Merzlyakov-type theorems after Sela

Part I

Goals & Motivation

Question (Tarski, 1946)

Let \mathbb{F}_n be the free group of rank *n*. Is $\bigcap_{n=2}^{\omega} Th(\mathbb{F}_n)$ complete?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Goals & Motivation

Question (Tarski, 1946)

Let \mathbb{F}_n be the free group of rank n. Is $\bigcap_{n=2}^{\omega} Th(\mathbb{F}_n)$ complete?

Theorem (Sela, Kharlampovich-Myasnikov) The following chain of groups is elementary

$$\mathbb{F}_2 \prec \mathbb{F}_3 \prec \ldots \prec \mathbb{F}_n \prec \ldots$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Goals & Motivation

Question (Tarski, 1946)

Let \mathbb{F}_n be the free group of rank n. Is $\bigcap_{n=2}^{\omega} Th(\mathbb{F}_n)$ complete?

Theorem (Sela, Kharlampovich-Myasnikov) The following chain of groups is elementary

$$\mathbb{F}_2 \prec \mathbb{F}_3 \prec \ldots \prec \mathbb{F}_n \prec \ldots$$

Theorem (Sela)

The common theory of non abelian free groups T_{fg} is stable.

Questions & Problems

 Understand Def (T_{fg}), e.g. definable/interpretable groups, fields;

- Identify regular types;
- Characterize the superstable part;
- Understand forking independence;
- Does T_{fg} has nfcp?
- What does a saturated model of T_{fg} look like?

 \mathbb{F} is a finitely generated non abelian free group. $\Sigma(\bar{x}, \bar{y}) \subset_{\text{finite}} \langle \bar{x}, \bar{y} \rangle.$

Theorem (Merzlyakov)

Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y} (\Sigma(\bar{x}, \bar{y}) = 1)$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$, where $G_{\Sigma} := \langle \bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y}) \rangle$.

 \mathbb{F} is a finitely generated non abelian free group. $\Sigma(\bar{x}, \bar{y}) \subset_{\text{finite}} \langle \bar{x}, \bar{y} \rangle.$

Theorem (Merzlyakov)

Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1)$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$, where $G_{\Sigma} := \langle \bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y}) \rangle$.

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a "test sequence" in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F} \models \Sigma(\bar{b}_n, \bar{c}_n) = 1$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$.

 \mathbb{F} is a finitely generated non abelian free group. $\Sigma(\bar{x}, \bar{y}) \subset_{\text{finite}} \langle \bar{x}, \bar{y} \rangle.$

Theorem (Merzlyakov)

Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y}(\Sigma(\bar{x}, \bar{y}) = 1)$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$, where $G_{\Sigma} := \langle \bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y}) \rangle$.

Theorem (Extended Merzlyakov)

Let $(\bar{b}_n)_{n<\omega}$ be a "test sequence" in \mathbb{F} . Suppose for each n there is \bar{c}_n such that $\mathbb{F} \models \Sigma(\bar{b}_n, \bar{c}_n) = 1$. Then there exists a retract $r : G_{\Sigma} \to \langle \bar{x} \rangle$.

Combine "Extended Merzlyakov" with Sela's "Diophantine envelopes" technique.

Main tools and notions

▶ Real trees (ℝ-trees), group actions on ℝ-trees, Rips' Machine;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Limit groups, Sela's shortening argument;
- Towers, Hyperbolic Towers, Diophantine Envelopes.

Real trees

Definition

An \mathbb{R} -tree T is a geodesic metric space such that for any two points $x, y \in T$ there is a unique arc joining them.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Alternatively: an \mathbb{R} -tree is a geodesic 0-hyperbolic metric space.

Definition (Rips)

A geodesic metric space is called $\delta\text{-hyperbolic}$ if every geodesic triangle is $\delta\text{-thin}.$

Hyperbolic metric spaces

Definition

An \mathbb{R} -tree T is a geodesic metric space such that for any two points $x, y \in T$ there is a unique arc joining them.

