
Merzlyakov-type theorems after Sela

Part I



Goals & Motivation

Question (Tarski, 1946)

Let Fn be the free group of rank n. Is
⋂ω

n=2 Th(Fn) complete?

Theorem (Sela, Kharlampovich-Myasnikov)

The following chain of groups is elementary

F2 ≺ F3 ≺ . . . ≺ Fn ≺ . . .

Theorem (Sela)

The common theory of non abelian free groups Tfg is stable.
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Questions & Problems

I Understand Def (Tfg ), e.g. definable/interpretable groups,
fields;

I Identify regular types;

I Characterize the superstable part;

I Understand forking independence;

I Does Tfg has nfcp?

I What does a saturated model of Tfg look like?



F is a finitely generated non abelian free group.
Σ(x̄ , ȳ) ⊂finite 〈x̄ , ȳ〉.

Theorem (Merzlyakov)

Let F |= ∀x̄∃ȳ(Σ(x̄ , ȳ) = 1). Then there exists a retract
r : GΣ → 〈x̄〉, where GΣ := 〈x̄ , ȳ | Σ(x̄ , ȳ)〉.

Theorem (Extended Merzlyakov)

Let (b̄n)n<ω be a “test sequence” in F. Suppose for each n there is
c̄n such that F |= Σ(b̄n, c̄n) = 1. Then there exists a retract
r : GΣ → 〈x̄〉.

Combine “Extended Merzlyakov” with Sela’s “Diophantine
envelopes” technique.
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Main tools and notions

I Real trees (R-trees), group actions on R-trees, Rips’ Machine;

I Limit groups, Sela’s shortening argument;

I Towers, Hyperbolic Towers, Diophantine Envelopes.



Real trees

Definition
An R-tree T is a geodesic metric space such that for any two
points x , y ∈ T there is a unique arc joining them.



Alternatively: an R-tree is a geodesic 0-hyperbolic metric space.

Definition (Rips)

A geodesic metric space is called δ-hyperbolic if every geodesic
triangle is δ-thin.



Hyperbolic metric spaces

Definition
An R-tree T is a geodesic metric space such that for any two
points x , y ∈ T there is a unique arc joining them.

Alternatively: an R-tree is a geodesic 0-hyperbolic metric space.

Definition (Rips)

A geodesic metric space is called δ-hyperbolic if every geodesic
triangle is δ-thin.

Definition (Gromov)

A based metric space (X , ∗, d) is called (δ)-hyperbolic if it satisfies
Gromov’s three point condition:

I for x , y ∈ X , let (x · y)∗ = 1
2 (d(∗, x) + d(∗, y)− d(x , y));

I then for any x , y , z ∈ X , (x · y)∗ ≥ min((x · z)∗, (y · z)∗)− δ.



Group actions on R-trees

Motivation: Bass-Serre Theory

Theorem
Suppose G acts freely on a simplicial tree T (a contractible
1 ≥-dimensional CW-complex). Then G is a free group.

Proof.
G acts freely ⇒ G acts by a covering space action. Thus,
G ∼= π1(T/G ), but T/G is a graph.

Corollary (Nielsen-Schreier Theorem)

Let G < F. Then G is a free group.

Theorem (Main Theorem)

Suppose G acts (without inversions) on a simplicial tree T . Then
G splits as a graph of groups, where the underlying graph is T/G ,
vertex groups come from vertex stabilizers and edge groups from
edge stabilizers.
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Some types of actions on R-trees

Suppose G acts on a real tree T (by isometries). Then the action
is of:

I Discrete type, if branching points in T form a dicrete closed
set and the orbit of each point is discrete. It is essentially an
action on a simplicial tree as in the Bass-Serre theory;

I Axial type, if T is isometric to R, and the orbit of each point
is dense in T ;

I Surface type, if kerλ ↪→ G � L where kerλ is the kernel of
the action and L := π1(Σ), where Σ is a surface with
(possibly empty) boundary carrying an arational measured
foliation and T is dual to Σ̃, i.e. T is the lifted leaf space in
Σ̃ after identifying leaves of distance 0 (with respect to the
pseudometric induced by the measure);



Axial type

I Let a ∈ R and fa ∈ Isom+(R) be defined by fa(x) = a + x ;

I Let Zm := 〈z1, . . . , zm〉 and h : Zm → Isom+(R) defined as
follows:

h(zi ) = fai and {a1, . . . , am} is linearly independent



Rips’ Machine

Suppose G acts on a real tree T . Then the action is:

I minimal, if there is no G -invariant proper subtree;

I non-trivial, if there is no globally fixed point;

I super-stable, if for any arc I and subarc J ⊂ I we have that
Stab(J) 6= Stab(I )⇒ Stab(I ) = {1}.

Theorem (Rips’ Machine)

Let G be a finitely generated group. Suppose G acts non-trivially
and minimally on an R-tree T . Moreover, assume that the action
is super-stable and tripod stabilizers are trivial. Then the action
can be understood in terms of simpler components which are of
discrete, axial, surface or exotic type





Bestvina-Paulin Method

Let G be a (discrete) group and consider the space of
G -equivariant pseudo-metrics equipped with the compact-open
topology.
Recall that:

(di )i<ω → d if and only if di (1, g)→ d(1, g) ∀g ∈ G

I An action G y (X , ∗, dX ) on a based metric space induces a
G -equivariant pseudo-metric:

d(g , h) = dX (g · ∗, h · ∗)

I A morphism h : G → H (H finitely generated) induces an
action G y XH :

(g , x) 7→ h(g)x
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Theorem A
Let Γ be a δ-hyperbolic group. Let (hn)n<ω : G → Γ be a sequence
of pairwise non-conjugate morphisms. Then there exists a
sequence of base points (∗n)n<ω in XΓ and a sequence of rescaling
constants (rn)n<ω ∈ R+ such that a subsequence of the induced
pseudo-metrics (dn/rn)n<ω converges to a pseudo-metric d which
is induced by a non-trivial action of G on a real tree (T , ∗).

