_{\mathbb{F}}$.

- the notion of a "very short morphism" passes to quotients;
- let η : G → L and suppose a very short morphism g : G → F factors through η, i.e. g = h ∘ η with h : L → F;
- then *h* is very short with respect to $(\eta(\bar{x}), \eta(\bar{y}))$.

- let $G_{\Sigma} := \langle \bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y}) \rangle;$
- since for each n we have 𝔅 ⊨ Σ(̄_n, ̄_n) = 1, we obtain a sequence of morphisms (𝑔_n)_{n<ω} : 𝒪_Σ → 𝔅;
- we may assume g_n is very short with respect to (x̄; ȳ), for n < ω;
- consider the limit action G_Σ →^λ (T, *) of the sequence (g_n)_{n<ω};
- let L := G_Σ/kerλ and η : G_Σ → L be the canonical quotient map.

Claim I: We may assume that $L := G_{\Sigma}/ker\lambda$ is freely indecomposable with respect to $\eta(\langle \bar{x} \rangle)$.

Claim I: We may assume that L is freely indecomposable with respect to $\eta(\langle \bar{x} \rangle)$. Proof of Claim I:

- since g_n(G_∑) is not abelian, we have that T is not isometric to a line (Exercise);
- ▶ thus, there is a sequence $(h_n)_{n < \omega} : L \to \mathbb{F}$ such that $g_n = h_n \circ \eta$ for all but finitely many $n < \omega$;
- note that since $(\bar{b}_n)_{n < \omega}$ is a test sequence η is injective on $\langle \bar{x} \rangle$. Thus, we identify $\eta(\bar{x})$ with \bar{x} ;
- ▶ let $L = L_1 * L_2$ be a non-trivial free product with $\langle \bar{x} \rangle \leq L_1$. Continue with L_1 and $h_n \upharpoonright L_1$ after been made very short;

Claim I: We may assume that L is freely indecomposable with respect to $\eta(\langle \bar{x} \rangle)$. Proof of Claim I:

- since g_n(G_∑) is not abelian, we have that T is not isometric to a line (Exercise);
- ▶ thus, there is a sequence $(h_n)_{n < \omega} : L \to \mathbb{F}$ such that $g_n = h_n \circ \eta$ for all but finitely many $n < \omega$;
- note that since $(\bar{b}_n)_{n < \omega}$ is a test sequence η is injective on $\langle \bar{x} \rangle$. Thus, we identify $\eta(\bar{x})$ with \bar{x} ;
- ▶ let $L = L_1 * L_2$ be a non-trivial free product with $\langle \bar{x} \rangle \leq L_1$. Continue with L_1 and $h_n \upharpoonright L_1$ after been made very short;

Lemma (DCC for limit groups)

Let $L_1 \rightarrow L_2 \rightarrow \dots \rightarrow L_m \rightarrow \dots$ be a sequence of epimorphisms of limit groups. Then the sequence stabilizes after finitely many steps, i.e. there are only finitely many proper epimorphisms in the sequence.

We are left with:

- $(h_n)_{n < \omega} : L \to \mathbb{F}$ which is very short with respect to $(\bar{x}; \eta(\bar{y}));$
- $(h_n(\bar{x}))_{n<\omega}$ a test sequence;
- *L* freely indecomposable with respect to $\langle \bar{x} \rangle$;
- a faithful action of L on T as a limit of the above sequence;

▶ the action of *L* on *T* can be analyzed using Rips' machine.

• The subgroup $\langle \bar{x} \rangle$ does not fix a point;

- *T* is covered by translates of the arcs [*, s ⋅ *] where s ∈ {x̄, η(ȳ)} (Exercise);
- and now use the shortening argument.

Minimal G-trees

Recall:

Suppose G acts on a real tree T. Then the action is:

- non-trivial, if there is no globally fixed point;
- ▶ *minimal*, if there is no *G*-invariant proper subtree.

Lemma

Let G be finitely generated group. If G acts non-trivially on a real tree T, then T contains a unique minimal G-invariant subtree. It is the union of axes of hyperbolic elements of G.

• Since $\langle \bar{x} \rangle$ does not fix a point, there exists a minimal $\langle \bar{x} \rangle$ -invariant subtree of T.

- Let T_{min} be the minimal tree that $\langle \bar{x} \rangle$ acts on. We want to prove that T_{min} lies on the discrete part of T.
- *T_{min}* is covered by translates of arcs of the form [*, x_i · ∗] by elements of ⟨x̄⟩.

Claim II: Let $I \subseteq [*, x_i \cdot *]$ be a non-trivial arc. Then, for any $g \in L \setminus \{1\}$ and any $j \leq k$, we have that $g.I \cap [*, x_j \cdot *]$ is at most a point.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Claim II: Let $I \subseteq [*, x_i \cdot *]$ be a non-trivial arc. Then, for any $g \in L \setminus \{1\}$ and any $j \leq k$, we have that $g.I \cap [*, x_j \cdot *]$ is at most a point.

Indecomposable Components

Definition

Suppose G acts on a real tree T. Then a non degenerate tree $Y \subseteq T$ is called *indecomposable* if for every pair of arcs $I, J \subseteq Y$ there is a finite sequence $g_1 \cdot I, \ldots, g_n \cdot I$ which covers J and such that $g_i \cdot I \cap g_{i+1} \cdot I$ is non degenerate.