Alternatively: an \mathbb{R} -tree is a geodesic 0-hyperbolic metric space. Definition (Rips)

A geodesic metric space is called $\delta\text{-hyperbolic}$ if every geodesic triangle is $\delta\text{-thin}.$

Definition (Gromov)

A based metric space (X, *, d) is called (δ) -hyperbolic if it satisfies Gromov's three point condition:

• for
$$x, y \in X$$
, let $(x \cdot y)_* = \frac{1}{2}(d(*, x) + d(*, y) - d(x, y));$

▶ then for any $x, y, z \in X$, $(x \cdot y)_* \ge min((x \cdot z)_*, (y \cdot z)_*) - \delta$.

Group actions on $\mathbb R\text{-trees}$

<ロ>

Group actions on $\mathbb R\text{-trees}$

Motivation: Bass-Serre Theory

Theorem

Suppose G acts freely on a simplicial tree T (a contractible $1 \ge$ -dimensional CW-complex). Then G is a free group.

Proof.

G acts freely \Rightarrow G acts by a covering space action. Thus, G $\cong \pi_1(T/G)$, but T/G is a graph.

Corollary (Nielsen-Schreier Theorem)

Let $G < \mathbb{F}$. Then G is a free group.

Theorem (Main Theorem)

Suppose G acts (without inversions) on a simplicial tree T. Then G splits as a graph of groups, where the underlying graph is T/G, vertex groups come from vertex stabilizers and edge groups from edge stabilizers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some types of actions on \mathbb{R} -trees

Suppose G acts on a real tree T (by isometries). Then the action is of:

- ► Discrete type, if branching points in T form a dicrete closed set and the orbit of each point is discrete. It is essentially an action on a simplicial tree as in the Bass-Serre theory;
- ► Axial type, if T is isometric to R, and the orbit of each point is dense in T;
- Surface type, if kerλ → G → L where kerλ is the kernel of the action and L := π₁(Σ), where Σ is a surface with (possibly empty) boundary carrying an arational measured foliation and T is dual to Σ̃, i.e. T is the lifted leaf space in Σ̃ after identifying leaves of distance 0 (with respect to the pseudometric induced by the measure);

Axial type

- ▶ Let $a \in \mathbb{R}$ and $f_a \in Isom^+(\mathbb{R})$ be defined by $f_a(x) = a + x$;
- Let $\mathbb{Z}^m := \langle z_1, \ldots, z_m \rangle$ and $h : \mathbb{Z}^m \to Isom^+(\mathbb{R})$ defined as follows:

 $h(z_i) = f_{a_i}$ and $\{a_1, \ldots, a_m\}$ is linearly independent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rips' Machine

Suppose G acts on a real tree T. Then the action is:

- minimal, if there is no G-invariant proper subtree;
- non-trivial, if there is no globally fixed point;
- ▶ super-stable, if for any arc *I* and subarc $J \subset I$ we have that $Stab(J) \neq Stab(I) \Rightarrow Stab(I) = \{1\}.$

Theorem (Rips' Machine)

Let G be a finitely generated group. Suppose G acts non-trivially and minimally on an \mathbb{R} -tree T. Moreover, assume that the action is super-stable and tripod stabilizers are trivial. Then the action can be understood in terms of simpler components which are of discrete, axial, surface or exotic type

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology.

Recall that:

 $(d_i)_{i<\omega} \to d$ if and only if $d_i(1,g) \to d(1,g) \; \forall g \in G$

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology. Recall that:

$$(d_i)_{i < \omega} \rightarrow d$$
 if and only if $d_i(1,g) \rightarrow d(1,g) \; \forall g \in G$

An action G ∼ (X, *, d_X) on a based metric space induces a G-equivariant pseudo-metric:

$$d(g,h) = d_X(g \cdot *, h \cdot *)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology. Recall that:

$$(d_i)_{i < \omega} \to d$$
 if and only if $d_i(1,g) \to d(1,g) \; \forall g \in G$

