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Planned omissions

Bombieri-Masser-Zannier theory of anomalous intersections

More generally, the strictly Diophantine geometric approaches to the
conjecture

Pila-Wilkie o-minimal counting and (most of) its applications
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General form of Pink-Zilber conjectures

We are given an algebraic variety X and a collection S of irreducible
special subvarieties of X .
For each positive integer e, we de�ne

S [e] :=
⋃

Y∈S ,dim(Y )=e

Y .

More generally, we write

S [<e] :=
⋃
n<e

S [n] and S [≤e] :=
⋃
n≤e

S [n] .

The Zilber-Pink conjecture for this context asserts that if Z ⊆ X is a
subvariety which is not contained in a proper special subvariety of X , then
Z ∩S [<codimX (Z)] is not Zariski dense in Z .
At this level of generality, the Pink-Zilber conjecture is either meaningless
or just plain false. To �nd cogent speci�cations of the classes of special
varieties is an important aspect of this research program.
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Caveat on attribution

It is not correct to attribute the formulation of this conjecture, even in
some of the more precise versions which go under the name of the
Pink-Zilber conjecture, solely or even primarily to Pink and Zilber.

The idea of considering anomalous intersections is due to
Bombieri-Masser-Zannier and Zilber.

Pink's enunciation of an amalgam of the Mordell-Lang,
Manin-Mumford and André-Oort conjectures using the language of
mixed Shimura varieties was in�uenced by earlier suggestions of André.

Re�nements and further generalizations both conjectural and in very
few cases proven are due to many other people including Bertrand,
Ghioca, Habegger, Maurin, Tucker, Ullmo, and Yafaev amongst others.
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Zilber-Pink and heights

In some cases, the Zilber-Pink conjecture includes an assertion about the
set

Z ∩S [≤codimX (Z)]

(namely, under the stronger hypothesis that Z is not contained in a weakly
special variety that this intersection is a set of bounded height).

However, there are many cases in which the Zilber-Pink conjecture should
be true, but this re�ned statement about complementary dimensional
intersections is known to be false.
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Zilber-Pink examples

X := Gg
m (X (C) = (C×)g ) and S is the collection of all components

of algebraic subgroups of X (Originally considered by
Bombieri-Masser-Zannier and independently by Zilber under the name
of the Conjecture on Intersection with Tori; details to follow)

X an abelian variety (X (C) ∼= Cg/Λ (with Λ a lattice) ∼= (S1)2g ) and
S the collection of all components of algebraic subgroups.

k ⊆ K an extension of algebraically closed �elds, X a variety over k
and S the collection of all k-subvarieties of X .
(Chatzidakis-Ghioca-Masser-Maurin)

X a mixed Shimura variety and S the collection of components of
images of mixed Shimura varieties under generalized Hecke
correspondences (Pink's generalization)

Not an example: X = An and S the set of all a�ne subspaces
de�ned over Q.
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Pink-Zilber implies Manin-Mumford

Consider Pink-Zilber restricted to the case of X an abelian variety and S
the collection of components of algebraic subgroups.

Recall that the Manin-Mumford conjecture asserts that if Y ⊆ X is a
closed irreducible subvariety which is not a translate by a torsion point of
an algebraic subgroup of X , then the set of torsion points of X lying on Y

is not Zariski dense in Y .

Replacing X by the smallest algebraic group containing Y (and then taking
components and translating by a torsion point if need be), we may assume
that Y is not contained in any proper special subvariety if X .

The set

S [0] =
⋃
{Z : dim(Z ) = 0,Z irreducible component of algebraic subgroup of X}

is the set of torsion points. Zilber-Pink asserts that
Y ∩S [<codimX (Y )] ⊇ Y ∩S [0] is not Zariski dense in Y .

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 9 / 63



Pink-Zilber implies Manin-Mumford

Consider Pink-Zilber restricted to the case of X an abelian variety and S
the collection of components of algebraic subgroups.

Recall that the Manin-Mumford conjecture asserts that if Y ⊆ X is a
closed irreducible subvariety which is not a translate by a torsion point of
an algebraic subgroup of X , then the set of torsion points of X lying on Y

is not Zariski dense in Y .

Replacing X by the smallest algebraic group containing Y (and then taking
components and translating by a torsion point if need be), we may assume
that Y is not contained in any proper special subvariety if X .

The set

S [0] =
⋃
{Z : dim(Z ) = 0,Z irreducible component of algebraic subgroup of X}

is the set of torsion points. Zilber-Pink asserts that
Y ∩S [<codimX (Y )] ⊇ Y ∩S [0] is not Zariski dense in Y .

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 9 / 63



Pink-Zilber implies Manin-Mumford

Consider Pink-Zilber restricted to the case of X an abelian variety and S
the collection of components of algebraic subgroups.

Recall that the Manin-Mumford conjecture asserts that if Y ⊆ X is a
closed irreducible subvariety which is not a translate by a torsion point of
an algebraic subgroup of X , then the set of torsion points of X lying on Y

is not Zariski dense in Y .

Replacing X by the smallest algebraic group containing Y (and then taking
components and translating by a torsion point if need be), we may assume
that Y is not contained in any proper special subvariety if X .

The set

S [0] =
⋃
{Z : dim(Z ) = 0,Z irreducible component of algebraic subgroup of X}

is the set of torsion points. Zilber-Pink asserts that
Y ∩S [<codimX (Y )] ⊇ Y ∩S [0] is not Zariski dense in Y .

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 9 / 63



J. London Math. Soc. (2) 65 (2002) 27–44 C�2002 London Mathematical Society
DOI: 10.1112/S0024610701002861

EXPONENTIAL SUMS EQUATIONS AND THE SCHANUEL
CONJECTURE

BORIS ZILBER

Abstract

A uniform version of the Schanuel conjecture is discussed that has some model-theoretical motivation.
This conjecture is assumed, and it is proved that any ‘non-obviously-contradictory’ system of equations
in the form of exponential sums with real exponents has a solution.

1. Introduction

In [8] we started a model-theoretical study of the formal theory of exponenti-
ation (pseudo-exponentiation). The crux of the analysis is the observation that
the Schanuel conjecture on the degree of algebraic independence between complex
numbers and their exponentials (see [5]) is responsible for very basic geometric prop-
erties of fields allowing a function ex satisfying ex(x+ y) = ex(x) · ex(y). It turns out
that in the class of fields with pseudo-exponentiation, given an uncountable cardinal,
there is a unique ‘right’ one of the given cardinality. This model we call canonical. The
mere fact of the canonicity tempts us to conjecture that the classical exponentiation
on the complex numbers is formally equivalent to the pseudo-exponentiation in a
canonical model, or, even more concretely, the structure of complex numbers in the
language (+, ·, exp) is the canonical model of the field with pseudo-exponentiation
of cardinality continuum. This is a very strong conjecture, which presumes among
other properties the Schanuel conjecture.

As a matter of fact, the analysis in [8] shows that the ‘other properties’ could be
reduced to a unique and natural one: the property of exponential-algebraic closedness,
meaning that any ‘non-obviously-inconsistent’ system of equations has a solution in
the field. In this paper this condition is explained in precise technical terms (normal
and free system of equations).

On the other hand, the further logical analysis [9] of pseudo-exponentiation shows
that the Schanuel conjecture is much better motivated under an extra conjecture
of Diophantine type (the conjecture on intersections with tori). We show that this
conjecture holds in a ‘function field case’, using a result of J. Ax.

