Merzlyakov-type theorems after Sela
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Goals & Motivation

Question (Tarski, 1946)

Let F,, be the free group of rank n. Is (\::_, Th(F,) complete?
Theorem (Sela, Kharlampovich-Myasnikov)

The following chain of groups is elementary

Fro <F3<...<F,=<...

Theorem (Sela)

The common theory of non abelian free groups Tg, is stable.



Questions & Problems
» Understand Def(Tg,), e.g. definable/interpretable groups,
fields;
> Identify regular types;
» Characterize the superstable part;
» Understand forking independence;
» Does Ty, has nfcp?
» What does a saturated model of Tg, look like?
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r: Gy — (X), where Gy := (x,y | £(x,¥)).
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F is a finitely generated non abelian free group.
Z()'(,)'/) Cfinite <)_<7.)_/>
Theorem (Merzlyakov)

Let F = Vx3Jy(X(x,y) = 1). Then there exists a retract
r: Gy — (X), where Gy := (x,y | £(x,¥)).

Theorem (Extended Merzlyakov)

Let (by)n<w be a “test sequence” in IF. Suppose for each n there is
Cn such that F |= X(b,, y) = 1. Then there exists a retract
r: Gy — (X).

Combine “Extended Merzlyakov” with Sela's “Diophantine
envelopes” technique.



Main tools and notions

» Real trees (R-trees), group actions on R-trees, Rips’ Machine;
» Limit groups, Sela’s shortening argument;

» Towers, Hyperbolic Towers, Diophantine Envelopes.



Real trees
Definition
An R-tree T is a geodesic metric space such that for any two
points x,y € T there is a unique arc joining them.
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Simplicial R-tree
Non-simplicial R-tree
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Alternatively: an R-tree is a geodesic 0-hyperbolic metric space.

Definition (Rips)
A geodesic metric space is called d-hyperbolic if every geodesic
triangle is §-thin.

[xrz] - Bé'([x: y] U [y,z])
[z,9] C Bs([z,2] U [y, 2])
[y’ z] - B5([x$ Z] U [ZIJ, y])



Hyperbolic metric spaces

Definition
An R-tree T is a geodesic metric space such that for any two
points x,y € T there is a unique arc joining them.

Alternatively: an R-tree is a geodesic 0-hyperbolic metric space.
Definition (Rips)

A geodesic metric space is called §-hyperbolic if every geodesic
triangle is §-thin.

Definition (Gromov)

A based metric space (X, %, d) is called (d)-hyperbolic if it satisfies
Gromov's three point condition:

> for x,y € X, let (x-y). = 3(d(x,x) + d(x,y) — d(x,y));
> then for any x,y,z € X, (x-y)« > min((x - 2)«, (y - 2)«) — 0.
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Group actions on R-trees
Motivation: Bass-Serre Theory

Theorem
Suppose G acts freely on a simplicial tree T (a contractible
1 >-dimensional CW-complex). Then G is a free group.

Proof.
G acts freely = G acts by a covering space action. Thus,
G = m(T/G), but T/G is a graph. O

Corollary (Nielsen-Schreier Theorem)
Let G < F. Then G is a free group.

Theorem (Main Theorem)

Suppose G acts (without inversions) on a simplicial tree T. Then
G splits as a graph of groups, where the underlying graph is T /G,
vertex groups come from vertex stabilizers and edge groups from
edge stabilizers.
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Some types of actions on R-trees

Suppose G acts on a real tree T (by isometries). Then the action
is of:

» Discrete type, if branching points in T form a dicrete closed
set and the orbit of each point is discrete. It is essentially an
action on a simplicial tree as in the Bass-Serre theory;

> Axial type, if T is isometric to R, and the orbit of each point
is dense in T;

> Surface type, if kerA\ — G — L where ker\ is the kernel of
the action and L := m1(X), where X is a surface with
(possibly empty) boundary carrying an arational measured
foliation and T is dual to &, i.e. T is the lifted leaf space in
3 after identifying leaves of distance 0 (with respect to the
pseudometric induced by the measure);



Axial type

» Let a € R and f, € Isom™*(R) be defined by f,(x) = a+ x;

» Let Z™ := (z1,...,2zm) and h: Z™ — Isom™(R) defined as
follows:

h(zj) = f; and {a1,...,am} is linearly independent




Rips’ Machine

Suppose G acts on a real tree T. Then the action is:
» minimal, if there is no G-invariant proper subtree;
» non-trivial, if there is no globally fixed point;
> super-stable, if for any arc | and subarc J C | we have that
Stab(J) # Stab(l) = Stab(l) = {1}.
Theorem (Rips' Machine)

Let G be a finitely generated group. Suppose G acts non-trivially
and minimally on an R-tree T. Moreover, assume that the action
is super-stable and tripod stabilizers are trivial. Then the action
can be understood in terms of simpler components which are of
discrete, axial, surface or exotic type
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Let G be a (discrete) group and consider the space of
G-equivariant pseudo-metrics equipped with the compact-open
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Bestvina-Paulin Method

Let G be a (discrete) group and consider the space of
G-equivariant pseudo-metrics equipped with the compact-open
topology.

Recall that:

(di)i<w — d if and only if di(1,g) — d(1,g) Vg € G

» An action G ~ (X, %, dx) on a based metric space induces a
G-equivariant pseudo-metric:

d(g7 h) = dX(g*7h*)

» A morphism h: G — H (H finitely generated) induces an
action G ~ Xy:

(8,x) — h(g)x



Theorem A

Let T be a d-hyperbolic group. Let (hp)n<w : G — I be a sequence
of pairwise non-conjugate morphisms. Then there exists a
sequence of base points (%p)n<., in Xr and a sequence of rescaling
constants (rp)n<w € RT such that a subsequence of the induced
pseudo-metrics (dn/rn)n<w converges to a pseudo-metric d which
is induced by a non-trivial action of G on a real tree (T, ).