An action G ∼ (X, *, d_X) on a based metric space induces a G-equivariant pseudo-metric:

$$d(g,h) = d_X(g \cdot *, h \cdot *)$$

A morphism h : G → H (H finitely generated) induces an action G ∩ X_H:

$$(g,x)\mapsto h(g)x$$

Theorem A

Let Γ be a δ -hyperbolic group. Let $(h_n)_{n < \omega} : G \to \Gamma$ be a sequence of pairwise non-conjugate morphisms. Then there exists a sequence of base points $(*_n)_{n < \omega}$ in X_{Γ} and a sequence of rescaling constants $(r_n)_{n < \omega} \in \mathbb{R}^+$ such that a subsequence of the induced pseudo-metrics $(d_n/r_n)_{n < \omega}$ converges to a pseudo-metric d which is induced by a non-trivial action of G on a real tree (T, *).

Proof.

Fix a finite generating set S for G. Consider the function $f_n: X_{\Gamma} \to [0, \infty)$, given by:

$$f_n(x) = max_{s \in S} \{ d_{X_{\Gamma}}(x, h_n(s) \cdot x) \}$$

► Take *_n to be a point minimizing the value of f_n; and
► r_n = f_n(*_n).

- $f_n(x) = max_{s \in S} \{ d_{X_{\Gamma}}(x, h_n(s) \cdot x) \};$
- ▶ let $*_n$ be a point minimizing the value of f_n and $r_n = f_n(*_n)$;
- $r_n \rightarrow \infty$ (Hint: h_n are pairwise non-conjugate);
 - Suppose not, and $r_n < M$;
 - then for each h_n there is γ_n ∈ Γ such that |γ_n⁻¹h_n(s)γ_n|_Γ < M (assume that *_n is a vertex in X_Γ and take γ_n = *_n);
 - so $d_{X_{\Gamma}}(\gamma_n, h_n(s) \cdot \gamma_n) \leq \max_{s \in S} \{ d_{X_{\Gamma}}(\gamma_n, h_n(s) \cdot \gamma_n) \} < M;$
 - but only finitely many morphisms exist that send the generating set of G in the ball of radious M, a contradiction.

▶ let
$$\hat{d}_n := \frac{d_n}{r_n}$$
. Then $\hat{d}_n(1,s) \leq 1$, $\forall s \in S$;

•
$$d_n(1,s) = d_{X_{\Gamma}}(*_n, h_n(s) \cdot *_n)$$
; and

- $r_n = max_{s \in S} \{ d_{X_{\Gamma}}(*_n, h_n(s) \cdot *_n) \}.$
- ▶ a subsequence of $(\hat{d}_n)_{n < \omega}$ converges to d (Exercise);
- $(G, 1, \hat{d}_n)$ is $\frac{\delta}{r_n}$ -hyperbolic, thus (G, 1, d) is 0-hyperbolic.

Lemma (Connecting the dots)

Let (X, *, d) be a 0-hyperbolic metric space. Then there exists an \mathbb{R} -tree (T, d_T) and an isometric embedding $i : X \to T$ such that:

- no proper subtree of T contains i(X);
- ▶ furthermore, if a group G acts by isometries on X, then the action extends to an isometric action on T.

•
$$f_n(x) = max_{s \in S} \{ d_{X_{\Gamma}}(x, h_n(s) \cdot x) \};$$

- ▶ let $*_n$ be a point minimizing the value of f_n and $r_n = f_n(*_n)$;
- $r_n \rightarrow \infty$ (Hint: h_n are pairwise non-conjugate);
- ▶ let $\hat{d}_n := rac{d_n}{r_n}$. Then $\hat{d}_n(1,s) \leq 1$, $\forall s \in S$;
- a subsequence of $(\hat{d}_n)_{n < \omega}$ converges to d;
- $(G, 1, \hat{d}_n)$ is $\frac{\delta}{r_n}$ -hyperbolic, thus (G, 1, d) is 0-hyperbolic;
- d is induced by an action of G on the real tree $(T, *, d_T)$;

• $d(1,g) = d_T(*,g \cdot *)$, for any $g \in G$.

