On Reducts of Hrushovski's Non-Collapsed Construction

Omer Mermelstein Ben Gurion University of the Negev, Israel omermerm@math.bgu.ac.il

Introduction

In this poster we show that Hrushovski's original non-collapsed construction has a proper reduct with an isomorphic geometry. This is a first step in a project aimed at finding the right setup for a reformulation of Zilber's conjecture.

Hrushovski-type Fraïssé Limits

Let \mathcal{C} be a class of countably many (up to isomorphism) finite structures in a given language with \mathcal{C} closed under isomorphism and taking substructures (i.e $A \subseteq B \in \mathcal{C} \implies A \in \mathcal{C}$). Let $d_0 : \mathcal{C} \to \mathbb{N}$ with

- 1. $d_0(\emptyset) = 0$
- 2. $d_0(X) \leq 1$ for any $X \in \mathcal{C}$ with |X| = 1

3.
$$d_0(A \cup B) \le d_0(A) + d_0(B) - d_0(A \cap B)$$
 (St

We call d_0 the pre-dimension function of (\mathcal{C}, d_0) .

Definition. Define d(A, N), for A a finite substructure of N and N a structure whose age is a subset of \mathcal{C} , by

$$d(A,B) = \min\{d_0(D) \mid A \subseteq D \subseteq B\}$$

We call d the dimension function associated with d_0 .

Definition. For $A \subseteq B \in \mathcal{C}$ define $A \leq B$ if and only if $d(A, B) = d_0(A)$. If $A \leq B$ we say that A is *self-sufficient* or *strong* in B.

Definition. We say (\mathcal{C}, d_0) is a Hrushovski-type amalgamation class if the following holds:

(AP) Let $A, B_1, B_2 \in \mathcal{C}$ with $B_1 \cap B_2 = A$ and $A \leq B_i$ for i = 1, 2. Then there exists some $D \in \mathcal{C}$ and embeddings $f_i : B_i \to D$ such that $f_1 \upharpoonright A = f_2 \upharpoonright A$ and $f_i B_i \leq D$ for i = 1, 2.

Theorem. For (\mathcal{C}, d_0) a Hrushovski-type amalgamation class, there is a single (up to isomorphism) countable structure M with age C that is homogeneous in the following sense:

• Any partial isomorphism $f : A \to B$ where $A, B \leq M$, extends to an automorphism of M.

We call M the Fraïssé-Hrushovski limit of (\mathcal{C}, d_0) .

Definition. Let M be the Fraïssé-Hrushovski limit of a Hrushovski-type amalgamation class (\mathcal{C}, d_0) . Define the *d*-closure of A, a finite subset of M, to be

$$cl_d(A) = \{a \in M \mid d(A \cup \{a\}, M) = d(A, M)\}$$

For N an infinite subset of M, define its d-closure to be the union of the *d*-closures of all its finite subsets.

The d-closure operator defined above on M, in fact defines a pregeometry (M, cl_d) , which in turn has an associated geometry. We call this associated geometry the geometry of M and denote it by G(M).

Submodularity)

The Original and Symmetric Constructions

Consider the language $\mathcal{L} = \{R\}$ where R is a ternary relation symbol. Assume that whenever $(a, b, c) \in R$ then a, b, c are distinct elements. Define the following for finite \mathcal{L} -structures:

 $d_0(A) = |A| - |R^A|$ $\mathcal{C} = \{A \mid A \text{ is a finite } \mathcal{L}\text{-structure with } d_0(B) \ge 0 \text{ for every } B \subseteq A\}$ $d_0^{\sim}(A) = |A| - |\{\{a, b, c\} \mid A \models R(a, b, c)\}|$ $\mathcal{C}_{\sim} = \{A \mid A \text{ is a finite } \mathcal{L}\text{-structure with } d_0^{\sim}(B) \ge 0 \text{ for every } B \subseteq A\}$

Theorem. The pairs (\mathcal{C}, d_0) and $(\mathcal{C}_{\sim}, d_0^{\sim})$ are Hrushovski-type amalgamation classes

We denote the corresponding Fraïssé-Hrushovski limits of (\mathcal{C}, d_0) and $(\mathcal{C}_{\sim}, d_0^{\sim})$ by M and M_{\sim} respectively.