Proof.
Fix a finite generating set S for G. Consider the function
fn: Xr — [0, 00), given by:

fo(x) = maxses{dx; (x, hn(s) - x)}

» Take %, to be a point minimizing the value of f,; and

> rp = fa(kn).
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fa(x) = maxses{dx, (x, hn(s) - x)};
let *, be a point minimizing the value of f, and r, = f(x,);
rn — oo (Hint: hy, are pairwise non-conjugate);

» Suppose not, and r, < M;

> then for each h, there is v, € I such that |y, 2h,(s)7alr < M
(assume that x*, is a vertex in Xr and take vy, = *,);

> 50 dx:(Vn, Pa(S) - vn) < maxses{dx. (Vn, ha(S) - va)} < M;
» but only finitely many morphisms exist that send the
generating set of G in the ball of radious M, a contradiction.
let d, := ‘r’—:. Then cAI,,(l,s) <1, VsesS;
> dn(1,s) = dx (n, ha(S) - %,); and
> 1y = maxses{dx; (*n, ha(s) - %) }.

A

a subsequence of (dn)n<w converges to d (Exercise);
(G, 1, cAl,,) is f—n—hyperbolic, thus (G, 1,d) is O-hyperbolic.



Lemma (Connecting the dots)

Let (X, *,d) be a 0-hyperbolic metric space. Then there exists an
R-tree (T, dt) and an isometric embedding i : X — T such that:

» no proper subtree of T contains i(X);

> furthermore, if a group G acts by isometries on X, then the
action extends to an isometric action on T.
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fo(x) = maxses{dx. (x, hn(s) - x)};

let *, be a point minimizing the value of f, and r, = f,(x,);
r, — oo (Hint: h, are pairwise non-conjugate);

let d, := %:,_ Then cAl,,(l,s) <1, Vses;

A

a subsequence of (d,)n<w converges to d;

(G,1, cAi,,) is f—n—hyperbolic, thus (G, 1, d) is 0-hyperbolic;

d is induced by an action of G on the real tree (T, *,d7);
» d(1,g) = dr(x,g - %), forany g € G.



Lemma (Approximating Sequences)

Assume (Xr, *p, dx; )n<w “converges” to (T,x*,dr) as in Theorem
A. Then for any x € T, the following hold:
> there exists a sequence (Xp)n<w € Xr such that
%(x,,,g %) — dr(x,g - *) for any g € G, we call such a
sequence an approximating sequence;
» if (Xn)n<w IS an approximating sequence for x, then
(g - Xn)n<w is an approximating sequence for g - x;
> if (Xn)n<w (Yn)n<w are approximating sequences for x,y

. d
respectively, then rinr(x,,,y,,) — d1(x,y).



v

fo(x) = maxses{dx.(x, hn(s) - x)};

let *, be a point minimizing the value of f, and r, = f,(x,);
rn — oo (Hint: hj, are pairwise non-conjugate);

let dp := % Then dn(1,5) <1,Vs€S;

A

a subsequence of (dj)n<., converges to d;

(G,1, cAI,,) is f—n—hyperbolic, thus (G, 1, d) is 0-hyperbolic;
d is induced by an action of G on the real tree (T, *,dr);
let x € T be a globally fixed point and (xp)n<w be an

L d
approximating sequence for x. Then ,Lnr(Xn, s xp) — 0 for
any s € S, a contradiction to the choice of *,,.



Theorem A

Let T be a §-hyperbolic group. Let (hy)p<w, : G — [ be a sequence
of pairwise non-conjugate morphisms. Then there exists a
sequence of base points (*p)n<w in Xr and a sequence of rescaling
constants (rp)n<w € RT such that a subsequence of the induced
pseudo-metrics (d,/rp)n<w converges to a pseudo-metric d which
is induced by a non-trivial action of G on a real tree (T, x).

Theorem B

Assume the hypothesis of Theorem A and moreover that I is
torsion-free. Let G ~* T be the action in the limit. Then G /ker\
acts on T as follows:

» tripod stabilizers are trivial;
» arc stabilizers are abelian;

> the action is super-stable.



Proof of Theorem B (case I' := )

Suppose g gixes a tripod in T. Then h,(g) fixes m, for all large
enough n, but then h,(g) = 1 for all large enough n. Thus
g € ker).

g -Mp =My

v z n



Claim I: Arc stabilizers are abelian.
Proof: Exercise.

Claim II: The action is super-stable.
Proof:

» Let J be a subarc of /, with Stab(J) # Stab(/) and
Stab(1) # {1},
» Suppose g € Stab(J) \ Stab(l);

> Let v € Stab(/);
» Since v commutes with g (Claim 1), we have that ~ fixes a
tripod, thus -y is trivial, a contradiction.



Definition
The quotient G/ker\ obtained by a sequence (h)pn<w : G — Fis
called a limit group.

Theorem (Sela)
Let L be a limit group. Then:
» L js finitely presented;
» every abelian subgroup is finitely generated;

> either L is abelian or it admits a non-trivial cyclic splitting.

Fact
Let L be a finitely generated group. The following are equivalent:

> L is a limit group;
> L js w-residually free;
» L= Thy(F) for some free group F (including Z);