In a more general form, corresponding to the more general versions of the
Schanuel conjecture, the Diophantine conjecture implies both the Mordell–Lang
and the Manin–Mumford conjectures (now proved, see [6]). In the first part of this
paper we discuss the conjectures and show that the Schanuel conjecture plus the
conjecture on intersections with tori is in effect equivalent to a uniform version of
the Schanuel conjecture.

In the second half of the paper we attack the problem of exponential-algebraic
closedness for a special class of equations, given by exponential sums with real

Received 21 June 2000; revised 10 July 2001.

2000 Mathematics Subject Classification 11J81, 11G99, 11Q05, 11U09.
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Zilber-Pink formally implies Mordell-Lang

We must show that if X is an abelian variety over C, Γ < X (C) is a
�nite dimensional subgroup, and Y ⊆ X is an irreducible subvariety
which is not a translate of an algebraic subgroup of X , then Y ∩ Γ is
not Zariski dense.

Translating and replacing X if need be, we may assume that Y is not
contained in a translate of a proper algebraic subgroup of X .

Assuming that we have a counterexample to Mordell-Lang, we �nd a
generic sequence (ai )

∞
i=0 from Y ∩ Γ by which we mean that tp(ai )

converges to the generic type of Y . Equivalently, for every proper
subvariety Z ( Y the set {i ∈ ω : ai ∈ Z} is �nite.
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Pink-Zilber formally implies Mordell-Lang, continued

Set d := dim(X ), e := dim(Y ), and r := dimQ(Γ⊗Q).

Noting that e < d , we may �nd k so that rd < k(d − e).

If (γ1, . . . , γk) ∈ Γk , then because dimQ Γ⊗Q = r , there are k − r

independent Z-linear forms vanishing on (γ1, . . . , γk). These together
de�ne an algebraic subgroup T < X k of dimension rd . Thus,
Γk ∩ Uk ⊆ Uk ∩S [rd ].

Because rd < kd − ke = codimX k (Y k), by ZP, there is a �nite list
T1, . . . ,Tn of algebraic groups of dimension at most k(d − e)− 1 and
points c1, . . . , cn so that Γk ∩ Uk ⊆ ⋃ ciTi .
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Zilber-Pink implies Mordell-Lang, completed

By Ramsey's Theorem, we may assume that (ai1 , . . . , aik ) ∈ c1T1 for
all increasing k-tuples i1 < . . . < ik .

Replacing k with a smaller number if need be, we may assume that
T ∩ ((0, . . . , 0)× X ) = (0, . . . , 0)× T ′ where T ′ < X is a proper
subgroup of X .

Looking at �bres, we see that all ai (for i > k − 1) belong to the same
coset of T ′. This violates genericity and our reduction.
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CIT and the axiomatization of Cexp

Zilber has proposed an axiomatization of the theory of the �eld of complex
numbers with the complex exponential function. His theory of
pseudo-exponentiation is most naturally formulated in the in�nitary logic
Lω1,ω(Q).

ACF

exp(x + y) = exp(x) exp(y)

exp is onto the multiplicative group

ker(exp) is cycle

Exponential-algebraic closedness

Schanuel's conjecture
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CIT and the axiomatization of Cexp

Zilber has proposed an axiomatization of the theory of the �eld of complex
numbers with the complex exponential function. His theory of
pseudo-exponentiation is most naturally formulated in the in�nitary logic
Lω1,ω(Q).

ACF First-order

exp(x + y) = exp(x) exp(y) First order

exp is onto the multiplicative group First order

ker(exp) is cycle Omitting a partial type

Exponential-algebraic closedness First order by �function �eld� CIT

Schanuel's conjecture Requires CIT for �rst-order formulation
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Schanuel's conjecture

Conjecture

If α1, . . . , αn ∈ C are linearly independent over Q, then
tr. degQ(α1, . . . , αn, exp(α1), . . . , exp(αn)) ≥ n.

Reformulated geometrically, if W ⊆ An ×Gn
m is an irreducible a�ne variety

over Qalg of dimension < n for which there is a point (a1, . . . , an) ∈ Cn

with (a1, . . . , an; exp(a1), . . . , exp(an)) ∈W (C), then a belongs to some
proper subspace de�ned over Q.

Equivalently: The set of points of the form
(a1, . . . , an; exp(a1), . . . , exp(an)) is contained in

W ∩
⋃

T < (C×)n

T algebraic

(An × T ) .
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Tori for Zilber

In Zilber's conjecture, a torus is an algebraic subgroup T ≤ (C×)g of some
Cartesian power of the multiplicative group of complex numbers.
More concretely, T is de�ned by a system of equations of the form

g∏
j=1

x
αi,j

j = 1

where each αi ,j is an integer.
For most authors, a torus must be connected which from the monomial
equations de�ning the group means that the matrixα1,1 · · · α1,g

... · · · ...
αm,1 · · · αm,g

 ∈ Mm×g (Z)

has full rank even when considered in Mm×g (Fp) for each prime p.
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Zilber's conjecture on intersection with tori

Conjecture

For each (not necessarily irreducible) algebraic variety W ⊂ Ag
Q de�ned

over the rational numbers, there is �nite set {T1, . . . ,Tn} of proper tori so
that for every torus T ≤ (C×)g if S is a component of W ∩ T with

dim(S) > dim(W ) + dim(T )− g, then S ⊆ Tj for some j ≤ n.

Since W need not be irreducible, it is easy to deduce the
corresponding conjecture for W de�ned over Qalg by replacing W by
the union of its Gal(Qalg/Q)-conjugates.
A uniform version over C may be deduced via a compactness
argument, but the correct statement requires weakly special varieties:
Let B be an algebraic variety and W ⊆ Ag

B = Ag × B a family of
a�ne varieties parametrized by B . Then there is a �nite set
{T1, . . . ,Tn} of proper tori so that for every every parameter b ∈ B

there are points c1, . . . , cn ∈ (C×)g so that for every torus T ≤ (C×)g

if S is anomalous in the sense that it is a component of Wb ∩ T with
dim(S) > dim(W ) + dim(T )− g , then S ⊆ cjTj for some j ≤ n.
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Using CIT to write Schanuel's conjecture

Assuming CIT, we may express Schanuel's conjecture as a �rst-order
theory. The reduction is routine but not completely trivial.

The key is to show that (under the assumptions of CIT and SC) if
W ⊆ Gn

a ×Gn
m is a variety of dimension < n, then there is a �nite set

S(W ) of proper tori T < Gn
m so that if

(a1, . . . , an; exp(a1), . . . , exp(an)) ∈W (C),

then
(exp(a1), . . . , exp(an)) ∈ T (C).

for some T ∈ S(W ).
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Some details of the implication from CIT and SC to
�rst-order expressibility: �rst steps

Let π : W →W ′ ⊆ Gn
m be the projection to the last n coordinates.

Working by Noetherian induction on W , we may assume that
dim(Wexp(a)) = dim(W )− dim(W ′) =: d is the generic �bre
dimension.

By SC, (because tr. deg(a, exp(a)) < n) there is a proper torus
T < Gn

m with exp(a) ∈ T .

