
Merzlyakov-type theorems after Sela

Part II



Goal

F is a finitely generated non abelian free group.
Σ(x̄ , ȳ) ⊂finite 〈x̄ , ȳ〉.

Theorem (Merzlyakov)

Let F |= ∀x̄∃ȳ(Σ(x̄ , ȳ) = 1). Then there exists a retract
r : GΣ → 〈x̄〉, where GΣ := 〈x̄ , ȳ | Σ(x̄ , ȳ)〉.

Theorem (Extended Merzlyakov)

Let (b̄n)n<ω be a “test sequence” in F. Suppose for each n there is
c̄n such that F |= Σ(b̄n, c̄n) = 1. Then there exists a retract
r : GΣ → 〈x̄〉.



Recall

Theorem A
Let (hn)n<ω : G → F be an infinite sequence of morphisms. Then
there exists a sequence of base points (∗n)n<ω in XF and a
sequence of rescaling constants (rn)n<ω ∈ R+ such that a
subsequence of the induced pseudo-metrics (dn/rn)n<ω converges
to a pseudo-metric d which is induced by a non-trivial action of G
on a real tree (T , ∗).

I L is a limit group if it can be obtained as G/kerλ where λ is
the limit action for a sequence of morphisms (hn)n<ω : G → F;

I L admits an action on a real tree which is non-trivial,
super-stable, with trivial tripod stabilizers and abelian arc
stabilizers.



Rips’ Machine

Suppose G acts on a real tree T . Then the action is:

I minimal, if there is no G -invariant proper subtree;

I non-trivial, if there is no globally fixed point;

I super-stable, if for any arc I and subarc J ⊂ I we have that
Stab(J) 6= Stab(I )⇒ Stab(I ) = {1}.

Theorem (Rips’ Machine)

Let G be a finitely generated group. Suppose G acts non-trivially
and minimally on an R-tree T . Moreover, assume that the action
is super-stable and tripod stabilizers are trivial. Then the action
can be understood in terms of simpler components which are of
discrete, axial, surface or exotic type





Lemma (Approximating Sequences)

Assume (XF, ∗n, dXF)n<ω “converges” to (T , ∗, dT ) as in Theorem
A. Then for any x ∈ T , the following hold:

I there exists a sequence (xn)n<ω such that
dXF
rn

(xn, g · ∗n)→ dT (x , g · ∗) for any g ∈ G , we call such a
sequence an approximating sequence;

I if (xn)n<ω, (x ′n)n<ω are two approximating sequences for

x ∈ T , then
dXF
rn

(xn, x
′
n)→ 0;

I if (xn)n<ω is an approximating sequence for x, then
(g · xn)n<ω is an approximating sequence for g · x;

I if (xn)n<ω, (yn)n<ω are approximating sequences for x , y

respectively, then
dXF
rn

(xn, yn)→ dT (x , y).



Shortening Argument

Theorem
Suppose G is a non-cyclic finitely generated group. Let
(hn)n<ω : G → F be an infinite sequence of short morphisms. Then
either G splits as a non-trivial free product or the action on a real
tree T obtained as in Theorem A is not faithful.

Definition
Let S be a finite generating set for G and h : G → F be a
morphism. Then the length of h is

l(h) := maxs∈S{dXF(1, h(s) · 1)}

Moreover h is called short if:

l(h) ≤ maxs∈S{dXF(x , h(σ(s)) · x)}

for any x ∈ XF and σ ∈ Aut(G )



Idea of the proof





Special case I: T is a line

I since kerλ = {1} we have that G is a limit group;

I in particular G is torsion-free;

I thus G ↪→ Isom+(R);

I G ∼= Zm := 〈z1, . . . , zm〉, with m > 1;

I {tr(z1), . . . , tr(zm)} forms a linearly independent set;

I without loss of generality tr(z1) > tr(z2) > . . . > tr(zm).



I without loss of generality tr(z1) > tr(z2) > . . . > tr(zm);

I there is k such that tr(z1) = k · tr(z2) + u and 0 < u < tr(z2);

I let σ be the following automorphism of Zm:

z1 7→ z1z−k2

zi 7→ zi for 2 ≤ i ≤ m

I after finitely many steps we get an automorphism (still
denoted) σ such that dT (∗, σ(s) · ∗) < dT (∗, s · ∗), for every
s ∈ S ;

I thus dXF(∗n, hn(σ(s)) · ∗n) < dXF(∗n, hn(s) · ∗n);

I but ∗n = 1 (exercise), contradicting the shortness of hn;



Special case II: Discrete action

I Suppose the action of G on T is discrete;

