Merzlyakov-type theorems after Sela

Part I

Goals \& Motivation

Question (Tarski, 1946)
Let \mathbb{F}_{n} be the free group of rank n. Is $\bigcap_{n=2}^{\omega} \operatorname{Th}\left(\mathbb{F}_{n}\right)$ complete?

Goals \& Motivation

Question (Tarski, 1946)

Let \mathbb{F}_{n} be the free group of rank n. Is $\bigcap_{n=2}^{\omega} \operatorname{Th}\left(\mathbb{F}_{n}\right)$ complete?
Theorem (Sela, Kharlampovich-Myasnikov)
The following chain of groups is elementary

$$
\mathbb{F}_{2} \prec \mathbb{F}_{3} \prec \ldots \prec \mathbb{F}_{n} \prec \ldots
$$

Goals \& Motivation

Question (Tarski, 1946)

Let \mathbb{F}_{n} be the free group of rank n. Is $\bigcap_{n=2}^{\omega} \operatorname{Th}\left(\mathbb{F}_{n}\right)$ complete?
Theorem (Sela, Kharlampovich-Myasnikov)
The following chain of groups is elementary

$$
\mathbb{F}_{2} \prec \mathbb{F}_{3} \prec \ldots \prec \mathbb{F}_{n} \prec \ldots
$$

Theorem (Sela)
The common theory of non abelian free groups $T_{f g}$ is stable.

Questions \& Problems

- Understand $\operatorname{Def}\left(T_{f g}\right)$, e.g. definable/interpretable groups, fields;
- Identify regular types;
- Characterize the superstable part;
- Understand forking independence;
- Does $T_{f g}$ has nfcp?
- What does a saturated model of $T_{f g}$ look like?
\mathbb{F} is a finitely generated non abelian free group.
$\Sigma(\bar{x}, \bar{y}) \subset_{\text {finite }}\langle\bar{x}, \bar{y}\rangle$.
Theorem (Merzlyakov)
Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y}(\Sigma(\bar{x}, \bar{y})=1)$. Then there exists a retract $r: G_{\Sigma} \rightarrow\langle\bar{x}\rangle$, where $G_{\Sigma}:=\langle\bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y})\rangle$.
\mathbb{F} is a finitely generated non abelian free group.
$\Sigma(\bar{x}, \bar{y}) \subset_{\text {finite }}\langle\bar{x}, \bar{y}\rangle$.
Theorem (Merzlyakov)
Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y}(\Sigma(\bar{x}, \bar{y})=1)$. Then there exists a retract
$r: G_{\Sigma} \rightarrow\langle\bar{x}\rangle$, where $G_{\Sigma}:=\langle\bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y})\rangle$.
Theorem (Extended Merzlyakov)
Let $\left(\bar{b}_{n}\right)_{n<\omega}$ be a "test sequence" in \mathbb{F}. Suppose for each n there is \bar{c}_{n} such that $\mathbb{F} \models \Sigma\left(\bar{b}_{n}, \bar{c}_{n}\right)=1$. Then there exists a retract $r: G_{\Sigma} \rightarrow\langle\bar{x}\rangle$.
\mathbb{F} is a finitely generated non abelian free group.
$\Sigma(\bar{x}, \bar{y}) \subset_{\text {finite }}\langle\bar{x}, \bar{y}\rangle$.
Theorem (Merzlyakov)
Let $\mathbb{F} \models \forall \bar{x} \exists \bar{y}(\Sigma(\bar{x}, \bar{y})=1)$. Then there exists a retract
$r: G_{\Sigma} \rightarrow\langle\bar{x}\rangle$, where $G_{\Sigma}:=\langle\bar{x}, \bar{y} \mid \Sigma(\bar{x}, \bar{y})\rangle$.
Theorem (Extended Merzlyakov)
Let $\left(\bar{b}_{n}\right)_{n<\omega}$ be a "test sequence" in \mathbb{F}. Suppose for each n there is \bar{c}_{n} such that $\mathbb{F} \models \Sigma\left(\bar{b}_{n}, \bar{c}_{n}\right)=1$. Then there exists a retract $r: G_{\Sigma} \rightarrow\langle\bar{x}\rangle$.