Minimizing T , by SC again (because the multiplicative rank of exp(a)
would be dim(T )), we have dim(T ) ≤ tr. deg(a, exp(a)).
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Details, continued

dim(T ) ≤ tr. deg(a, exp(a))
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Details, continued

dim(T ) ≤ tr. deg(a, exp(a))

≤ d + dim(T ∩W ′)

= [dim(W )− dim(W ′)] + dim(T )− n + dim(T ∩W ′)− dim(T ) + n

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 20 / 63



Details, continued

dim(T ) ≤ tr. deg(a, exp(a))

≤ d + dim(T ∩W ′)

= [dim(W )− dim(W ′)] + dim(T )− n + dim(T ∩W ′)− dim(T ) + n

= (dim(W )− n) + dim(T )− [dim(T ) + dim(W ′)− n − dim(W ′ ∩ T )]
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Details, continued

dim(T ) ≤ tr. deg(a, exp(a))

≤ d + dim(T ∩W ′)

= [dim(W )− dim(W ′)] + dim(T )− n + dim(T ∩W ′)− dim(T ) + n

= (dim(W )− n) + dim(T )− [dim(T ) + dim(W ′)− n − dim(W ′ ∩ T )]

< dim(T )− [dim(T ) + dim(W ′)− n − dim(W ′ ∩ T )]

Hence, exp(a) must lie on an atypical component of W ′ ∩ T . By CIT, we
may cover the atypical intersections by �nitely many proper tori.
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Exponential closedness

Unlike the Schanuel condition, exponential closedness can be expressed
unconditionally due to the truth of a weakened form of CIT.

Schanuel proposed a converse to the conjecture we have been calling
Schanuel's Conjecture: if K is a countable �eld with an exponential
E : K → K× having ker E ∼= Z, then (K ,+, ·,E ) embeds into Cexp.

Zilber's axiomatization of exponential closedness captures the �nitary
content of the reverse Schanuel Conjecture: for each irreducible algebraic
variety V ⊆ Gg

a ×Gg
m, there should be a point of the form

(a1, . . . , ag , exp(a1), . . . , exp(ag )) ∈ V (C) provided that this does not
produce an obvious counterexample to the Schanuel conjecture.
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Exponential closedness, more precisely

Each matrix M ∈ M`×g (Z) gives a map [M] : Gg
a ×Gg

m → G`
a ×G`

m via
the rule (x1, . . . , xg ; y1, . . . , yg ) 7→
(
∑g

i=1M1,ixi , . . . ,
∑g

i=1M`,ixi ;
∏g

i=1 y
M1,i

i , . . . ,
∏g

i=1 y
M`,i

i ).

We say that an irreducible variety Y ⊆ Gg
a ×Gg

m is exponentially normal if
for every M ∈ M`×g (Z) of rank ` one has dim([M]Y ) ≥ `. The variety is
free if its projection to Gg

a is not contained in any translate of a proper
subspace de�ned over Q and its projection to Gg

m is not contained in any
translate of a proper subtorus.

Exponential closedness is the assertion that for every such exponentially
normal and free variety Y there are points of the form
(a1, . . . , ag ; exp(a1), . . . , exp(ag )) ∈ Y (C).
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First-order expressibility of exponential closedness

Several parts of the expression of exponential closedness are not obviously
�rst-order. For example, that one may express that Y is irreducible as a
�rst-order condition on the coe�cients of some set of de�ning polynomials
is true but nontrivial.

Issues speci�c to this case include saying that

the projection to Gg
a is not contained in a translate of a proper

Q-vector space,

the projection to Gg
m is not contained in a translate of a proper

subtorus, and

dim([M]Y ) ≥ ` for each rank ` matrix M ∈ M`×g (Z).
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�rst-order condition on the coe�cients of some set of de�ning polynomials
is true but nontrivial.

Issues speci�c to this case include saying that

the projection to Gg
a is not contained in a translate of a proper

Q-vector space, quanti�cation over ker exp

the projection to Gg
m is not contained in a translate of a proper

subtorus, and weak CIT

dim([M]Y ) ≥ ` for each rank ` matrix M ∈ M`×g (Z). weak CIT
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Very unlikely intersections

Given a variety X , a collection S of special subvarieties, and Y ⊆ X an
irreducible subvariety not contained in any proper special subvariety, we say
that a ∈ Y belongs to very unlikely intersection if there is some
T ∈ S [<codimX Y ] for which dima(Y ∩ T ) > 0.

By the weak Pink-Zilber conjecture (for X , S , and Y ) we mean the
assertion that the set of very unlikely intersection points is not Zariski
dense in Y . When specialized to X = Gg

m and S the collection of
components of subtori, we will call this statement the weak CIT.

Using the weak CIT, the exponential closedness axioms may be shown to
be �rst-order expressible.

Unlike the CIT, the weak CIT is a theorem whose proof using di�erential
algebra and then generalized using model theoretic di�erential algebra
generalizes to other cases of the weak Zilber-Pink conjecture.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 24 / 63



Very unlikely intersections

Given a variety X , a collection S of special subvarieties, and Y ⊆ X an
irreducible subvariety not contained in any proper special subvariety, we say
that a ∈ Y belongs to very unlikely intersection if there is some
T ∈ S [<codimX Y ] for which dima(Y ∩ T ) > 0.

By the weak Pink-Zilber conjecture (for X , S , and Y ) we mean the
assertion that the set of very unlikely intersection points is not Zariski
dense in Y . When specialized to X = Gg

m and S the collection of
components of subtori, we will call this statement the weak CIT.

Using the weak CIT, the exponential closedness axioms may be shown to
be �rst-order expressible.

Unlike the CIT, the weak CIT is a theorem whose proof using di�erential
algebra and then generalized using model theoretic di�erential algebra
generalizes to other cases of the weak Zilber-Pink conjecture.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 24 / 63



Very unlikely intersections

Given a variety X , a collection S of special subvarieties, and Y ⊆ X an
irreducible subvariety not contained in any proper special subvariety, we say
that a ∈ Y belongs to very unlikely intersection if there is some
T ∈ S [<codimX Y ] for which dima(Y ∩ T ) > 0.

By the weak Pink-Zilber conjecture (for X , S , and Y ) we mean the
assertion that the set of very unlikely intersection points is not Zariski
dense in Y . When specialized to X = Gg

m and S the collection of
components of subtori, we will call this statement the weak CIT.

Using the weak CIT, the exponential closedness axioms may be shown to
be �rst-order expressible.

Unlike the CIT, the weak CIT is a theorem whose proof using di�erential
algebra and then generalized using model theoretic di�erential algebra
generalizes to other cases of the weak Zilber-Pink conjecture.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 24 / 63



Very unlikely intersections

Given a variety X , a collection S of special subvarieties, and Y ⊆ X an
irreducible subvariety not contained in any proper special subvariety, we say
that a ∈ Y belongs to very unlikely intersection if there is some
T ∈ S [<codimX Y ] for which dima(Y ∩ T ) > 0.

By the weak Pink-Zilber conjecture (for X , S , and Y ) we mean the
assertion that the set of very unlikely intersection points is not Zariski
dense in Y . When specialized to X = Gg

m and S the collection of
components of subtori, we will call this statement the weak CIT.

Using the weak CIT, the exponential closedness axioms may be shown to
be �rst-order expressible.

Unlike the CIT, the weak CIT is a theorem whose proof using di�erential
algebra and then generalized using model theoretic di�erential algebra
generalizes to other cases of the weak Zilber-Pink conjecture.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 24 / 63



On Schanuel's conjectures 
By JAMES Ax* 

In this paper proofs are given of conjectures of Schanuel on the algebraic 
relations satisfied by exponentiation in a differential-algebraic setting. The 
methods and results are then used to give new proofs and generalizations of 
the theorems of Chabauty, Kolchin, and Skolem. 