I we can analyze the action using Bass-Serre theory;



Isometries of R-trees

I Suppose G acts on a real tree T (by isometries);

I let g ∈ G , and tr(g) := infx∈T{dT (x , g · x)};
I if g fixes a point, then it is called elliptic;

I otherwise g is called hyperbolic and there is a unique line
L ⊂ T such that g acts on L as translation by tr(g);

I the line L is called the axis of g , moreover if x ∈ T , then
dT (x , g · x) = tr(g) + 2dT (x , L)



I Let c ∈ C \ {1};
I hn(c) = cn be the (non-trivial) image of c in F, and consider

the axis of cn in XF;

I let (xn)n<ω and (yn)n<ω be approximating sequences for x , y
respectively;

I There exists (kn)n<ω ∈ Z such that ckn
n · xn approximates y ;

I (respectively) c−knn · yn approximates x ;



I Let c ∈ C \ {1};
I hn(c) = cn be the (non-trivial) image of c in F, and consider

the axis of cn in XF;

I let (xn)n<ω and (yn)n<ω be approximating sequences for x , y
respectively;

I There exists (kn)n<ω ∈ Z such that ckn
n · xn approximates y ;

I (respectively) c−knn · yn approximates x ;



I Consider the Dehn twists of A ∗C B:

δn(g) =

{
g if g ∈ A

c−kngckn if g ∈ B

I let d̂n :=
dXF
rn

;

I then we have: d̂n(xn, hn ◦ δn(g) · xn))→ 0 for any g ∈ G ;
I g = a0b0a1b1 . . . ambmam+1;
I d̂n(xn, hn ◦ δn(g) · xn) ≤

∑
d̂n(xn, ai · xn) +

∑
d̂n(xn, b

ckn
i · xn);

I d̂n(xn, ai · xn)→ 0 and d̂n(xn, b
ckn
i · xn)→ 0;

I but as before ∗n = 1, thus
maxs∈SdXF (1,hn(s)·1)

rn
= 1;

I a contradiction to the shortness of hn.



Extended Merzlyakov theorem

Theorem
Let (b̄n)n<ω be a test sequence in F. Suppose for each n there is
c̄n such that F |= Σ(b̄n, c̄n) = 1. Then there exists a retract
r : GΣ → 〈x̄〉.

Definition (Test sequence)

An infinite sequence of tuples (b̄n)n<ω ∈ F is called a test sequence
if the tuple (b1(n), . . . , bk(n)) satisfies C ′(1/n) in F, for n < ω.

Recall: Let b̄ := (b1, . . . , bk) be a tuple of words in F. A subword
w of bi , for some i ≤ k , is called a piece if it appears in two
“different” ways in b̄. We say that b̄ satisfies C ′(p) in F (for
0 < p < 1), if for any piece w , if w is a subword of bi , for some
i ≤ k , then we have that |w |F < p |bi |F.



Proof(Extended Merzlyakov theorem)

For expositional simplicity of the argument we make the following
assumptions:

I the tuples (b1(n), . . . , bk(n)) are not singletons, i.e. k > 1;

I for any i < j ≤ k there are ci ,j , c
′
i ,j ∈ R+ such that

ci ,j <
|bi (n)|F
|bj (n)|F

< c ′i ,j for all n < ω.

Definition (Very Short Morphism)

Let G := 〈x̄ , y1, . . . , ym〉. Then h : G → F is called very short with
respect to (x̄ , ȳ) if for any h′ that extends h � 〈x̄〉 we have that
Σi≤m |h(yi )|F ≤ Σi≤m |h′(yi )|F.

I the notion of a “very short morphism” passes to quotients;

I let η : G � L and suppose a very short morphism g : G → F
factors through η, i.e. g = h ◦ η with h : L→ F;

I then h is very short with respect to (η(x̄), η(ȳ)).



Proof(Extended Merzlyakov theorem)

For expositional simplicity of the argument we make the following
assumptions:

I the tuples (b1(n), . . . , bk(n)) are not singletons, i.e. k > 1;

I for any i < j ≤ k there are ci ,j , c
′
i ,j ∈ R+ such that

ci ,j <
|bi (n)|F
|bj (n)|F

< c ′i ,j for all n < ω.

Definition (Very Short Morphism)

Let G := 〈x̄ , y1, . . . , ym〉. Then h : G → F is called very short with
respect to (x̄ , ȳ) if for any h′ that extends h � 〈x̄〉 we have that
Σi≤m |h(yi )|F ≤ Σi≤m |h′(yi )|F.