Proof.
Fix a finite generating set S for G . Consider the function
fn : XΓ → [0,∞), given by:

fn(x) = maxs∈S{dXΓ
(x , hn(s) · x)}

I Take ∗n to be a point minimizing the value of fn; and

I rn = fn(∗n).



I fn(x) = maxs∈S{dXΓ
(x , hn(s) · x)};

I let ∗n be a point minimizing the value of fn and rn = fn(∗n);
I rn →∞ (Hint: hn are pairwise non-conjugate);

I Suppose not, and rn < M;
I then for each hn there is γn ∈ Γ such that |γ−1

n hn(s)γn|Γ < M
(assume that ∗n is a vertex in XΓ and take γn = ∗n);

I so dXΓ
(γn, hn(s) · γn) ≤ maxs∈S{dXΓ

(γn, hn(s) · γn)} < M;
I but only finitely many morphisms exist that send the

generating set of G in the ball of radious M, a contradiction.

I let d̂n := dn
rn

. Then d̂n(1, s) ≤ 1, ∀s ∈ S ;
I dn(1, s) = dXΓ

(∗n, hn(s) · ∗n); and
I rn = maxs∈S{dXΓ

(∗n, hn(s) · ∗n)}.
I a subsequence of (d̂n)n<ω converges to d (Exercise);

I (G , 1, d̂n) is δ
rn

-hyperbolic, thus (G , 1, d) is 0-hyperbolic.



Lemma (Connecting the dots)

Let (X , ∗, d) be a 0-hyperbolic metric space. Then there exists an
R-tree (T , dT ) and an isometric embedding i : X → T such that:

I no proper subtree of T contains i(X );

I furthermore, if a group G acts by isometries on X , then the
action extends to an isometric action on T .



I fn(x) = maxs∈S{dXΓ
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I let ∗n be a point minimizing the value of fn and rn = fn(∗n);
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I let d̂n := dn
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I (G , 1, d̂n) is δ
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-hyperbolic, thus (G , 1, d) is 0-hyperbolic;

I d is induced by an action of G on the real tree (T , ∗, dT );
I d(1, g) = dT (∗, g · ∗), for any g ∈ G .



Lemma (Approximating Sequences)

Assume (XΓ, ∗n, dXΓ
)n<ω “converges” to (T , ∗, dT ) as in Theorem

A. Then for any x ∈ T , the following hold:

I there exists a sequence (xn)n<ω ∈ XΓ such that
dXΓ
rn

(xn, g · ∗n)→ dT (x , g · ∗) for any g ∈ G , we call such a
sequence an approximating sequence;

I if (xn)n<ω is an approximating sequence for x, then
(g · xn)n<ω is an approximating sequence for g · x;

I if (xn)n<ω, (yn)n<ω are approximating sequences for x , y

respectively, then
dXΓ
rn

(xn, yn)→ dT (x , y).



I fn(x) = maxs∈S{dXΓ
(x , hn(s) · x)};

I let ∗n be a point minimizing the value of fn and rn = fn(∗n);

I rn →∞ (Hint: hn are pairwise non-conjugate);

I let d̂n := dn
rn

. Then d̂n(1, s) ≤ 1, ∀s ∈ S ;

I a subsequence of (d̂n)n<ω converges to d ;

I (G , 1, d̂n) is δ
rn

-hyperbolic, thus (G , 1, d) is 0-hyperbolic;

I d is induced by an action of G on the real tree (T , ∗, dT );

I let x ∈ T be a globally fixed point and (xn)n<ω be an

approximating sequence for x . Then
dXΓ
rn

(xn, s · xn)→ 0 for
any s ∈ S , a contradiction to the choice of ∗n.
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Theorem B
Assume the hypothesis of Theorem A and moreover that Γ is
torsion-free. Let G yλ T be the action in the limit. Then G/kerλ
acts on T as follows:

I tripod stabilizers are trivial;

I arc stabilizers are abelian;

I the action is super-stable.



Proof of Theorem B (case Γ := F)

Suppose g gixes a tripod in T . Then hn(g) fixes mn for all large
enough n, but then hn(g) = 1 for all large enough n. Thus
g ∈ kerλ.



Claim I: Arc stabilizers are abelian.
Proof: Exercise.

Claim II: The action is super-stable.
Proof:

I Let J be a subarc of I , with Stab(J) 6= Stab(I ) and
Stab(I ) 6= {1};

I Suppose g ∈ Stab(J) \ Stab(I );

I Let γ ∈ Stab(I );

I Since γ commutes with g (Claim I), we have that γ fixes a
tripod, thus γ is trivial, a contradiction.



Definition
The quotient G/kerλ obtained by a sequence (hn)n<ω : G → F is
called a limit group.

Theorem (Sela)

Let L be a limit group. Then:

I L is finitely presented;

I every abelian subgroup is finitely generated;

I either L is abelian or it admits a non-trivial cyclic splitting.

Fact
Let L be a finitely generated group. The following are equivalent:

I L is a limit group;

I L is ω-residually free;

I L |= Th∀(F) for some free group F (including Z);