Combine "Extended Merzlyakov" with Sela's "Diophantine envelopes" technique.

Main tools and notions

- Real trees (\mathbb{R}-trees), group actions on \mathbb{R}-trees, Rips' Machine;
- Limit groups, Sela's shortening argument;
- Towers, Hyperbolic Towers, Diophantine Envelopes.

Real trees

Definition

An \mathbb{R}-tree T is a geodesic metric space such that for any two points $x, y \in T$ there is a unique arc joining them.

Non-simplicial \mathbb{R}-tree

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}\left|y_{2}-y_{1}\right| & \text { if } x_{1}=x_{2} \\ \left|y_{1}\right|+\left|x_{2}-x_{1}\right|+\left|y_{2}\right| & \text { if } x_{1} \neq x_{2}\end{cases}
$$

Alternatively: an \mathbb{R}-tree is a geodesic 0-hyperbolic metric space. Definition (Rips)
A geodesic metric space is called δ-hyperbolic if every geodesic triangle is δ-thin.

$$
\begin{aligned}
& {[x, z] \subset B_{\delta}([x, y] \cup[y, z])} \\
& {[x, y] \subset B_{\delta}([x, z] \cup[y, z])} \\
& {[y, z] \subset B_{\delta}([x, z] \cup[x, y])}
\end{aligned}
$$

Hyperbolic metric spaces

Definition

An \mathbb{R}-tree T is a geodesic metric space such that for any two points $x, y \in T$ there is a unique arc joining them.

Alternatively: an \mathbb{R}-tree is a geodesic 0-hyperbolic metric space.

Definition (Rips)

A geodesic metric space is called δ-hyperbolic if every geodesic triangle is δ-thin.

Definition (Gromov)

A based metric space $(X, *, d)$ is called (δ)-hyperbolic if it satisfies Gromov's three point condition:

- for $x, y \in X$, let $(x \cdot y)_{*}=\frac{1}{2}(d(*, x)+d(*, y)-d(x, y))$;
- then for any $x, y, z \in X,(x \cdot y)_{*} \geq \min \left((x \cdot z)_{*},(y \cdot z)_{*}\right)-\delta$.

Group actions on \mathbb{R}-trees

Group actions on \mathbb{R}-trees

Motivation: Bass-Serre Theory
Theorem
Suppose G acts freely on a simplicial tree T (a contractible $1 \geq$-dimensional CW-complex). Then G is a free group.

Proof.
G acts freely $\Rightarrow G$ acts by a covering space action. Thus, $G \cong \pi_{1}(T / G)$, but T / G is a graph.

Corollary (Nielsen-Schreier Theorem)
Let $G<\mathbb{F}$. Then G is a free group.
Theorem (Main Theorem)
Suppose G acts (without inversions) on a simplicial tree T. Then G splits as a graph of groups, where the underlying graph is T / G, vertex groups come from vertex stabilizers and edge groups from edge stabilizers.

Some types of actions on \mathbb{R}-trees

Suppose G acts on a real tree T (by isometries). Then the action is of:

- Discrete type, if branching points in T form a dicrete closed set and the orbit of each point is discrete. It is essentially an action on a simplicial tree as in the Bass-Serre theory;
- Axial type, if T is isometric to \mathbb{R}, and the orbit of each point is dense in T;
- Surface type, if $\operatorname{ker} \lambda \hookrightarrow G \rightarrow L$ where $\operatorname{ker} \lambda$ is the kernel of the action and $L:=\pi_{1}(\Sigma)$, where Σ is a surface with (possibly empty) boundary carrying an arational measured foliation and T is dual to $\tilde{\Sigma}$, i.e. T is the lifted leaf space in $\tilde{\Sigma}$ after identifying leaves of distance 0 (with respect to the pseudometric induced by the measure);