Fact

Any non discrete component in Rips' decomposition is indecomposable.

Claim II: Let $I \subseteq [*, x_i \cdot *]$ be a non-trivial arc. Then, for any $g \in L \setminus \{1\}$ and any $j \leq k$, we have that $g.I \cap [*, x_j \cdot *]$ is at most a point.

Definition

Suppose G acts on a real tree T. Then a non degenerate tree $Y \subseteq T$ is called *indecomposable* if for every pair of arcs $I, J \subseteq Y$ there is a finite sequence $g_1 \cdot I, \ldots, g_n \cdot I$ which covers J and such that $g_i \cdot I \cap g_{i+1} \cdot I$ is non degenerate.

Fact

Any non discrete component in Rips' decomposition is indecomposable.

- L acts discretely on T with trivial edge stabilizers;
 - T is covered by translates of arcs of the form $[*, s \cdot *]$, where $s \in \{\bar{x}, \eta(\bar{y})\}$;
 - if Y is a component of axial or surface type, then for some j
 [*, η(y_j) ⋅ *] intersects (non-trivially) a translate of Y;
 - ► thus, we can use the shortening argument to "shorten" [*, η(y_j) · *];
 - if e is an edge which is non-trivially stabilized, then for some j
 [*, η(y_j) ⋅ *] contains a translate of e;
 - ▶ thus, we can again use the shortening argument to "shorten" [*, η(y_j) · *] (in the limiting sequence).

► L inherits a splitting from its action on T as Stab(*) * ⟨x₁,...,x_k⟩ (Exercise);

$$\blacktriangleright L = \langle x_1, \ldots, x_k \rangle.$$

Thus, $G_{\Sigma} \twoheadrightarrow L = \langle \bar{x} \rangle$, as we wanted.

Extended Merzlyakov Theorem together with the following:

Theorem (Sela)

Let $\phi(\bar{x}, \bar{y})$ be a Diophantine formula. Then ϕ is an equation (in the sense of Pillay-Srour).

Have been used to prove:

Theorem (Perin-S.)

Let $\phi(\bar{x})$ be a formula over \mathbb{F}_n . Suppose $\phi(\mathbb{F}_n) \neq \phi(\mathbb{F}_{\omega})$. Then ϕ is not superstable.

Conjecture

Let $\phi(\bar{x})$ be a formula over \mathbb{F}_n . Then ϕ is superstable if and only if $\phi(\mathbb{F}_n) = \phi(\mathbb{F}_\omega)$.

Question

- Can we generalise Merzlyakov's theorem by restricting the universal variables so that they belong to a variety?
- ► if $\mathbb{F} \models \forall \bar{x}(R(\bar{x}) = 1 \rightarrow \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1))$, then there exists a retract $r : G_{\Sigma} \twoheadrightarrow G_R$ (where $G_R := \langle \bar{x} | R(\bar{x}) \rangle$)?

Question

- Can we generalise Merzlyakov's theorem by restricting the universal variables so that they belong to a variety?
- ► if $\mathbb{F} \models \forall \bar{x}(R(\bar{x}) = 1 \rightarrow \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1))$, then there exists a retract $r : G_{\Sigma} \twoheadrightarrow G_R$ (where $G_R := \langle \bar{x} | R(\bar{x}) \rangle$)?

Theorem

Let $g \geq 2$ and $\pi_1(\Sigma_g) = \langle x_1, \ldots, x_{2g} \mid [x_1, x_2] \ldots [x_{2g-1}, x_{2g}] \rangle$ be the fundamental group of the orientable surface of genus g. Let $\mathbb{F} \models \forall \bar{x}([x_1, x_2] \ldots [x_{2g-1}, x_{2g}] = 1 \rightarrow \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1))$. Then there exists a retract $r : G_{\Sigma} \rightarrow \pi_1(\Sigma_g)$.

Counterexample (Three projective planes)

• Let
$$3PP := \langle x_1, x_2, x_3 \mid x_1^2 x_2^2 x_3^2 \rangle;$$

- (Lyndon) For any a, b, c ∈ F, if a²b²c² = 1 then a, b, c belong to a cyclic subgroup of F;
- $\blacktriangleright \mathbb{F} \models \forall \bar{x} (x_1^2 x_2^2 x_3^2 = 1 \rightarrow (\wedge_{i < j \le 3} [x_i, x_j] = 1));$
- But G_Σ does not admit a retract to 3PP.

Counterexample (Free Abelian groups)

 $\mathbb{F} \models \forall x_1, x_2([x_1, x_2] = 1 \rightarrow \exists y(x_1 = y^2 \lor x_2 = y^2 \lor x_1 \cdot x_2 = y^2));$

- but there is no retract from $\langle x_1, x_2, y \mid [x_1, x_2], y^2 x_1^{-1} \rangle$ to $\langle x_1, x_2 \mid [x_1, x_2] \rangle$;
- neither from $\langle x_1, x_2, y | [x_1, x_2], y^2 x_2^{-1} \rangle$;
- nor from $\langle x_1, x_2, y \mid [x_1, x_2], y^2(x_1x_2)^{-1} \rangle$.