1. Introduction 

(i) Statement of the conjectures and our main results. S. Schanuel has 
made a conjecture [1, p. 30-31] concerning the exponential function which 
embodies all its known transcendentality properties such as the theorems of 
Lindemann [2, p. 225 or 1, Ch. VII, ? 2, Th. 1], Baker [3, Cor. 1, 2, and 4, Th. 
1, 2], and other results (e.g. [1, Ch. II, Th. 1; Ch. V, Th. 1]) and implies a 
whole collection of special conjectures (e.g. [1, p. 11, Remark], [5, p. 138, 
Problems 1, 7, 8] and the algebraic independence of w and e over Q). 

The conjecture runs as follows: 
(S) Let y1, * , yn C C be Q-linearly independent. Then 

dimQ Q(y1, *.., y* , ey', ... , eyn) > n . 

Here dim, F, for any extension of fields FIE, denotes the cardinality of 
a maximally E-algebraically independent subset of F. 

Schanuel also made the analogous power series conjecture. 
(SP) Let y1, ..., y G tC[[t]] be Q-linearly independent. Then 

dimc(t) Q~t)(yiq .. * *, Ens exp yi, .. * , exp yn) > n . 

In this paper we prove (SP) and obtain certain generalizations and related 
results. 

Let us consider the hypothesis 
(?) Let y1, ..., y C C[[t1, ..., t9 ]] be Q-linearly independent. Then 

dimQ Q(yl, ** *, y., exp y, ... , exp yO) > n + rank( &l) 
P P=1, ......, 

Then (S) is the special case of (?) when m = 0 (or when each y, C C). (SP) 
* This research was performed while the author was partially supported by NSF Grant 

GP-12814 and partially while the author was an IBM summer faculty employee at the T. 
J. Watson Research Center, Yorktown Heights, New York. 
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Ax's di�erential Schanuel conjecture

Theorem

Let α1, . . . , αn ∈ tC[[t]] be a sequence of Q-linearly independent formal
power series over the complex numbers having no constant terms. Then

tr. degCC(α1, . . . , αn, exp(α1), . . . , exp(αn)) ≥ n + 1.

Theorem

Let (K , ∂) be a di�erential �eld of characteristic zero with �eld of

constants C := {x ∈ K : ∂(x) = 0} and elements

α1, . . . , αn, β1, . . . , βn ∈ K satisfying

∂(αi ) = ∂(βi )
βi

for all i ≤ n and

∂(α1), . . . , ∂(αn) are linearly independent over Q.
Then tr. degC C (α1, . . . , αn;β1, . . . , βn) ≥ n + 1

The formal theorem is a consequence of the di�erential version taking
K = C((t)), ∂ = d

dt
and βi := exp(αi ).
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Uniformity from Ax-Schanuel

Theorem

If Z ⊆ (Gg
a ×Gg

m)× B is a family of irreducible subvarieties of dimension at most

g, then there is �nite collection of nontrivial integer vectors

M [1] = (M
[1]
1
, . . . ,M

[1]
g ), . . . ,M [n] = (M

[n]
1
, . . . ,M

[n]
g ) so that for any parameter

b ∈ B and any in�nite component of Zb ∩ Graph(exp) equations of the form∑
M

[i ]
j xj = c and

∏
y
M

[i ]
j

j = c hold.

If this were false, we would deduce that it would be consistent to have a
di�erential �eld K extending C, a point b ∈ B(K ), and
(α1, . . . , αg ;β1, . . . , βg ) ∈ Zb(K ) for which ∂αi = ∂βi

βi
(for i ≤ g) and

∂α1, . . . , ∂αg are Q-linearly independent contradicting Ax's theorem.

How? If the theorem were false, then for each �nite list of nontrivial integer
vectors we could �nd some b and a component S of Zb ∩ Graph(exp) on
which none of the stated equations held. Taking a nonconstant analytic
curve z 7→ (α1(z), . . . , αg (z);β1(z), . . . , βg (z)) ∈ S(C) we �nd a point in
the di�erential �eld of meromorphic functions satisfying this �nite fragment
of the type.
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Weak CIT from uniform Ax-Schanuel

The (uniform) weak CIT follows from the uniform Ax-Schanuel theorem:

Consider a family Z ⊆ Gg
m × B of irreducible subvarieties of Gg

m of
dimension d < g .

By uniform Ax-Schanuel applied to the family of varieties H × Zb
(where H ranges through the family of a�ne spaces of dimension
< g − d) the projections to the multiplicative group of the in�nite
components of (H × Zb) ∩ Graph(exp) are contained in translates of
one of a �nite list of tori.

Taking H to be a component of logT where T is a translate of a
torus with dim(T ) < g − d we see that all of the points of very
unlikely intersection are contained in the intersections with translates
from a �nite list of tori independent of parameters.
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Ax's proof: linear relations on logarithmic di�erential forms

Recall that for any commutative ring k and k-algebra R there is a universal
k-derivation d : R → ΩR/k there ΩR/k is an R-module.

The map d log : R× → ΩR/k given by a 7→ 1
a
da is a homomorphism from

the multiplicative group of R to the module of di�erentials.

Proposition

If C ⊆ F is an inclusion of �elds of characteristic zero, then then the

natural map F ⊗Z d log(F )→ ΩF/C/dF is injective.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 29 / 63



Ax's proof: linear relations on logarithmic di�erential forms

Recall that for any commutative ring k and k-algebra R there is a universal
k-derivation d : R → ΩR/k there ΩR/k is an R-module.

The map d log : R× → ΩR/k given by a 7→ 1
a
da is a homomorphism from

the multiplicative group of R to the module of di�erentials.

Proposition

If C ⊆ F is an inclusion of �elds of characteristic zero, then then the

natural map F ⊗Z d log(F )→ ΩF/C/dF is injective.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 29 / 63



Ax's proof: linear relations on logarithmic di�erential forms

Recall that for any commutative ring k and k-algebra R there is a universal
k-derivation d : R → ΩR/k there ΩR/k is an R-module.

The map d log : R× → ΩR/k given by a 7→ 1
a
da is a homomorphism from

the multiplicative group of R to the module of di�erentials.

Proposition

If C ⊆ F is an inclusion of �elds of characteristic zero, then then the

natural map F ⊗Z d log(F )→ ΩF/C/dF is injective.

Thomas Scanlon (UC Berkeley) Zilber-Pink conjecture June 2013 29 / 63



Ax's proof

More concretely, the proposition asserts that whenever elements
α1, . . . , αn, and β of F satisfy an equation of the form

∑
ci

dβi
βi

= dα
with c1, . . . , cn ∈ C , then d log(β1), . . . , d log(βn) are Q-linearly
dependent.

Arguing by induction on n and on tr. degC (F ), we may assume that F
is a function �eld of a smooth curve X over C and that the ci 's are
Q-linearly independent.

For each point P ∈ X compute residues:∑
ci resP(

dβi
βi

) = resP(dα) = 0

The residues of the logarithmic forms are always integers and are zero
everywhere only for βi ∈ C .

Thus, we may choose P to violate the Q-linear independence of the
ci 's.
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Ax's proof, continued

Assuming that tr. degC C (α, β) ≤ n, dimΩC(α,β)/C ≤ n so that there
must be a nontrivial linear relation of the form∑

fj(dαj − dβj
βj

) = gdβ1.

We may extend the derivation to a map D : Ω→ Ω via the rule
D(xdy) = ∂(x)dy + xd(∂(y)),

One computes that D(dx − dy
y

) = d(∂x − (∂y)
y

)

If g = 0, then we may di�erentiate the relation to obtain a linear
dependence with fewer terms (unless all of the fj 's are constants. If
g 6= 0, then scaling we may take g = 1, and again by di�erentiating
we obtain a relation where g = 0, or we conclude that already all of
the coe�cients are constants.