Theorem. G(M) and $G(M_{\sim})$ are isomorphic

The structure M is commonly referred to as Hrushovski's non-collapsed construction. Similarly M_{\sim} is Hrushovski's non-collapsed symmetric construction. Now, consider the formula

 $R_{\sim}(x_1, x_2, x_3) = \bigvee R(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)})$

Theorem. The reduct (M, R_{\sim}) is a proper reduct of the structure M, and it is isomorphic to M_{\sim} .

Definition of the Reduct M_s

We prove that M_{\sim} , too, has a proper reduct with an isomorphic geometry. Consider the formula

 $S(x_1, x_2, x_3) := \exists x_4, x_5 [\land R_{\sim}(x_i, x_5)]$ $i \in \{1, 2, 3\}$

We denote the reduct (M_{\sim}, S) by M_s . As it so happens, this will be a proper reduct of M_{\sim} with an isomorphic geometry. In fact M_s is, too, the limit of a Hrushovski-type amalgamation class.

A New Kind of Dimension Function

We would like to define some d_{0s} , a pre-dimension function for the age of M_s , that will allow us to construct M_s as a Fraissé-Hrushovski limit.

• Difficulty: A function of the sort $A \mapsto c_1 |A| - c_2 |S^A|$ is unbounded from below on the age of M_s , and so cannot be an appropriate predimension function.

Solution: We count the sizes of maximal cliques under the relation S(with some minor technical modifications) rather then the individual S-relations.

$$(x_4, x_5) \land \bigwedge_{i \neq j} x_i \neq x_j]$$

A New Kind of Dimension Function - Continued

must be reflected in the pre-dimension function.

Solution: We introduce \mathfrak{m} , the *multiplicity* function for cliques, which associates each clique with the number of extensions it has. The function \mathfrak{m} is definable in M_s .

We may now define d_{0s} .

Definition. For A a finite $\{S\}$ -structure with set of maximal cliques C(A)and multiplicity function \mathfrak{m} , define

 $d_{0s}(A) = \lfloor$

We denote the dimension function associated with d_{0s} by d_s and the associated self-sufficiency notion by \leq_s .

Main Results

Define $C_s = \{A \mid A \text{ is a finite } \{S\}\text{-structure with } \emptyset \leq_s A\}$. Then

Theorem. The pair (\mathcal{C}_s, d_{0s}) is a Hrushovski-type amalgamation class

Theorem. The geometry of the Fraissé-Hrushovski limit of (\mathcal{C}_s, d_{0s}) is isomorphic to $G(M_{\sim})$

Theorem. The age of M_s is C_s

isomorphism, then f extends to an automorphism of M_s .

Corollary. M_s is a proper reduct of M and $G(M) \cong G(M_s)$

References

- 162(6):474-488, 2011.
- 77(1):337-349, 2012.

• Difficulty: A small clique (of size < 5) in $A \subseteq M_s$ may extend to several distinct cliques in the structure M_s . In order to satisfy submodularity, the number of extensions that a clique may have

• By definition of S, given an S-clique C in M_{\sim} , there are two elements x_C, y_C with $\models R(a, x_C, y_C)$ for all $a \in C$. Thus, adding $\{x_C, y_C\}$ to C generically lowers the dimension by (|C|-2). Accordingly, we estimate the negative contribution of a clique C, by $|C|_* = (|C|-2)$.

$$A| - \sum_{C \in C(A)} \mathfrak{m}(C) \cdot |C|_*$$

Theorem. Let $A, B \leq M_s$ be finite and let $f : A \to B$ be a partial

[1] David M. Evans and Marco S. Ferreira. The geometry of Hrushovski constructions, I: The uncollapsed case. Ann. Pure Appl. Logic,

[2] David M. Evans and Marco S. Ferreira. The geometry of Hrushovski constructions, II. The strongly minimal case. J. Symbolic Logic,

[3] Ehud Hrushovski. A new strongly minimal set. Ann. Pure Appl. Logic, 62(2):147–166, 1993. Stability in model theory, III (Trento, 1991).