Axial type

- Let $a \in \mathbb{R}$ and $f_{a} \in \operatorname{Isom}^{+}(\mathbb{R})$ be defined by $f_{a}(x)=a+x$;
- Let $\mathbb{Z}^{m}:=\left\langle z_{1}, \ldots, z_{m}\right\rangle$ and $h: \mathbb{Z}^{m} \rightarrow \operatorname{Isom}^{+}(\mathbb{R})$ defined as follows:

$$
h\left(z_{i}\right)=f_{a_{i}} \text { and }\left\{a_{1}, \ldots, a_{m}\right\} \text { is linearly independent }
$$

$$
\xrightarrow{a_{1}}
$$

Rips' Machine

Suppose G acts on a real tree T. Then the action is:

- minimal, if there is no G-invariant proper subtree;
- non-trivial, if there is no globally fixed point;
- super-stable, if for any arc I and subarc $J \subset I$ we have that $\operatorname{Stab}(J) \neq \operatorname{Stab}(I) \Rightarrow \operatorname{Stab}(I)=\{1\}$.

Theorem (Rips' Machine)

Let G be a finitely generated group. Suppose G acts non-trivially and minimally on an \mathbb{R}-tree T. Moreover, assume that the action is super-stable and tripod stabilizers are trivial. Then the action can be understood in terms of simpler components which are of discrete, axial, surface or exotic type

Bestvina-Paulin Method

Bestvina-Paulin Method

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology.
Recall that:

$$
\left(d_{i}\right)_{i<\omega} \rightarrow d \text { if and only if } d_{i}(1, g) \rightarrow d(1, g) \forall g \in G
$$

Bestvina-Paulin Method

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology.
Recall that:

$$
\left(d_{i}\right)_{i<\omega} \rightarrow d \text { if and only if } d_{i}(1, g) \rightarrow d(1, g) \forall g \in G
$$

- An action $G \curvearrowright\left(X, *, d_{X}\right)$ on a based metric space induces a G-equivariant pseudo-metric:

$$
d(g, h)=d_{X}(g \cdot *, h \cdot *)
$$

Bestvina-Paulin Method

Let G be a (discrete) group and consider the space of G-equivariant pseudo-metrics equipped with the compact-open topology.
Recall that:

$$
\left(d_{i}\right)_{i<\omega} \rightarrow d \text { if and only if } d_{i}(1, g) \rightarrow d(1, g) \forall g \in G
$$

- An action $G \curvearrowright\left(X, *, d_{X}\right)$ on a based metric space induces a G-equivariant pseudo-metric:

$$
d(g, h)=d_{X}(g \cdot *, h \cdot *)
$$

- A morphism $h: G \rightarrow H$ (H finitely generated) induces an action $G \curvearrowright X_{H}$:

$$
(g, x) \mapsto h(g) x
$$

Theorem A
Let Γ be a δ-hyperbolic group. Let $\left(h_{n}\right)_{n<\omega}: G \rightarrow \Gamma$ be a sequence of pairwise non-conjugate morphisms. Then there exists a sequence of base points $\left(*_{n}\right)_{n<\omega}$ in X_{Γ} and a sequence of rescaling constants $\left(r_{n}\right)_{n<\omega} \in \mathbb{R}^{+}$such that a subsequence of the induced pseudo-metrics $\left(d_{n} / r_{n}\right)_{n<\omega}$ converges to a pseudo-metric d which is induced by a non-trivial action of G on a real tree $(T, *)$.

Proof.

Fix a finite generating set S for G. Consider the function $f_{n}: X_{\Gamma} \rightarrow[0, \infty)$, given by:

$$
f_{n}(x)=\max _{s \in S}\left\{d_{X_{\Gamma}}\left(x, h_{n}(s) \cdot x\right)\right\}
$$