I the notion of a “very short morphism” passes to quotients;

I let η : G � L and suppose a very short morphism g : G → F
factors through η, i.e. g = h ◦ η with h : L→ F;

I then h is very short with respect to (η(x̄), η(ȳ)).



I let GΣ := 〈x̄ , ȳ | Σ(x̄ , ȳ)〉;
I since for each n we have F |= Σ(b̄n, c̄n) = 1, we obtain a

sequence of morphisms (gn)n<ω : GΣ → F;

I we may assume gn is very short with respect to (x̄ ; ȳ), for
n < ω;

I consider the limit action GΣ yλ (T , ∗) of the sequence
(gn)n<ω;

I let L := GΣ/kerλ and η : GΣ � L be the canonical quotient
map.

Claim I: We may assume that L := GΣ/kerλ is freely
indecomposable with respect to η(〈x̄〉).



Claim I: We may assume that L is freely indecomposable with
respect to η(〈x̄〉).
Proof of Claim I:

I since gn(GΣ) is not abelian, we have that T is not isometric
to a line (Exercise);

I thus, there is a sequence (hn)n<ω : L→ F such that
gn = hn ◦ η for all but finitely many n < ω;

I note that since (b̄n)n<ω is a test sequence η is injective on
〈x̄〉. Thus, we identify η(x̄) with x̄ ;

I let L = L1 ∗ L2 be a non-trivial free product with 〈x̄〉 ≤ L1.
Continue with L1 and hn � L1 after been made very short;

Lemma (DCC for limit groups)

Let L1 � L2 � . . .� Lm � . . . be a sequence of epimorphisms of
limit groups. Then the sequence stabilizes after finitely many
steps, i.e. there are only finitely many proper epimorphisms in the
sequence.



Claim I: We may assume that L is freely indecomposable with
respect to η(〈x̄〉).
Proof of Claim I:

I since gn(GΣ) is not abelian, we have that T is not isometric
to a line (Exercise);

I thus, there is a sequence (hn)n<ω : L→ F such that
gn = hn ◦ η for all but finitely many n < ω;

I note that since (b̄n)n<ω is a test sequence η is injective on
〈x̄〉. Thus, we identify η(x̄) with x̄ ;

I let L = L1 ∗ L2 be a non-trivial free product with 〈x̄〉 ≤ L1.
Continue with L1 and hn � L1 after been made very short;

Lemma (DCC for limit groups)

Let L1 � L2 � . . .� Lm � . . . be a sequence of epimorphisms of
limit groups. Then the sequence stabilizes after finitely many
steps, i.e. there are only finitely many proper epimorphisms in the
sequence.



We are left with:

I (hn)n<ω : L→ F which is very short with respect to (x̄ ; η(ȳ));

I (hn(x̄))n<ω a test sequence;

I L freely indecomposable with respect to 〈x̄〉;
I a faithful action of L on T as a limit of the above sequence;

I the action of L on T can be analyzed using Rips’ machine.



I The subgroup 〈x̄〉 does not fix a point;
I T is covered by translates of the arcs [∗, s · ∗] where

s ∈ {x̄ , η(ȳ)} (Exercise);
I and now use the shortening argument.



Minimal G -trees

Recall:
Suppose G acts on a real tree T . Then the action is:

I non-trivial, if there is no globally fixed point;

I minimal, if there is no G -invariant proper subtree.

Lemma
Let G be finitely generated group. If G acts non-trivially on a real
tree T , then T contains a unique minimal G -invariant subtree. It
is the union of axes of hyperbolic elements of G.

I Since 〈x̄〉 does not fix a point, there exists a minimal
〈x̄〉-invariant subtree of T .



I Let Tmin be the minimal tree that 〈x̄〉 acts on. We want to
prove that Tmin lies on the discrete part of T .

I Tmin is covered by translates of arcs of the form [∗, xi · ∗] by
elements of 〈x̄〉.



Claim II: Let I ⊆ [∗, xi · ∗] be a non-trivial arc. Then, for any
g ∈ L \ {1} and any j ≤ k , we have that g .I ∩ [∗, xj · ∗] is at most
a point.



Claim II: Let I ⊆ [∗, xi · ∗] be a non-trivial arc. Then, for any
g ∈ L \ {1} and any j ≤ k , we have that g .I ∩ [∗, xj · ∗] is at most
a point.



Indecomposable Components

Definition
Suppose G acts on a real tree T . Then a non degenerate tree
Y ⊆ T is called indecomposable if for every pair of arcs I , J ⊆ Y
there is a finite sequence g1 · I , . . . , gn · I which covers J and such
that gi · I ∩ gi+1 · I is non degenerate.