The result now follows from the proposition on linear dependence of
forms.
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Kolchin's logarithmic derivatives

In general, if G is a commutative algebraic group over the constants of a
di�erential �eld K , there is a di�erential algebraic homomorphism

∂ logG : G (K )→ T0G (K ) ∼= K g

where T0G is the tangent space to G at the identity and g = dimG

coming from the trivialization of the tangent bundle of G .

G (K )
∇−−−−→ TG (K ) G (K )× T0G (K ) −−−−→ T0G (K )
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Logarithmic di�erential equation

Associated to the commutative algebraic group G over the constants, we
have the logarithmic di�erential equation ∂ logG (x) = ∂y where we identify
T0G with its own tangent space.

Note that when G is de�ned over the complex numbers and x = expG (y)
where expG is the analytic exponential map coming from Lie theory, then
(x , y) satis�es the logarithmic di�erential equation. The logarithm
logG : G (C)→ T0G (C) is analytic but not well-de�ned in that the
exponential map (usually) has a kernel. In di�erentiating we eliminate the
ambiguity.
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Ax-Schanuel via Kolchin logarithms

Ax's di�erential Schanuel theorem says that if (x , y) ∈ Gg
m × T0Gg

m

satis�es the logarithmic di�erential equation, then either
tr. degC C (x , y) ≥ g + 1 (where C is the �eld of constants) or ∂(y)
belongs to a proper subspace de�ned over Q.

In generalizing, to other algebraic groups, it does not su�ce to ask merely
that the coordinates of ∂(y) be Q-linearly independent. For example, if E
is an elliptic curve with complex multiplication by some quadratic imaginary
α, and t is nonconstant, then the point (t, αt; expE (t), expE (αt)) has
transcendence degree at most two over C .
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1. Introduction

1.1. The exponential differential equation

Let 〈F ; +, ·,D〉 be a differential field of characteristic zero, and consider the

exponential differential equation Dx = Dy
y . If F is a field of meromorphic

functions in a variable t, with D being d
dt , then this is the differential equation

satisfied by any x(t), y(t) ∈ F such that y(t) = ex(t).
James Ax proved the following differential fields version of Schanuel’s

conjecture.

Theorem 1.1. (Ax [1]) Let F be a field of characteristic zero, D be a derivation
on F and C be the constant subfield. Suppose n ≥ 1 and x1, y1, . . . , xn, yn ∈ F
are such that Dxi = Dyi

yi
for each i, and the Dxi are Q-linearly independent.

Then td(x1, y1, . . . , xn, yn/C) ≥ n + 1.

This paper was written while the author was at the University of Oxford and the University

of Illinois at Chicago. Supported by the EPSRC fellowship EP/D065747/1.
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Generalization of Ax's di�erential Schanuel theorem

Theorem (Kirby)

If G is a semiabelian variety over the constants C of a di�erential �eld K of

characteristic zero and (x , y) ∈ (G × T0(G ))(K ) satis�es the logarithmic

di�erential equation, then either tr. degC C (x , y) ≥ dim(G ) + 1 or there is

a proper algebraic subgroup H < G and a constant point c ∈ TG (C ) so

that (x , y) ∈ c + TH.

As with the deduction of weak CIT from Ax's di�erential-Schanuel
theorem, Kirby deduces a weak form of the Zilber-Pink conjecture (namely
for very unlikely intersections) for semiabelian varieties.
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Bertrand-Pilay generalized Ax-Lindemann-Weierstraÿ

Bertrand and Pillay have generalized Kirby's theorem to the case that G is
not necessarily de�ned over the constants. There are some highly nontrivial
subtleties.

The logarithmic di�erential equation involves the theory of Manin
homomorphisms.

In some ways, the conclusion is stronger because there are fewer
constant points by which to translate, but one must make sense of the
part which descends to the constants.

Kirby's proof is a careful extension of Ax's di�erential algebraic
argument. This part appears in the Bertrand-Pillay proof, but so does
the socle theorem, Manin's theorem of the kernel, and generalized
di�erential Galois theory.

In another sense, the conclusion is weaker in that it is an
Ax-Lindemann-Weierstraÿ theorem: assuming su�cient independence
from algebraic subgroups, if (x , y) ∈ G (K )× T0G (K ) satis�es the
generalized logarithmic di�erential equation and tr. degC (C (y)) = 1,
then tr. degC (C (x)) = dimG .
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Looking ahead to o-minimal approaches

With the Pila-Zannier o-minimal method to prove theorems of
André-Oort/Manin-Mumford-type, there three crucial ingredients:

a de�nability theorem showing that the relevant analytic covering
maps are o-minimally de�nable,

a theorem on the size of Galois orbits of special points showing, and

an Ax-Lindemann-Weierstraÿ theorem used to identify the algebraic
part of the preimage of an algebraic variety under the analytic covering
map.
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Special varieties from analytic coverings: example of Gg
m

Take X := Cg , X = Gg
m, and E : X→ X (C) to be the map

(z1, . . . , zg ) 7→ (exp(2πiz1), . . . , exp(2πizg )

Then,

Relative to the usual real coordinates, the restriction of E to the
semialgebraic set D := {(z1, . . . , zg ) : 0 ≤ Re(zj) < 1 for i ≤ g} is
o-minimally de�nable and surjective.

The special points are the g -tuples of roots of unity and have large
Galois orbits, of size greater than Cεn

1−ε for 0 < ε < 1 where n is the
order of the torsion point.

The weakly special subvarieties Y ⊆ Gg
m are the translates of subtori

and these are precisely the varieties for which E−1Y (C) is a translate
of a vector space de�ned over Q.
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Uses of the de�nable presentation of the analytic covering

That the class of special subvarieties of Gg
m which on its own does not

form a de�nable family may be seen to come from the rational points
of a de�nable family of algebraic subvarieties of Cg is the starting
point of many applications of o-minimal to Zilber-Pink problems. For
example, Kirby and Zilber showed as an easy corollary of this
observation that the real Schanuel conjecture already implies its own
uniform version.

This presentation is essential for the Pila-Zannier strategy.

As we will hear with Habegger's lecture, he and Bays have recently
proved a theorem towards Zilber-Pink for certain surfaces in Gg

m using
these methods.
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Special varieties from analytic coverings: general picture

In general, for those complex algebraic varieties X for which the Zilber-Pink
conjecture should hold, we should have an analytic covering E : X→ X (C)
for which

X is an open semialgebraic subset of some ambient complex algebraic
variety X̃,

X is a homogeneous space for some open subgroup G (R)+ of a real
algebraic group,

there is a semi-algebraic subset D ⊆ X for which the restriction of E
to D is surjective and o-minimally de�nable, and

the (weakly) special subvarieties Y ⊆ X are those for which E−1Y (C)
is special in the sense that its components are homogeneous spaces for
certain subgroups of G .
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Making the conditions on special varieties precise

Pink works with mixed Shimura varieties and then de�nes the class of
special varieties in terms of generalized Hecke correspondences.

A theorem of Ullmo and Yafaev suggests an alternate de�nition of the
special varieties: An irreducible variety Y ⊆ X should be (weakly)
special just in case each component of E−1Y (C) is (the intersection
with D of) an algebraic subvariety of X̃.
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A Combination of the Conjectures of
Mordell–Lang and André–Oort

Richard Pink

Dept. of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland
pink@math.ethz.ch

Summary. We propose a conjecture combining the Mordell–Lang conjecture with
an important special case of the André–Oort conjecture, and explain how existing
results imply evidence for it.