- Take $*_{n}$ to be a point minimizing the value of f_{n}; and
- $r_{n}=f_{n}\left(*_{n}\right)$.
- $f_{n}(x)=\max _{s \in S}\left\{d_{X_{\Gamma}}\left(x, h_{n}(s) \cdot x\right)\right\}$;
- let $*_{n}$ be a point minimizing the value of f_{n} and $r_{n}=f_{n}\left(*_{n}\right)$;
- $r_{n} \rightarrow \infty$ (Hint: h_{n} are pairwise non-conjugate);
- Suppose not, and $r_{n}<M$;
- then for each h_{n} there is $\gamma_{n} \in \Gamma$ such that $\left|\gamma_{n}^{-1} h_{n}(s) \gamma_{n}\right|_{\Gamma}<M$ (assume that $*_{n}$ is a vertex in X_{Γ} and take $\gamma_{n}=*_{n}$);
- so $d_{X_{\Gamma}}\left(\gamma_{n}, h_{n}(s) \cdot \gamma_{n}\right) \leq \max _{s \in s}\left\{d_{X_{r}}\left(\gamma_{n}, h_{n}(s) \cdot \gamma_{n}\right)\right\}<M$;
- but only finitely many morphisms exist that send the generating set of G in the ball of radious M, a contradiction.
- let $\hat{d}_{n}:=\frac{d_{n}}{r_{n}}$. Then $\hat{d}_{n}(1, s) \leq 1, \forall s \in S$;
- $d_{n}(1, s)=d_{X_{\mathrm{r}}}\left(*_{n}, h_{n}(s) \cdot *_{n}\right)$; and
- $r_{n}=\max _{s \in S}\left\{d_{X_{\Gamma}}\left(*_{n}, h_{n}(s) \cdot *_{n}\right)\right\}$.
- a subsequence of $\left(\hat{d}_{n}\right)_{n<\omega}$ converges to d (Exercise);
- $\left(G, 1, \hat{d}_{n}\right)$ is $\frac{\delta}{r_{n}}$-hyperbolic, thus $(G, 1, d)$ is 0 -hyperbolic.

Lemma (Connecting the dots)

Let $(X, *, d)$ be a 0-hyperbolic metric space. Then there exists an \mathbb{R}-tree $\left(T, d_{T}\right)$ and an isometric embedding $i: X \rightarrow T$ such that:

- no proper subtree of T contains $i(X)$;
- furthermore, if a group G acts by isometries on X, then the action extends to an isometric action on T.
- $f_{n}(x)=\max _{s \in s}\left\{d_{X_{\Gamma}}\left(x, h_{n}(s) \cdot x\right)\right\}$;
- let $*_{n}$ be a point minimizing the value of f_{n} and $r_{n}=f_{n}\left(*_{n}\right)$;
- $r_{n} \rightarrow \infty$ (Hint: h_{n} are pairwise non-conjugate);
- let $\hat{d}_{n}:=\frac{d_{n}}{r_{n}}$. Then $\hat{d}_{n}(1, s) \leq 1, \forall s \in S$;
- a subsequence of $\left(\hat{d}_{n}\right)_{n<\omega}$ converges to d;
- $\left(G, 1, \hat{d}_{n}\right)$ is $\frac{\delta}{r_{n}}$-hyperbolic, thus $(G, 1, d)$ is 0 -hyperbolic;
- d is induced by an action of G on the real tree $\left(T, *, d_{T}\right)$;
- $d(1, g)=d_{T}(*, g \cdot *)$, for any $g \in G$.

Lemma (Approximating Sequences)

Assume $\left(X_{\Gamma}, *_{n}, d_{X_{\Gamma}}\right)_{n<\omega}$ "converges" to $\left(T, *, d_{T}\right)$ as in Theorem
A. Then for any $x \in T$, the following hold:

- there exists a sequence $\left(x_{n}\right)_{n<\omega} \in X_{\Gamma}$ such that $\frac{d_{x_{\Gamma}}}{r_{n}}\left(x_{n}, g \cdot *_{n}\right) \rightarrow d_{T}(x, g \cdot *)$ for any $g \in G$, we call such a sequence an approximating sequence;
- if $\left(x_{n}\right)_{n<\omega}$ is an approximating sequence for x, then $\left(g \cdot x_{n}\right)_{n<\omega}$ is an approximating sequence for $g \cdot x$;
- if $\left(x_{n}\right)_{n<\omega},\left(y_{n}\right)_{n<\omega}$ are approximating sequences for x, y respectively, then $\frac{d_{x_{\Gamma}}}{r_{n}}\left(x_{n}, y_{n}\right) \rightarrow d_{T}(x, y)$.
- $f_{n}(x)=\max _{s \in S}\left\{d_{x_{\Gamma}}\left(x, h_{n}(s) \cdot x\right)\right\}$;
- let $*_{n}$ be a point minimizing the value of f_{n} and $r_{n}=f_{n}\left(*_{n}\right)$;
- $r_{n} \rightarrow \infty$ (Hint: h_{n} are pairwise non-conjugate);
- let $\hat{d}_{n}:=\frac{d_{n}}{r_{n}}$. Then $\hat{d}_{n}(1, s) \leq 1, \forall s \in S$;
- a subsequence of $\left(\hat{d}_{n}\right)_{n<\omega}$ converges to d;
- $\left(G, 1, \hat{d}_{n}\right)$ is $\frac{\delta}{r_{n}}$-hyperbolic, thus $(G, 1, d)$ is 0 -hyperbolic;
- d is induced by an action of G on the real tree $\left(T, *, d_{T}\right)$;
- let $x \in T$ be a globally fixed point and $\left(x_{n}\right)_{n<\omega}$ be an approximating sequence for x. Then $\frac{d x_{\Gamma}}{r_{n}}\left(x_{n}, s \cdot x_{n}\right) \rightarrow 0$ for any $s \in S$, a contradiction to the choice of $*_{n}$.

Theorem A

Let Γ be a δ-hyperbolic group. Let $\left(h_{n}\right)_{n<\omega}: G \rightarrow \Gamma$ be a sequence of pairwise non-conjugate morphisms. Then there exists a sequence of base points $\left(*_{n}\right)_{n<\omega}$ in X_{Γ} and a sequence of rescaling constants $\left(r_{n}\right)_{n<\omega} \in \mathbb{R}^{+}$such that a subsequence of the induced pseudo-metrics $\left(d_{n} / r_{n}\right)_{n<\omega}$ converges to a pseudo-metric d which is induced by a non-trivial action of G on a real tree $(T, *)$.

Theorem B

Assume the hypothesis of Theorem A and moreover that Γ is torsion-free. Let $G \curvearrowright^{\lambda} T$ be the action in the limit. Then $G / k e r \lambda$ acts on T as follows:

- tripod stabilizers are trivial;
- arc stabilizers are abelian;
- the action is super-stable.

Proof of Theorem B (case $\Gamma:=\mathbb{F})$

Suppose g gixes a tripod in T. Then $h_{n}(g)$ fixes m_{n} for all large enough n, but then $h_{n}(g)=1$ for all large enough n. Thus $g \in \operatorname{ker} \lambda$.

$\left(X_{F}, \frac{d x}{r_{n}}\right)$

Claim I: Arc stabilizers are abelian. Proof: Exercise.

Claim II: The action is super-stable. Proof:

- Let J be a subarc of I, with $\operatorname{Stab}(J) \neq \operatorname{Stab}(I)$ and $\operatorname{Stab}(I) \neq\{1\}$;
- Suppose $g \in \operatorname{Stab}(J) \backslash \operatorname{Stab}(I)$;

- Let $\gamma \in \operatorname{Stab}(I)$;
- Since γ commutes with g (Claim I), we have that γ fixes a tripod, thus γ is trivial, a contradiction.

Definition

The quotient $G / \operatorname{ker} \lambda$ obtained by a sequence $\left(h_{n}\right)_{n<\omega}: G \rightarrow \mathbb{F}$ is called a limit group.

Theorem (Sela)
Let L be a limit group. Then:

- L is finitely presented;
- every abelian subgroup is finitely generated;
- either L is abelian or it admits a non-trivial cyclic splitting.

Fact

Let L be a finitely generated group. The following are equivalent:

- L is a limit group;
- L is ω-residually free;
- $L \models T h_{\forall}(\mathbb{F})$ for some free group \mathbb{F} (including \mathbb{Z});