Fact
Any non discrete component in Rips’ decomposition is
indecomposable.



Claim II: Let I ⊆ [∗, xi · ∗] be a non-trivial arc. Then, for any
g ∈ L \ {1} and any j ≤ k , we have that g .I ∩ [∗, xj · ∗] is at most
a point.

Definition
Suppose G acts on a real tree T . Then a non degenerate tree
Y ⊆ T is called indecomposable if for every pair of arcs I , J ⊆ Y
there is a finite sequence g1 · I , . . . , gn · I which covers J and such
that gi · I ∩ gi+1 · I is non degenerate.

Fact
Any non discrete component in Rips’ decomposition is
indecomposable.



I L acts discretely on T with trivial edge stabilizers;
I T is covered by translates of arcs of the form [∗, s · ∗], where

s ∈ {x̄ , η(ȳ)};
I if Y is a component of axial or surface type, then for some j

[∗, η(yj) · ∗] intersects (non-trivially) a translate of Y ;
I thus, we can use the shortening argument to “shorten”

[∗, η(yj) · ∗];
I if e is an edge which is non-trivially stabilized, then for some j

[∗, η(yj) · ∗] contains a translate of e;
I thus, we can again use the shortening argument to “shorten”

[∗, η(yj) · ∗] (in the limiting sequence).

I L inherits a splitting from its action on T as
Stab(∗) ∗ 〈x1, . . . , xk〉 (Exercise);

I L = 〈x1, . . . , xk〉.

Thus, GΣ � L = 〈x̄〉, as we wanted.



Extended Merzlyakov Theorem together with the following:

Theorem (Sela)

Let φ(x̄ , ȳ) be a Diophantine formula. Then φ is an equation (in
the sense of Pillay-Srour).

Have been used to prove:

Theorem (Perin-S.)

Let φ(x̄) be a formula over Fn. Suppose φ(Fn) 6= φ(Fω). Then φ
is not superstable.

Conjecture

Let φ(x̄) be a formula over Fn. Then φ is superstable if and only if
φ(Fn) = φ(Fω).



Question

I Can we generalise Merzlyakov’s theorem by restricting the
universal variables so that they belong to a variety?

I if F |= ∀x̄(R(x̄) = 1→ ∃ȳ(Σ(x̄ , ȳ) = 1)), then there exists a
retract r : GΣ � GR (where GR := 〈x̄ |R(x̄)〉)?

Theorem
Let g ≥ 2 and π1(Σg ) = 〈x1, . . . , x2g | [x1, x2] . . . [x2g−1, x2g ]〉 be
the fundamental group of the orientable surface of genus g. Let
F |= ∀x̄([x1, x2] . . . [x2g−1, x2g ] = 1→ ∃ȳ(Σ(x̄ , ȳ) = 1)). Then
there exists a retract r : GΣ → π1(Σg ).



Question

I Can we generalise Merzlyakov’s theorem by restricting the
universal variables so that they belong to a variety?

I if F |= ∀x̄(R(x̄) = 1→ ∃ȳ(Σ(x̄ , ȳ) = 1)), then there exists a
retract r : GΣ � GR (where GR := 〈x̄ |R(x̄)〉)?

Theorem
Let g ≥ 2 and π1(Σg ) = 〈x1, . . . , x2g | [x1, x2] . . . [x2g−1, x2g ]〉 be
the fundamental group of the orientable surface of genus g. Let
F |= ∀x̄([x1, x2] . . . [x2g−1, x2g ] = 1→ ∃ȳ(Σ(x̄ , ȳ) = 1)). Then
there exists a retract r : GΣ → π1(Σg ).



Counterexample (Three projective planes)

I Let 3PP := 〈x1, x2, x3 | x2
1 x2

2 x2
3 〉;

I (Lyndon) For any a, b, c ∈ F, if a2b2c2 = 1 then a, b, c belong
to a cyclic subgroup of F;

I F |= ∀x̄(x2
1 x2

2 x2
3 = 1→ (∧i<j≤3[xi , xj ] = 1));

I But GΣ does not admit a retract to 3PP.

Counterexample (Free Abelian groups)

I F |= ∀x1, x2([x1, x2] = 1→ ∃y(x1 = y 2 ∨ x2 = y 2 ∨ x1 · x2 =
y 2));

I but there is no retract from 〈x1, x2, y | [x1, x2], y 2x−1
1 〉 to

〈x1, x2 | [x1, x2]〉;
I neither from 〈x1, x2, y | [x1, x2], y 2x−1

2 〉;
I nor from 〈x1, x2, y | [x1, x2], y 2(x1x2)−1〉.