1 Introduction

We begin with some remarks on the history of related conjectures; the reader
wishing to skip them may turn directly to Conjecture 1.6. Let us start (arbi-
trarily) with the following theorem.

Theorem 1.1 (Mordell–Weil). For any abelian variety A over a number
field K, the group of rational points A(K) is finitely generated.

This was proved in 1922 by Mordell [31] for elliptic curves over Q; the
general case was established by Weil [48] in 1928. Mordell also posed the
following statement as a question in the case K = Q:

Conjecture 1.2 (Mordell). For any irreducible smooth projective algebraic
curve Z of genus ≥ 2 over a number field K, the set of rational points Z(K)
is finite.

This conjecture was proved by Faltings [16], [17] in 1983. Later another
proof was found by Vojta [46], simplified by Faltings [18], and recast in almost
elementary terms by Bombieri [5]. For some accounts of these developments
see Hindry [21], Vojta [47], or Wüstholz [49].

The Mordell conjecture can be translated into a statement about abelian
varieties, as follows. If Z(K) is empty, we are done. Otherwise we can embed Z
into its Jacobian variety J , such that Z(K) = J(K)∩Z. By the Mordell–Weil
theorem J(K) is a finitely generated group. Thus with some generalization we
must prove that for any abelian varietyA over a field of characteristic zero, any
finitely generated subgroup Λ ⊂ A, and any irreducible curve Z ⊂ A of genus
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(Mixed) Shimura varieties

A (connected) mixed Shimura variety is given by group theoretic (G ,X, Γ)
where

G is an algebraic group over Q,

X is a complex manifold on which G (R) acts transitively,

Γ is an arithmetic group,

X (C) = Γ\X+ is an algebraic variety de�ned over a number �eld, and

several other necessary and nontrivial, but technical, conditions hold.

The additional conditions include

a presentation of X+ as a conjugacy class of cocharacters,

requirements on the Hodge decomposition of the adjoint
representation of G , and

a reductivity hypothesis for pure Shimura varieties.

The quintessential mixed Shimura varieties are the universal abelian
schemes over the moduli spaces of abelian varieties with �xed polarization
and level structure, Xg → Ag .
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The j-function

A complex elliptic curve may be presented as E (C) = C/Λ where Λ is a
lattice. After an appropriate change of basis, one may take Λ to have the
form Λτ := Z + Zτ where Im(τ) > 0. A simple computation shows that

Z + Zτ = Z + Zτ ′ if and only if there is some

(
a b

c d

)
∈ SL2(Z) with

τ ′ = aτ+b
cτ+d

.

The analytic j-function is a map j : h→ C (where
h := {z ∈ C : Im(z) > 0}) having the property that j(τ) = j(τ ′) if and
only if Λτ = Λτ ′ .
Here X = H, G = PSL2 acting by fractional linear transformations, and
Γ = PSL2(Z).
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Universal elliptic curve

Using the Weierstraÿ ℘-function we may represent the universal family of
elliptic curves as an analytic quotient.

h× C −−−−→ E (C)

π̃

y yπ
h

j−−−−→ C
where we realize E (C)j(τ) as C/(Z + Zτ).
Here X = h× C, G = PSL2nG2

a, and Γ = PSL2(Z) n Z2.
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Morphisms of mixed Shimura varieties and special
subvarieties

Given two mixed Shimura data (G1,X1, Γ1) and (G2,X2, Γ2) with
corresponding mixed Shimura varieties X1 = Γ1\X1 and X2 = Γ2\X2, a
map φ : X1 → X2 of varieties is a morphism mixed Shimura varieties if it
lifts to an equivariant map (φ̃, φ̄) : (G1,X1)→ (G2,X2).

Note in particular, if Γ1 ≤ Γ2 has �nite index, then there is a morphism
πΓ1,Γ2 : X1 → X2 corresponding to the natural quotient Γ1\X1 → Γ2\X2.

The image of a mixed Shimura variety is called special. Given two
morphisms of Shimura varieties α : X → Y and β : X → Z , and a point
y ∈ Y , each component of β(α−1{y}) is called weakly special.
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Special subvarieties of Xg

Morally, the special subvarieties of Ag , the moduli space of abelian
varieties of dimension g (with polarization and level structure
notationally suppressed) are the submoduli varieties. More precisely,
they correspond to moduli varieties for certain restrictions on the
Hodge structure and this is generally true for pure Shimura varieties.

In general, the special subvarieties of Xg are (components of)
subgroup schemes over the special subvarieties of Ag .
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Warning: a special subvarieties of relative abelian varieties
need not be (components of) group schemes
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Special points and Poincaré bi-extensions

by Daniel Bertrand, with an Appendix by Bas Edixhoven

April 2011

The context is the following :

i) in a joint project with D. Masser, A. Pillay and U. Zannier [7], we aim at extending
to semi-abelian schemes the Masser-Zannier approach [11] to Conjecture 6.2 of R. Pink’s
preprint [13]; this conjecture also goes under the name “Relative Manin-Mumford ”. In-
spired by Anand Pillay’s suggestion that the semi-constant extensions of [6] may bring
trouble, I found a counter-example, which is described in Section 1 below.

ii) at a meeting in Pisa end of March, Bas Edixhoven found a more concrete way
of presenting the counter-example, with the additional advantage that the order of the
involved torsion points can be controlled in a precise way : this is the topic of the Appendix.

iii) finally, I realized that when rephrased in the context of mixed Shimura varieties,
the construction, far from providing a counter-example, actually supports Pink’s general
Conjecture 1.3 of [13]; a sketch of this view-point is given in Section 2.

1 A counter-example to relative Manin-Mumford ...

This counterexample is provided by a “Ribet section” on a semi-abelian scheme B/X of
relative dimension 2 over a base curve X . Roughly speaking, given an elliptic curve E0/C
with complex multiplications and using an idea of L. Breen, K. Ribet constructed a non-
torsion point β0 with strange divisibility properties on any given non isotrivial extension
B0 of E0 by Gm, cf. [10]. In the relative situation B/X , the very same construction yields :

Theorem 1. Let B/X be a non constant (hence non isotrivial) extension of E0 × X by
Gm. There exists a section β : X → B which does not factor through any proper closed
subgroup scheme of B/X, but whose image Y := β(X) meets the torsion points of the
various fibers of B/X infinitely often (so, Zariski-densely, since X is a curve).

More precisely, let X be a smooth connected affine curve defined over (say) C, with
function field K := C(X). We may have to delete some points of X , or consider finite
covers of X , but will still denote by X the resulting curve. We write x for the generic point

1
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A CHARACTERIZATION OF SPECIAL SUBVARIETIES

EMMANUEL ULLMO AND ANDREI YAFAEV

Abstract. We prove that an algebraic subvariety of a Shimura variety is weakly
special if and only if analytic components of its preimage in the symmetric space are
algebraic. We also prove an analogous result in the case of abelian varieties.

§1. Introduction. The aim of this note is to obtain a new characterization of
special subvarieties of Shimura varieties. For generalities on Shimura varieties
we refer to [3, 5] or [12].

Let (G, X) be a Shimura datum and X+ a connected component of X . We
let K be a compact open subgroup of G(A f ) and 0 := G(Q)+ ∩ K where
G(Q)+ denotes the stabilizer in G(Q) of X+. We let S := 0\X+, a connected
component of ShK (G, X).