Lemma (Approximating Sequences)

Assume $(X_{\Gamma}, *_n, d_{X_{\Gamma}})_{n < \omega}$ "converges" to $(T, *, d_T)$ as in Theorem A. Then for any $x \in T$, the following hold:

- ▶ there exists a sequence $(x_n)_{n < \omega} \in X_{\Gamma}$ such that $\frac{d_{X_{\Gamma}}}{r_n}(x_n, g \cdot *_n) \rightarrow d_{T}(x, g \cdot *)$ for any $g \in G$, we call such a sequence an approximating sequence;
- if (x_n)_{n<ω} is an approximating sequence for x, then (g ⋅ x_n)_{n<ω} is an approximating sequence for g ⋅ x;
- ▶ if $(x_n)_{n < \omega}$, $(y_n)_{n < \omega}$ are approximating sequences for x, y respectively, then $\frac{dx_{\Gamma}}{r_n}(x_n, y_n) \rightarrow d_T(x, y)$.

•
$$f_n(x) = max_{s \in S} \{ d_{X_{\Gamma}}(x, h_n(s) \cdot x) \};$$

▶ let $*_n$ be a point minimizing the value of f_n and $r_n = f_n(*_n)$;

▶
$$r_n \rightarrow \infty$$
 (Hint: h_n are pairwise non-conjugate);

- ▶ let $\hat{d}_n := rac{d_n}{r_n}$. Then $\hat{d}_n(1,s) \leq 1$, $\forall s \in S$;
- a subsequence of $(\hat{d}_n)_{n < \omega}$ converges to d;
- $(G, 1, \hat{d}_n)$ is $\frac{\delta}{r_n}$ -hyperbolic, thus (G, 1, d) is 0-hyperbolic;
- d is induced by an action of G on the real tree $(T, *, d_T)$;
- let x ∈ T be a globally fixed point and (x_n)_{n<ω} be an approximating sequence for x. Then d_{x_r/r_n}(x_n, s ⋅ x_n) → 0 for any s ∈ S, a contradiction to the choice of *_n.

Theorem A

Let Γ be a δ -hyperbolic group. Let $(h_n)_{n < \omega} : G \to \Gamma$ be a sequence of pairwise non-conjugate morphisms. Then there exists a sequence of base points $(*_n)_{n < \omega}$ in X_{Γ} and a sequence of rescaling constants $(r_n)_{n < \omega} \in \mathbb{R}^+$ such that a subsequence of the induced pseudo-metrics $(d_n/r_n)_{n < \omega}$ converges to a pseudo-metric d which is induced by a non-trivial action of G on a real tree (T, *).

Theorem B

Assume the hypothesis of Theorem A and moreover that Γ is torsion-free. Let $G \curvearrowright^{\lambda} T$ be the action in the limit. Then $G/\ker\lambda$ acts on T as follows:

- tripod stabilizers are trivial;
- arc stabilizers are abelian;
- the action is super-stable.

Proof of Theorem B (case $\Gamma := \mathbb{F}$)

Suppose g gixes a tripod in T. Then $h_n(g)$ fixes m_n for all large enough n, but then $h_n(g) = 1$ for all large enough n. Thus $g \in ker\lambda$.

Claim I: Arc stabilizers are abelian. *Proof:* Exercise.

Claim II: The action is super-stable. *Proof:*

- Let J be a subarc of I, with Stab(J) ≠ Stab(I) and Stab(I) ≠ {1};
- Suppose $g \in Stab(J) \setminus Stab(I)$;

- Let $\gamma \in Stab(I)$;
- Since γ commutes with g (Claim I), we have that γ fixes a tripod, thus γ is trivial, a contradiction.

Definition

The quotient $G/\ker\lambda$ obtained by a sequence $(h_n)_{n<\omega}: G \to \mathbb{F}$ is called a limit group.

Theorem (Sela)

Let L be a limit group. Then:

- L is finitely presented;
- every abelian subgroup is finitely generated;
- either L is abelian or it admits a non-trivial cyclic splitting.

Fact

Let L be a finitely generated group. The following are equivalent:

- L is a limit group;
- L is ω-residually free;
- $L \models Th_{\forall}(\mathbb{F})$ for some free group \mathbb{F} (including \mathbb{Z});