A special subvariety of S is a subvariety of Hodge type in the sense of [15].
In §2 we give a description of slightly more general notion of weakly special
subvarieties in terms of sub-Shimura data of (G, X). In [15] Moonen proves
that a subvariety of S is weakly special if and only if it is a totally geodesic
submanifold of S. A special point is a special subvariety of dimension zero and
a weakly special subvariety containing a special point is special.

Special subvarieties are interesting for many reasons, one of which is the
following conjecture.

CONJECTURE 1.1 (André–Oort). Let Z be an irreducible subvariety of
ShK (G, X) containing a Zariski-dense set of special points. Then Z is special.

This conjecture has recently been proved under the assumption of the genera-
lized Riemann hypothesis for complex multiplication (CM) fields (see [10, 22]).
Part of the strategy consisted in establishing a geometric characterization of
special subvarieties of Shimura varieties. This criterion says roughly that sub-
varieties contained in their image by certain Hecke correspondences are special.

Very recently Pila came up with a new and very promising strategy for
attacking the André–Oort conjecture unconditionally (see [18, 19]). A step in
this strategy consists in establishing a criterion for a subvariety of S to contain
special subvarieties involving certain algebraicity properties of their preimages
in X+. Let us explain this in more detail. The Borel embedding of X+ into its
compact dual X+∨ (see §3) gives meaning to the notion of algebraicity of subsets
of X+. Namely, a subset Y of X+ is algebraic if there exists an algebraic subset Z

Received 6 July 2010, published online 7 March 2011.
MSC (2000): 14G35, 14G10, 53C35.
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Dual algebraicity

Given a Shimura variety presented via a Shimura datum (G ,X, Γ), there are
various ways to realize X as an open semialgbraic subset of some complex
algebraic variety X̃. For the purposes of their characterization theorem,
Ullmo and Yafaev work with the Borel embedding.

Theorem

We are given

X is a Shimura variety de�ned over Qalg

given by a Shimura datum (G ,X, Γ) and

analytic covering map π : X→ Γ\X = X (C) with

X ↪→ X̃ its the Borel embedding, and

Y ⊆ X an irreducible subvariety.

Then Y is a weakly special subvariety if and only if each component Y of

E−1Y is algebraic in the sense that there is an algebraic variety Z ⊆ Ỹ
with Z ∩ X = Y. Moreover, Y is special if and only if both Y and Y are

de�ned over Qalg.
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THE RATIONAL POINTS OF A DEFINABLE SET

J. PILA and A. J. WILKIE

Abstract
Let X ⊂ Rn be a set that is definable in an o-minimal structure over R. This article
shows that in a suitable sense, there are very few rational points of X which do not lie
on some connected semialgebraic subset of X of positive dimension.

1. Introduction
This article is concerned with the distribution of rational and integer points on certain
nonalgebraic sets in Rn. To contextualize the kind of results sought and, in particular,
to motivate the present setting of definable sets in o-minimal structures over R (see
Definition 1.7), we begin by describing earlier results.

The ideas pursued here grew from the article [4] of Bombieri and Pila, where a
technique using elementary real-variable methods and elementary algebraic geometry
was used to establish upper bounds for the number of integer points on the graphs
of functions y = f (x) under various natural smoothness and convexity hypotheses.
Results were obtained for f variously assumed to be (sufficiently) smooth, algebraic,
or real analytic. Several results concerned the homothetic dilation of a fixed graph
X : y = f (x).

Definition 1.1
Let X ⊂ Rn. For a real number t ≥ 1 (which is always tacitly assumed), the homothetic
dilation of X by t is the set tX = {〈tx1, . . . , txn〉 : 〈x1, . . . , xn〉 ∈ X}. By X(Z) we
denote the subset of X comprising the points with integer coordinates.

Suppose now that X is the graph of a function f : [0, 1] → R. Trivially, one has
#(tX)(Z) ≤ t +1 (with equality, e.g., for f (x) = x and positive integral t). According
to Jarnı́k [15], a strictly convex arc � : y = g(x) of length � contains at most
3(4π)−1/3�2/3 + O(�1/3) integer points. (And, moreover, the exponent and constant
are the best possible.) So if X is strictly convex, one infers that

#(tX)(Z) ≤ c(X)t2/3.

DUKE MATHEMATICAL JOURNAL
Vol. 133, No. 3, c© 2006
Received 29 November 2004. Revision received 10 October 2005.
2000 Mathematics Subject Classification. Primary 11G99, 03C64.
Pila’s work supported in part by McGill University and the Natural Sciences and Engineering Research Council

of Canada.
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Pila-Wilkie counting theorem: set-up

For q = a
b
∈ Q× written in lowest terms, we de�ne

H(q) := max{|a|, |b|} (and H(0) := 0).

For q = (q1, . . . , qn) ∈ Qn we de�ne H(q) := max{h(qi ) : i ≤ n}
For X ⊆ Rn and t > 0 we de�ne
X (Q, t) := {q ∈ X ∩Qn : H(q) ≤ t} and N(X , t) := #X (Q, t).

For X ⊆ Rn we de�ne X alg to be the union of all in�nite, connected
semialgebraic subsets of X and X tr := X r X alg.
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Pila-Wilkie counting theorem

Theorem

Let X ⊆ Rn be de�nable in some o-minimal expansion of the real �eld.

Then for every ε > 0 there is a constant C = Cε so that N(X tr, t) ≤ Ctε.

The counting theorem admits a natural generalization to counting algebraic
points of bounded degree. Speci�cally, for each d ∈ Z+ and X ⊆ Rn, we
de�ne Nd (X , t) := #{(a1, . . . , an) ∈ X : [K (ai ) : K ] ≤ d and H(ai ) ≤
t for i ≤ n}.

Theorem

Let X ⊆ Rn be de�nable in some o-minimal expansion of the real �eld.

Then for every d ∈ Z+ and ε > 0 there is a constant C = Cε,d so that

Nd (X tr, t) ≤ Ctε.
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Rend. Lincei Mat. Appl. 19 (2008), 149–162

Number theory. — Rational points in periodic analytic sets and the Manin–Mumford
conjecture, by JONATHAN PILA and UMBERTO ZANNIER, communicated by U. Zannier
on 18 April 2008.

ABSTRACT. — We present a new proof of the Manin–Mumford conjecture about torsion points on algebraic
subvarieties of abelian varieties. Our principle, which admits other applications, is to view torsion points as
rational points on a complex torus and then compare (i) upper bounds for the number of rational points on a
transcendental analytic variety (Bombieri–Pila–Wilkie) and (ii) lower bounds for the degree of a torsion point
(Masser), after taking conjugates. In order to be able to deal with (i), we discuss (Thm. 2.1) the semialgebraic
curves contained in an analytic variety supposed invariant under translations by a full lattice, which is a topic
with some independent motivation.

KEY WORDS: Torsion points on algebraic varieties; rational points on analytic varieties; conjecture of Manin–
Mumford.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 11J95, 14K20, 11D45.

1. INTRODUCTION

The so-called Manin–Mumford conjecture was raised independently by Manin and
Mumford and first proved by Raynaud [R1] in 1983; its original form stated that a curve C

(over C) of genus ≥ 2, embedded in its Jacobian J , can contain only finitely many torsion
points (relative of course to the Jacobian group structure). Raynaud actually considered the
more general case when C is embedded in any abelian variety. Soon afterwards, Raynaud
[R2] produced a further significant generalization, replacing C and J respectively by a
subvariety X in an abelian variety A; in this situation he proved that if X contains a Zariski
dense set of torsion points, then X is a translate of an abelian subvariety of A by a torsion
point. Other proofs (sometimes only for the case of curves) appeared later, due to Serre,
Coleman, Hindry, Buium, Hrushovski (see [Py1]), Pink & Roessler [PR], and M. Baker &
Ribet [BR]. We also remark that a less deep precedent of this problem was an analogous
question for multiplicative algebraic groups, raised by Lang already in the ’60s. (See [L];
Lang started the matter by asking to describe the plane curves f (x, y) = 0 with infinitely
many points (ζ, η) with ζ, η roots of unity.)

In the meantime, the statement was put into a broader perspective, by viewing it as a
special case of the general Mordell–Lang conjecture and also, from another viewpoint, of
the Bogomolov conjecture on points of small canonical height on (semi)abelian varieties
(we recall that torsion points are those of zero height). These conjectures have later been
proved and unified (by Faltings, Vojta, Ullmo, Szpiro, Zhang, Poonen, David, Philippon,...)
by means of different approaches providing, as a byproduct, several further proofs of the
Manin–Mumford statement (we refer to the survey papers [Py1] and [T] for a history of
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Pila-Zannier method

Working with a mixed Shimura variety X with analytic covering
E : X→ X (C) and o-minimally de�nable restriction to a fundamental
domain Ẽ := E � D : D→ X (C), we consider some irreducible variety
Y ⊆ X which contains a Zariski dense set of special points.

Through various steps, one reduces to considering the situation that Y is
de�ned over some number �eld K and that there is a generic sequence (ξi )
of special points on Y so that [K (ξi ) : K ]→∞ and E−1(ξi ) ⊆ Ẽ−1Y is a
set of algebraic points of bounded degree but of cardinality greater than
would be allowed by the counting theorem.

To �nish, under the assumption that Y is not special, one must show that
it is possible to take E−1(ξi ) ⊆ Ẽ−1Y .
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Ax-Lindemann-Weierstraÿ and the algebraic part

By de�nition, Ẽ−1Y (C)alg is the union of all in�nite, connected
semialgebraic subsets, but because E is complex analytic, one may
compute the algebraic part as the union of the images of nonconstant
algebraic functions into Y.

In the case the X = Cg and X = Gg
m, then Ax's theorem implies that if

f = (f1, . . . , fg ) : ∆ := {z ∈ C : |z | < 1} → Cg is an algebraic function
for which no nontrivial Q-linear combination is constant, then the image of
(exp(2πif1(t)), . . . , exp(2πifg (t)) is Zariski dense.

In general, the Ax-Lindemann-Weierstraÿ statement (in the sense of Pila)
for E : X→ X should be that if f : ∆→ X is an algebraic function for
which the image of E ◦ f is not contained in any (weakly) special
subvariety of X , then this image is Zariski dense.
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Di�erential algebraic proof of ALW

In the case that X is a semiabelian variety and E : X→ X (C) is the
corresponding exponential map, then for any algebraic function f : ∆→ X,
then point (f ,E ◦ f ) satis�es the logarithmic exponential equation for X
and hence must have transcendence degree at least 1 + dimX unless the
image of E ◦ f is contained in a constant translate of a proper algebraic
subgroup.

In general, there is a natural di�erential equation corresponding to a
covering E : X→ X : the inverse E−1 : X (C)→ X is locally analytic (as
long as Γ is small enough) and is well de�ned up to translation by
Γ < G (R) < G (C). By elimination of imaginaries in the theory of
di�erentially closed �elds, there is a di�erential rational function χ on X̃ so
that for K -points in any di�erential �eld with �eld of constant C,
χ(x) = χ(y) if and only if there is some γ ∈ G (C) with x = γ · y . The
di�erential-analytic function ` := χ ◦ E−1 is well de�ned X . If f : ∆→ X
is a holomorphic function, then (x , y) := (f ,E ◦ f ) satis�es the di�erential
equation χ(x) = `(y).
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Γ < G (R) < G (C). By elimination of imaginaries in the theory of
di�erentially closed �elds, there is a di�erential rational function χ on X̃ so
that for K -points in any di�erential �eld with �eld of constant C,
χ(x) = χ(y) if and only if there is some γ ∈ G (C) with x = γ · y . The
di�erential-analytic function ` := χ ◦ E−1 is well de�ned X . If f : ∆→ X
is a holomorphic function, then (x , y) := (f ,E ◦ f ) satis�es the di�erential
equation χ(x) = `(y).
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Sketch of proof of Modular Ax-Lindemann-Weierstraÿ

We are given E : X→ X (C), the analytic covering map expressing
X (C) = Γ\X where (G ,X, Γ) is a mixed Shimura datum and an
irreducible subvariety Y ⊆ X together with a semialgebraic
fundamental domain D for which the restriction of E to D is
o-minimally de�nable. Our charge is to describe (D ∩ E−1Y (C))alg.

Let Y be a component of E−1Y having dim(Y ∩D) = dimY . Using
the fact that E is complex analytic, one shows that if Z ⊆ (Y ∩D) is

a connected, semialgebraic set, then Z
Zar ⊆ Y. Thus, the problem is

reduced to describing those complex algebraic varieties contained in Y.

Let Z ⊆ Y be a maximal, irreducible, positive dimensional algebraic
subvariety with dim(Z ∩D) = dimZ .

Towards showing that Z is stabilized by a large subgroup of G (R),
consider S := {g ∈ G (R) : dim(gZ ∩Y ∩D) = dimZ}, a de�nable
set.
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ALW sketch, continued

Let N := {γ ∈ Γ : D ∩ γD 6= ∅} which is a �nite generating set for
Γ.

Following Y out of D, it is easy to see that if γ ∈ N with
Y∩ γD 6= ∅, then γ ∈ S . Continuing in this way, one �nds that S ∩ Γ
is fairly large.

What is more di�cult to establish (and has been done so in print only
under additional hypotheses) is that N(S ∩ Γ, t) grows faster than
allowed by the Pila-Wilkie bounds. In the case that X (C) is compact,
Ullmo and Yafaev achieve this by comparing the word metric on Γ to a
G -invariant metric on X.

It then follows that there is a semi-algebraic curve C ⊆ S which we
may take to contain the identity. The set C · Z is a connected
semi-algebraic set contained in Y and containing Z . Hence, by
maximality, C · Z = Z .

Thus, H := 〈C 〉 stabilizes Z . A further argument is needed to show
that this implies E (Z ) is a weakly special variety.
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Further remarks on ALW

A further application of o-minimality, namely that a countable
de�nable set must be �nite, is used to complete the proof: the
maximal algebraic components of (Y ∩D)alg may be seen as instance
of a single family of varieties de�ned using rational parameters.

It is relatively easy to complete the above sketch of ALW for
semiabelian varieties.

The case of E : Hn → Cn given by (τ1, . . . , τn)→ (j(τ1), . . . , j(τn))
appears in Pila's proof of the André-Oort conjecture.

Ullmo and Yafaev have completed this strategy in the case of compact
Shimura varieties. Pila and Tsimerman have done so for moduli spaces
of abelian varieties.
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Conclusion

While the full Zilber-Pink conjecture may be out of reach now, the
translation to problems on rational points on o-minimally de�nable
sets puts the conjecture into a context where strong model theoretic
theorems may be applied.

The di�erential algebraic and o-minimal approaches to functional
transcendence questions are complementary. As every countable
di�erential �eld may be embedded in the di�erential �eld of germs of
meromorphic functions, functional transcendence theorems for analytic
functions imply corresponding results in general di�erential �elds.
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Thank you
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